logo ANNALES DE L'INSTITUT FOURIER

Avec cedram.org

Table des matières de ce fascicule | Article précédent | Article suivant
Philippe Di Francesco; Paul Zinn-Justin; Jean-Bernard Zuber
Determinant formulae for some tiling problems and application to fully packed loops
(Formules de déterminants pour quel\-ques problèmes de pavage et application aux modèles de boucles compactes)
Annales de l'institut Fourier, 55 no. 6 (2005), p. 2025-2050, doi: 10.5802/aif.2150
Article PDF | Analyses MR 2187944 | Zbl 1075.05007
Class. Math.: 05A19, 52C20, 82B20
Mots clés: pavages, matrices à signes alternés, boucles compactes

Résumé - Abstract

Quelques formules de déterminants sont données pour le dénombrement des pavages dans différents domaines, en relation avec les énumérations de matrices à signes alternés et de boucles compactes.

Bibliographie

[1] M. Adler & P. van Moerbeke, “Virasoro action on Schur function expansions, skew Young tableaux and random walks”, Comm. Pure Appl. Math. 58 (2005), p. 362-408 Article |  MR 2116618 |  Zbl 02136359
[2] M.T. Batchelor, J. de Gier & B. Nienhuis, “The quantum symmetric XXZ chain at $\Delta=-\frac 12$, alternating sign matrices and plane partitions”, J. Phys. A 34 (2001), p. L265-L270 Article |  MR 1836155 |  Zbl 1028.82004
[3] D. Bressoud, Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge University Press, 1999  MR 1718370 |  Zbl 0944.05001
[4] F. Caselli & C. Krattenthaler, “Proof of two conjectures of Zuber on fully packed loop configurations”, J. Combin. Theory Ser. A 108 (2004), p. 123-146 Article |  MR 2087309 |  Zbl 1054.05005
[5] M. Ciucu & C. Krattenthaler, “Enumeration of lozenge tilings of hexagons with cut-off corners”, J. Combin. Theory Ser. A 100 (2002), p. 201-231 Article |  MR 1940333 |  Zbl 1015.05006
[6] M. Ciucu, C. Krattenthaler, T. Eisenkölbl & D. Zare, “Enumeration of lozenge tilings of hexagons with a central triangular hole”, J. Combin. Theory Ser. A 95 (2001), p. 251-334 Article |  MR 1845144 |  Zbl 0997.52010
[7] P. Di Francesco, P. Zinn-Justin & J.-B. Zuber, “A bijection between classes of fully packed loops and plane partitions”, Electron. J. Combin. 11 (2004) no. 1  MR 2097330 |  Zbl 1054.05010
[8] P. Di Francesco & J.-B. Zuber, “On FPL configurations with four sets of nested arches”, JSTAT (2004)  Zbl 02131899
[9] J. de Gier, “Loops, matchings and alternating-sign matrices”, (math.CO/0211285), http://arxiv.org/abs/math.CO/0211285 arXiv |  Zbl 1070.05008
[10] J. Grassberger, A. King & P. Tirao, “On the homology of free 2-step nilpotent Lie algebras”, J. Algebra 254 (2002), p. 213-225 Article |  MR 1933866 |  Zbl 1041.17024
[11] C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien Combin. 42, 1999 arXiv |  MR 1701596 |  Zbl 0923.05007
[12] B. Lindström, “On the vector representations of induced matroids”, Bull. London Math. Soc. 5 (1973), p. 85-90 Article |  MR 335313 |  Zbl 0262.05018
[13] S. Mitra & B. Nienhuis, Osculating random walks on cylinders, pp. 259-264 in Discrete random walks, DRW’03, Discrete Mathematics and Computer Science Proceedings AC, 2003  MR 2042392 |  Zbl 1035.82021
[14] S. Mitra, B. Nienhuis, J. de Gier & M.T. Batchelor, “Exact expressions for correlations in the ground state of the dense $O(1)$ loop model”, JSTAT (2004)  Zbl 02131934
[15] , “On-Line Encyclopedia of Integer Sequences”, , http://www.research.att.com/~njas/sequences/Seis.html
[16] P.A. Pearce, V. Rittenberg & J. de Gier, “Critical $Q=1$ Potts model and temperley-Lieb stochastic processes”, Teor. Mat. Fiz. 142 (2005), p. 284-292
[17] A.V. Razumov & Yu.G. Stroganov, “Combinatorial nature of ground state vector of O(1) loop model”, Theor. Math. Phys. 138 (2004), p. 333-337 Article |  MR 2077318 |  Zbl 1178.82020
[18] B. Wieland, “A large dihedral symmetry of the set of alternating-sign matrices”, Electron. J. Combin. 7 (2000)  MR 1773294 |  Zbl 0956.05015
haut