logo ANNALES DE L'INSTITUT FOURIER

Avec cedram.org

Table des matières de ce fascicule | Article précédent | Article suivant
Motohico Mulase; Josephine T. Yu
Non-commutative matrix integrals and representation varieties of surface groups in a finite group
(Intégrales matricielles non-commutatives et variétés de représentations du groupe d'une surface dans un groupe fini)
Annales de l'institut Fourier, 55 no. 6 (2005), p. 2161-2196, doi: 10.5802/aif.2157
Article PDF | Analyses MR 2187951 | Zbl 1092.15020
Class. Math.: 15A52, 20C05, 32G13, 81Q30
Mots clés: matrices aléatoires, intégrale non commutative de matrice, expansion de diagramme de Feynman, graphe de ruban, graphe de Moebius, algèbre de von Neumann, variété de représentations

Résumé - Abstract

Une nouvelle formule est établie pour l'expansion asymptotique d'une intégrale matricielle avec des valeurs dans une algèbre de von Neumann de dimension finie en terme de graphes sur les surfaces orientables ou non-orientables.

Bibliographie

[1] M. Adler & P. van Moerbeke, “Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum”, Ann. of Math. (2) 153 (2001) no. 1, p. 149-189 Article |  MR 1826412 |  Zbl 1033.82005
[2] J. Baik, P. Deift & K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc. 12 (1999), p. 1119-1178 Article |  MR 1682248 |  Zbl 0932.05001
[3] J. Baik, P. Deift & K. Johansson, “On the distribution of the length of the second row of a Young diagram under Plancherel measure”, math.CO/9901118, http://arxiv.org/abs/math.CO/9901118, 1999 arXiv |  Zbl 0963.05133
[4] J. Baik & E. Rains, “Symmetrized random permutations”, math.CO/9910019, http://arxiv.org/abs/math.CO/9910019, 1999 arXiv |  Zbl 0989.60010
[5] G.V. Belyi, “On galois extensions of a maximal cyclotomic fields”, Math. USSR Izvestija 14 (1980), p. 247-256 Article |  MR 534593 |  Zbl 0429.12004
[6] D. Bessis, C. Itzykson & J.B. Zuber, “Quantum field theory techniques in graphical enumeration”, Advances Applied Math. 1 (1980), p. 109-157 Article |  MR 603127 |  Zbl 0453.05035
[7] P.M. Bleher & A.R. Its, Random matrix models and their applications, Math. Sci. Research Institute Publications 40, Cambridge University Press, 2001  MR 1842779 |  Zbl 0967.00059
[8] A. Borodin, A. Okounkov & G. Olshanski, “On asymptotics of Plancherel measures for symmetric groups”, math.CO/990532, http://arxiv.org/abs/math.CO/9905032, 1999 arXiv |  Zbl 0938.05061
[9] C. Brézin, C. Itzykson, G. Parisi & J.-B. Zuber, “Planar diagrams”, Comm. Math. Physics 59 (1978), p. 35-51 Article |  MR 471676 |  Zbl 0997.81548
[10] W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge University Press, 1991  JFM 28.0118.03
[11] P. Deift, “Integrable systems and combinatorial theory”, Notices AMS 47 (2000), p. 631-640  MR 1764262 |  Zbl 1041.05004
[12] R.P. Feynman, “Space-time approach to quantum electrodynamics”, Phys. Review 76 (1949), p. 769-789 Article |  MR 35687 |  Zbl 0038.13302
[13] D.S. Freed & Frank Quinn, “Chern-Simons theory with finite gauge group”, Communications in Mathematical Physics 156 (1993), p. 435-472 Article |  MR 1240583 |  Zbl 0788.58013
[14] G. Frobenius, “Über Gruppencharaktere”, Sitzungsberichte der königlich preussischen Akademie der Wissenschaften (1896), p. 985-1021  JFM 27.0092.01
[15] G. Frobenius & I. Schur, “Über die reellen 11arstellungen der endlichen Gruppen”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (1906), p. 186-208  JFM 37.0161.01
[16] F.P. Gardiner, Teichmüller theory and quadratic differentials, John Wiley \& Sons, 1987  MR 903027 |  Zbl 0629.30002
[17] I.P. Goulden, J.L. Harer, J.L. & D.M. Jackson, “A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves”, Trans. Amer. Math. Soc. 353 (2001), p. 4405-4427 Article |  MR 1851176 |  Zbl 0981.58007
[18] D.J. Gross & W. Taylor, “Two dimensional QCD is a string theory”, Nucl. Phys. B 400 (1993), p. 181-210  MR 1227260 |  Zbl 0941.81580
[19] J.L. Gross & T.W. Tucker, Topological graph theory, John Wiley \& Sons, 1987  MR 898434 |  Zbl 0621.05013
[20] A. Grothendieck, “Esquisse d’un programme”, reprinted in [46], 7–48, 1984
[21] J.L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math. 84 (1986), p. 157-176 Article |  MR 830043 |  Zbl 0592.57009
[22] J.L. Harer & D. Zagier, “The Euler characteristic of the moduli space of curves”, Invent. Math. 85 (1986), p. 457-485 Article |  MR 848681 |  Zbl 0616.14017
[23] A. Hatcher, “On triangulations of surfaces”, Topology and Appl. 40 (1991), p. 189-194 Article |  MR 1123262 |  Zbl 0727.57012
[24] I.M. Isaacs, Character theory of finite groups, Academic Press, 1976  MR 460423 |  Zbl 0337.20005
[25] K. Johansson, “Discrete orthogonal polynomial ensembles and the Plancherel measure”, math.CO/9906120, http://arxiv.org/abs/math.CO/9906120, 1999 arXiv |  Zbl 0984.15020
[26] G.A. Jones, Characters and surfaces: a survey, Lecture Note Series 249, London Math. Soc., 1998  MR 1647416 |  Zbl 0922.30031
[27] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Physics 147 (1992), p. 1-23 Article |  MR 1171758 |  Zbl 0756.35081
[28] K. Liu, “Heat kernel and moduli space”, Math. Research Letters 3 (1996), p. 743-762  MR 1426532 |  Zbl 0871.58014
[29] K. Liu, “Heat kernel and moduli space II”, Math. Research Letters 4 (1996), p. 569-588  MR 1470427 |  Zbl 0886.58013
[30] K. Liu, “Heat kernels, symplectic geometry, moduli spaces and finite groups”, Surveys Diff. Geom. 5 (1999), p. 527-542  MR 1772278 |  Zbl 1001.53060
[31] A.D. Mednykh, “Determination of the number of nonequivalent coverings over a compact Riemann surface”, Soviet Math. Doklady 19 (1978), p. 318-320  Zbl 0395.30034
[32] M. Lal Mehta, Random matrices, 2nd ed., Academic Press, 1991  MR 1083764 |  Zbl 0780.60014
[33] M. Mulase, Algebraic theory of the KP equations, Perspectives in Mathematical Physics, Intern. Press Co., 1994, p. 157-223  Zbl 0837.35132
[34] M. Mulase, Matrix integrals and integrable systems, Topology, geometry and field theory, World Scientific, 1994  Zbl 0903.15007
[35] M. Mulase, “Asymptotic analysis of a hermitian matrix integral”, Int. J. Math. 6 (1995), p. 881-892 Article |  MR 1353999 |  Zbl 0870.14019
[36] M. Mulase, Lectures on the asymptotic expansion of a hermitian matrix integral, Springer Lecture Notes in Physics, 1998  Zbl 0901.35092
[37] M. Mulase & M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{\mathbb{Q}}$”, Asian J. Math. 2 (1998), p. 875-920  MR 1734132 |  Zbl 0964.30023
[38] M. Mulase & A. Waldron, “Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs”, math-ph/0206011, http://arxiv.org/abs/math-ph/0206011, 2002 arXiv |  MR 2005857 |  Zbl 1033.81062
[39] M. Mulase & J.T. Yu, “A generating function of the number of homomorphisms from a surface groupin to a ?nite group”, math.QA/0209008, http://arxiv.org/abs/math.QA/0209008, 2002 arXiv
[40] A. Okounkov, “Random matrices and random permutations”, math.CO/9903176, http://arxiv.org/abs/math.CO/9903176, 1999 arXiv |  MR 1802530 |  Zbl 1018.15020
[41] A. Okounkov & R. Pandharipande, Mapcolor theorem, Springer-Verlag, 1974
[42] A. Okounkov & R. Pandharipande, “The equivariant Gromov-Witten theory of $P^1$”, math.AG/0207233, http://arxiv.org/abs/math.AG/0207233, 2002 arXiv |  Zbl 1105.14077
[43] R.C. Penner, “Perturbation series and the moduli space of Riemann surfaces”, J. Diff. Geom. 27 (1988), p. 35-53  MR 918455 |  Zbl 0608.30046
[44] G. Ringel, Map color theorem, Springer-Verlag, 1974  MR 349461 |  Zbl 0287.05102
[45] L. Schneps, The Grothendieck theory of dessins d'enfants, Lecture Notes Series 200, London Math. Soc., 1994  Zbl 0798.00001
[46] L. Schneps, P. Lochak & eds., Geometric Galois actions: around Grothendieck's esquisse d'un programme, Lecture Notes Series 242, London Math. Soc., 1997  Zbl 0868.00041
[47] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, 1987  MR 450380 |  Zbl 0355.20006
[48] R.P. Stanley, Enumerative combinatorics 2, Cambridge University Press, 2001  Zbl 0978.05002
[49] K. Strebel, Quadratic differentials, Springer-Verlag, 1984  MR 743423 |  Zbl 0547.30001
[50] G. 't Hooft, “A planer diagram theory for strong interactions”, Nuclear Physics B 72 (1974), p. 461-473 Article
[51] C.A. Tracy & H. Widom, “Fredholm Determinants, Differential Equations and Matrix Models, hep-th/9306042”, Comm. Math. Physics 163 (1994), p. 33-72 Article |  MR 1277933 |  Zbl 0813.35110
[52] P. van Moerbeke, Integrable lattices: random matrics and random permutations, MSRI Publications, 2001, p. 321-406  Zbl 0987.15014
[53] E. Witten, “On quantum gauge theories in two dimensions”, Comm. Math. Physics 141 (1991), p. 153-209 Article |  MR 1133264 |  Zbl 0762.53063
[54] E. Witten, “Two dimensional gravity and intersection theory on moduli space”, Surveys Diff. Geom. 1 (1991), p. 243-310  MR 1144529 |  Zbl 0808.32023
[55] J. Yu, Graphical expansion of matrix integrals with values in a Clifford algebra, Explorations: A Journal of Undergraduate Research, University of California, Davis, 2003
haut