logo ANNALES DE L'INSTITUT FOURIER

Avec cedram.org

Table des matières de ce fascicule | Article précédent | Article suivant
Alessandro Chiodo; Yongbin Ruan
A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence
(Un cadre de symétrie miroir globale pour la correspondance Landau–Ginzburg/Calabi–Yau)
Annales de l'institut Fourier, 61 no. 7 (2011), p. 2803-2864, doi: 10.5802/aif.2795
Article PDF | Analyses MR 3112509 | Zbl pre06193028
Class. Math.: 14J33, 14J32, 14H10
Mots clés: Symétrie miroir, théorie de Gromov–Witten, variétés de Calabi–Yau, modules de courbes

Résumé - Abstract

On montre comment la correspondance Landau–Ginzburg/Calabi–Yau pour la variété quintique dans $\mathbb{P}^4$ s’inscrit naturellement dans un cadre de symétrie miroir globale. On s’inspire de la dualité miroir de Berglund–Hübsch pour fournir un cadre conjectural analogue qui incorpore toutes les hypersurfaces de Calabi–Yau dans les espaces projectifs à poids, ainsi que certains quotients par l’action de groupes abéliens finis.

Bibliographie

[1] D. Abramovich, T. Graber & A. Vistoli, “Gromov–Witten theory of Deligne–Mumford stacks”, Amer. J. Math. 130 (2008) no. 5  MR 2450211 |  Zbl 1193.14070
[2] D. Abramovich & T. J. Jarvis, “Moduli of twisted spin curves”, Proc. Amer. Math. Soc. 131 (2003), p. 685-699, preprint version: math.AG/0104154  MR 1937405 |  Zbl 1037.14008
[3] M. Aganagic, V. Bouchard & A. Klemm, “Topological Strings and (Almost) Modular Forms”, Commun. Math. Phys. 277 (2008), p. 771-819, preprint version: hep-th/0607100  MR 2365453 |  Zbl 1165.81037
[4] V. I. Arnold, S. M. Gusein-Zade & A. N. Varchenko, Singularities of differentiable maps II, Birkhäuser, Boston, 1988  MR 966191
[5] V. V. Batyrev & L. A. Borisov, Dual Cones and Mirror Symmetry for Generalized Calabi–Yau Manifolds, Mirror Symmetry II, AMS/IP Stud. Adv. Math 1, Amer. Math. Soc. Providence, 1997, p. 71–86  MR 1416334 |  Zbl 0927.14019
[6] P. Berglund & T. Hübsch, “A Generalized Construction of Mirror Manifolds”, Nuclear Physics B 393 (1993), p. 397-391  MR 1214325 |  Zbl 1245.14039
[7] P. Berglund & S. Katz, Mirror Symmetry Constructions: A Review, Mirror Symmetry II, AMS/IP Stud. Adv. Math 1, Amer. Math. Soc. Providence, 1997, p. 87–113  MR 1416335 |  Zbl 0919.14023
[8] M. Bershadsky, S. Cecotti, H. Ooguri & C. Vafa, “Kodaira–Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes”, Comm. Math. Phy. 165 (1994), p. 311-427  MR 1301851 |  Zbl 0815.53082
[9] S. Boissière, É Mann & F. Perroni, “$A$ model for the orbifold Chow ring of weighted projective spaces”, Communications in Algebra 37 (2009), p. 503-514  MR 2493797 |  Zbl 1178.14056
[10] L. Borisov, “Berglund–Hübsch mirror symmetry via vertex algebras”, preprint version: arXiv:1007.2633v3
[11] P. Candelas, X. C. De La Ossa, P. S. Green & L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nucl. Phys. B 359 (1991), p. 21-74  MR 1115626 |  Zbl 1098.32506
[12] A. Chiodo, “The Witten top Chern class via $K$-theory”, J. Algebraic Geom. 15 (2006) no. 4, p. 681-707, preprint version: math.AG/0210398  MR 2237266 |  Zbl 1117.14008
[13] A. Chiodo, “Stable twisted curves and their $r$-spin structures (Courbes champêtres stables et leurs structures $r$-spin)”, Ann. Inst. Fourier 58 (2008) no. 5, p. 1635-1689, preprint version: math.AG/0603687  MR 2445829 |  Zbl 1179.14028
[14] A. Chiodo, “Towards an enumerative geometry of the moduli space of twisted curves and $r$th roots”, Compos. Math. 144 (2008), p. 1461-1496, Part 6, preprint version: math.AG/0607324  MR 2474317 |  Zbl 1166.14018
[15] A. Chiodo, H. Iritani & Y. Ruan, “Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence”, preprint version: arXiv:1201.0813
[16] A. Chiodo & Y. Ruan, “Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations”, Invent. Math. 182 (2010), p. 117-165, preprint version: arXiv:0812.4660  MR 2672282 |  Zbl 1197.14043
[17] A. Chiodo & Y. Ruan, “LG/CY correspondence: the state space isomorphism”, Adv. Math. 227 (2011) no. 6, p. 2157-2188  MR 2807086 |  Zbl 1245.14038
[18] A. Chiodo & D. Zvonkine, “Twisted Gromov–Witten $r$-spin potentials and Givental’s quantization”, Adv. Theor. Math. Phys. 13 (2009) no. 5, p. 1335-1369, preprint version: arXiv:0711.0339  MR 2672465 |  Zbl 1204.81099
[19] P. Clarke, “Duality for toric Landau-Ginzburg models”, preprint: arXiv:0803.0447
[20] T. Coates, “On the Crepant Resolution Conjecture in the Local Case”, Communications in Mathematical Physics 287 (2009), p. 1071-1108  MR 2486673 |  Zbl 1200.53081
[21] T. Coates, A. Corti, H. Iritani & H.-H. Tseng, “Computing Genus-Zero Twisted Gromov–Witten Invariants”, Duke Math. 147 (2009), p. 377-438  MR 2510741 |  Zbl 1176.14009
[22] T. Coates, A. Corti, Y.-P. Lee & H.-H. Tseng, “The quantum orbifold cohomology of weighted projective spaces”, Acta Math. 202 (2009) no. 2, p. 139-193  MR 2506749 |  Zbl 1213.53106
[23] T. Coates & A. Givental, “Quantum Riemann–Roch, Lefschetz and Serre”, Annals of mathematics 165 (2007) no. 1, p. 15-53  MR 2276766 |  Zbl 1189.14063
[24] T. Coates, H. Iritani & H.-H. Tseng, “Wall-Crossings in Toric Gromov-Witten Theory I: Crepant Examples”, Geometry and Topology 13 (2009) no. 2, p. 2675-2744  MR 2529944 |  Zbl 1184.53086
[25] T. Coates & Y. Ruan, “Quantum Cohomology and Crepant Resolutions: A Conjecture”, preprint: arXiv:0710.5901
[26] P. Deligne, Local behavior of Hodge structures at infinity, in B. Greene, S. T. Yau, éd., Mirror Symmetry II, AMS and International Press, 1997, p. 683–699  MR 1416353 |  Zbl 0939.14005
[27] I. Dolgachev, Weighted projective varieties, Proc. Vancouver 1981, Lecture Notes in Math. 956, Springer, 1982, p. 34–71  MR 704986 |  Zbl 0516.14014
[28] C. Faber, S. Shadrin & D. Zvonkine, “Tautological relations and the r-spin Witten conjecture”, Annales Scientifiques de l’ENS 43 (2010) no. 4, p. 621-658, preprint version: math.AG/0612510  MR 2722511 |  Zbl 1203.53090
[29] H. Fan, T. Jarvis, E. Merrell & Y. Ruan, “Witten’s $D_4$ Integrable Hierarchies Conjecture”, preprint: arXiv:1008.0927
[30] H. Fan, T. Jarvis & Y. Ruan, “The Witten equation and its virtual fundamental cycle”, preprint: arXiv:0712.4025
[31] H. Fan, T. Jarvis & Y. Ruan, “The Witten equation, mirror symmetry and quantum singularity theory”, preprint: arXiv:0712.4021v1
[32] H. Fan, T. Jarvis & Y. Ruan, “Geometry and analysis of spin equations”, Comm. Pure Appl. Math. 61 (2008) no. 6, p. 745-788  MR 2400605 |  Zbl 1141.58012
[33] A. Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math. 160, p. 141–175  Zbl 0936.14031
[34] A. Givental, Gromov–Witten invariants and quantization of quadratic hamiltonians, Frobenius manifolds, Aspects Math., E36, Vieweg, 2004, p. 91–112
[35] B. R. Greene, D. R. Morrison & M. R. Plesser, “Mirror manifolds in higher dimension”, Comm. Math. Phys. 173 (1995) no. 3, p. 559-597  MR 1357989 |  Zbl 0842.32014
[36] M. Herbst, K. Hori & D. Page, “Phases Of N=2 Theories In 1+1 Dimensions With Boundary”, DESY-07-154, CERN-PH-TH/2008-048 Preprint version: arXiv:0803.2045
[37] C. Hertling, “$tt^{*}$ geometry, Frobenius manifolds, their connections and their construction for singularities”, J. Reine Angew. Math. 555 (2003), p. 77-161  MR 1956595 |  Zbl 1040.53095
[38] K. Hori & J. Walcher, “D-branes from matrix factorizations”, Strings 04. Part I. C. R. Phys. 5 (2004) no. 9-10, p. 1061-1070  MR 2121690
[39] P. Horja, “Hypergeometric functions and mirror symmetry in toric varieties”, preprint: arXiv:math/9912109
[40] M. Huang, A. Klemm & S. Quackenbush, Topological string theory on compact Calabi–Yau: modularity and boundary conditions, Homological mirror symmetry, Lecture Notes in Phys. 757, Springer, 2009, p. 45–102  MR 2596635 |  Zbl 1166.81358
[41] K. Intriligator & C. Vafa, “Landau–Ginzburg orbifolds”, Nuclear Phys. B 339 (1990) no. 1, p. 95-120  MR 1061738
[42] I. Iritani, “An integral structure in quantum cohomology and mirror symmetry for orbifolds”, Adv. in Math. 222 (2009), p. 1016-1079, preprint version: arXiv:0903.1463v1  MR 2553377 |  Zbl 1190.14054
[43] M. U. Isik, “Equivalence of the derived category of a variety with a singularity category”, preprint: arXiv:1011.1484
[44] T. J. Jarvis, T. Kimura & A. Vaintrob, “Moduli spaces of higher spin curves and integrable hierarchies”, Compositio Math. 126 (2001) no. 2, p. 157-212, math.AG/9905034  MR 1827643 |  Zbl 1015.14028
[45] R. Kaufmann, “A note on the two approaches to stringy functors for orbifolds”, preprint: arXiv:math/0703209
[46] R. Kaufmann, “Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry”, Contemp. Math. 403 (2006), p. 67-116  MR 2234885 |  Zbl 1116.14037
[47] M. Kontsevich, unpublished
[48] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys. 147 (1992) no. 1, p. 1-23  Zbl 0756.35081
[49] M. Kontsevich & Y. Manin, “Gromov-Witten classes, quantum cohomology, and enumerative geometry”, Commun. Math. Phys. 164 (1994), p. 525-562  MR 1291244 |  Zbl 0853.14020
[50] M. Krawitz, “FJRW rings and Landau–Ginzburg Mirror Symmetry”, preprint: arXiv:0906.0796
[51] M. Krawitz & Y. Shen, “Landau-Ginzburg/Calabi-Yau correspondence of all genera for elliptic orbifold P$^1$”, preprint: arXiv:1106.6270
[52] Marc Krawitz, Nathan Priddis, Pedro Acosta, Natalie Bergin & Himal Rathnakumara, “FJRW-rings and Mirror Symmetry”, Comm. Math. Phys. 296 (2010), p. 145-174  MR 2606631 |  Zbl 1250.81087
[53] M. Kreuzer & H. Skarke, “On the classification of quasihomogeneous functions”, Comm. Math. Phys. 150 (1992) no. 1, p. 137-147  MR 1188500 |  Zbl 0767.57019
[54] M. Kreuzer & H. Skarke, “All abelian symmetries of Landau-Ginzburg potentials”, Nucl. Phys. B 405 (1993) no. 2-3, p. 305-325, preprint: hep-th/9211047  MR 1240688 |  Zbl 0990.81635
[55] A. Li & Y. Ruan, “Symplectic surgeries and Gromov–Witten invariants of Calabi–Yau three-folds”, Invent. Math. 145 (2001), p. 151-218  MR 1839289 |  Zbl 1062.53073
[56] B. Lian, K. Liu & S. Yau, “Mirror principle. I.”, Asian J. Math. 1 (1997) no. 4, p. 729-763  MR 1621573 |  Zbl 0953.14026
[57] E. J. N. Looijenga, Isolated singular points on complete intersections, London Math. Soc. Lecture Note Series 77, Cambridge University Press, 1984  MR 747303 |  Zbl pre06152219
[58] D. Maulik & R. Pandharipande, “A topological view of Gromov–Witten theory”, Topology 45 (2006) no. 5, p. 887-918  MR 2248516 |  Zbl 1112.14065
[59] T. Milanov & Y. Ruan, “Gromov–Witten theory of elliptic orbifold P$^1$ and quasi-modular forms”, preprint: arXiv:1106.2321
[60] D. R. Morrison, Beyond the Kähler cone, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Lecture Notes in Phys. 9, Israel Math. Conf. Proc., p. 361–376  Zbl 0847.32034
[61] D. R. Morrison, Mathematical Aspects of Mirror Symmetry, in J. Kollár, éd., Complex Algebraic Geometry, IAS/Park City Math. Series 3, 1997, p. 265–340  MR 1442525 |  Zbl 0932.14022
[62] P. Orlik & L. Solomon, “Singularities II; Automorphisms of forms”, Math. Ann. 231 (1978), p. 229-240  MR 476735 |  Zbl 0352.14002
[63] D. Orlov, “Derived categories of coherent sheaves and triangulated categories of singularities”, preprint: math.AG/0503632  Zbl 0996.18007
[64] F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss–Manin, Systèmes différentiels et singularités, Asterisques 130, 1985, p. 11–47  MR 804048 |  Zbl 0597.32012
[65] A. Polishchuk, Witten’s top Chern class on the moduli space of higher spin curves, Frobenius manifolds, Aspects Math., E36, Vieweg, 2004, p. 253–264  MR 2115773 |  Zbl 1105.14010
[66] A. Polishchuk & A. Vaintrob, “Chern”, preprint: math.AG/0011032
[67] A. Polishchuk & A. Vaintrob, Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, p. 229–249  MR 1837120 |  Zbl 1051.14007
[68] Y. Ruan, “The Witten equation and geometry of Landau–Ginzburg model”, in preparation
[69] J. Steenbrink, “Intersection form for quasi-homogeneous singularities”, Compositio Mathematica 34 (1977) no. 2, p. 211-223 Numdam |  MR 453735 |  Zbl 0347.14001
[70] C. Vafa & N. Warner, “Catastrophes and the classification of conformal field theories”, Phys. Lett. B 218 (1989) no. 22  MR 983349
[71] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc. 12 (1980) no. 3, p. 169-175  MR 572095 |  Zbl 0427.32010
[72] E. Witten, “Two-dimensional gravity and intersection theory on the moduli space”, Surveys in Diff. Geom. 1 (1991), p. 243-310  MR 1144529 |  Zbl 0757.53049
[73] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, p. 235–269  MR 1215968 |  Zbl 0812.14017
[74] E. Witten, “Phases of $N=2$ theories in two dimensions”, Nucl.Phys. B 403 (1993), p. 159-222  MR 1232617 |  Zbl 0910.14020
[75] A. Zinger, “Standard vs. reduced genus-one Gromov–Witten invariants”, Geom. Topol. 12 (2008) no. 2, p. 1203-1241  MR 2403808 |  Zbl 1167.14009
haut