logo ANNALES DE L'INSTITUT FOURIER

Avec cedram.org

Table des matières de ce fascicule | Article précédent | Article suivant
Amaury Freslon
Permanence of approximation properties for discrete quantum groups
(Permanence des propriétés d’approximation pour les groupes quantiques discrets)
Annales de l'institut Fourier, 65 no. 4 (2015), p. 1437-1467, doi: 10.5802/aif.2963
Article PDF
Class. Math.: 20G42, 46L65
Mots clés: Groupes quantiques, propriétés d’approximation, moyennabilité relative

Résumé - Abstract

Nous prouvons plusieurs résultats concernant la permanence de la moyennabilité faible et de la propriété de Haagerup pour les groupes quantiques discrets. En particulier, nous améliorons des résultats connus sur les produits libres en autorisant l’amalgamation sur un sous-groupe quantique fini. Nous définissons également une notion de moyennabilité relative pour les groupes quantiques discrets et nous la relions à l’équivalence moyennable d’algèbres de von Neumann, ce qui donne de nouvelles propriétés de permanence.

Bibliographie

[1] C. Anantharaman-Delaroche, “Action moyennable d’un groupe localement compact sur une algèbre de von Neumann”, Math. Scand 45 (1979), p. 289-304  MR 580607 |  Zbl 0438.46046
[2] C. Anantharaman-Delaroche, “Amenable correspondences and approximation properties for von Neumann algebras”, Pacific J. Math. 171 (1995) no. 2, p. 309-341 Article |  MR 1372231 |  Zbl 0892.22004
[3] S. Baaj & G. Skandalis, “Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres”, Ann. Sci. École Norm. Sup. 26 (1993) no. 4, p. 425-488 Numdam |  MR 1235438 |  Zbl 0804.46078
[4] T. Banica, “Le groupe quantique compact libre $U(n)$”, Comm. Math. Phys. 190 (1997) no. 1, p. 143-172 Article |  MR 1484551 |  Zbl 0906.17009
[5] T. Banica, “Symmetries of a generic coaction”, Math. Ann. 314 (1999) no. 4, p. 763-780 Article |  MR 1709109 |  Zbl 0928.46038
[6] J.P. Bannon & J. Fang, “Some remarks on Haagerup’s approximation property”, J. Operator Theory 65 (2011) no. 2, p. 403-417  MR 2785851 |  Zbl 1240.46088
[7] E. Bédos, R. Conti & L. Tuset, “On amenability and co-amenability of algebraic quantum groups and their corepresentations”, Canad. J. Math. 57 (2005) no. 1, p. 17-60 Article |  MR 2113848 |  Zbl 1068.46043
[8] F. Boca, “On the method of constructing irreducible finite index subfactors of Popa”, Pacific J. Math. 161 (1993) no. 2, p. 201-231 Article |  MR 1242197 |  Zbl 0795.46044
[9] M. Bożejko & M.A. Picardello, “Weakly amenable groups and amalgamated products”, Proc. Amer. Math. Soc. 117 (1993) no. 4, p. 1039-1046 Article |  MR 1119263 |  Zbl 0780.43002
[10] M. Brannan, “Approximation properties for free orthogonal and free unitary quantum groups”, J. Reine Angew. Math. 672 (2012), p. 223-251  MR 2995437 |  Zbl 1262.46048
[11] Nathanial P. Brown & Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics 88, American Mathematical Society, Providence, RI, 2008 Article |  MR 2391387 |  Zbl 1160.46001
[12] A. Connes & V.F.R. Jones, “Property T for von Neumann algebras”, Bull. London Math. Soc. 17 (1985) no. 1, p. 57-62 Article |  MR 766450 |  Zbl 1190.46047
[13] M. Cowling & U. Haagerup, “Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one”, Invent. Math. 96 (1989) no. 3, p. 507-549 Article |  MR 996553 |  Zbl 0681.43012
[14] M. Daws, P. Fima, A. Skalski & S. White, “The Haagerup property for locally compact quantum groups”, http://arxiv.org/abs/1303.3261, to appear in J. Reine Angew. Math., 2014
[15] Matthew Daws, “Completely positive multipliers of quantum groups”, Internat. J. Math. 23 (2012) no. 12 Article |  MR 3019431 |  Zbl 1282.43002
[16] K. De Commer, A. Freslon & M. Yamashita, “CCAP for universal discrete quantum groups”, Comm. Math. Phys. 331 (2014) no. 2, p. 677-701 Article |  MR 3238527
[17] P. Eymard, Moyennes invariantes et représentations unitaires, Lecture notes in mathematics 300, Springer, 1972  MR 447969 |  Zbl 0249.43004
[18] P. Fima, “Kazhdan’s property T for discrete quantum groups”, Internat. J. Math. 21 (2010) no. 1, p. 47-65 Article |  MR 2642986 |  Zbl 1195.46072
[19] P. Fima, “K-amenability of HNN extensions of amenable discrete quantum groups”, J. Funct. Anal. 265 (2013) no. 4, p. 507-519 Article |  MR 3062534
[20] P. Fima & A. Freslon, “Graphs of quantum groups and K-amenability”, Adv. Math. 260 (2014), p. 233-280 Article |  MR 3209353 |  Zbl 1297.46048
[21] A. Freslon, “A note on weak amenability for free products of discrete quantum groups”, C. R. Acad. Sci. Paris Sér. I Math. 350 (2012), p. 403-406 Article |  MR 2922092 |  Zbl 1252.46058
[22] A. Freslon, “Examples of weakly amenable discrete quantum groups”, J. Funct. Anal. 265 (2013) no. 9, p. 2164-2187 Article |  MR 3084500
[23] A. Freslon, Propriétés d’approximation pour les groupes quantiques discrets, Ph. D. Thesis, Université Paris VII (France), 2013
[24] A. Freslon, “Fusion (semi)rings arising from quantum groups”, J. Algebra 417 (2014), p. 161-197 Article |  MR 3244644
[25] M. Joita & S. Petrescu, “Amenable actions of Katz algebras on von Neumann algebras”, Rev. Roumaine Math. Pures Appl. 35 (1990) no. 2, p. 151-160  MR 1076787 |  Zbl 0742.46041
[26] M. Joita & S. Petrescu, “Property (T) for Kac algebras”, Rev. Roumaine Math. Pures Appl. 37 (1992) no. 2, p. 163-178  MR 1171192 |  Zbl 0785.46058
[27] J. Kraus & Z-J. Ruan, “Approximation properties for Kac algebras”, Indiana Univ. Math. J. 48 (1999) no. 2, p. 469-535 Article |  MR 1722805 |  Zbl 0945.46038
[28] F. Lemeux, “Fusion rules for some free wreath product quantum groups and applications”, J. Funct. Anal. 267 (2014) no. 7, p. 2507-2550 Article |  MR 3250372
[29] N. Monod & S. Popa, “On co-amenability for groups and von Neumann algebras”, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003) no. 3, p. 82-87  MR 1999183 |  Zbl 1040.43001
[30] V. Pestov, “On some questions of Eymard and Bekka concerning amenability of homogeneous spaces and induced representations”, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003) no. 3, p. 76-81  MR 1999182 |  Zbl 1092.43003
[31] E. Ricard & Q. Xu, “Khintchine type inequalities for reduced free products and applications”, J. Reine Angew. Math. 599 (2006), p. 27-59  MR 2279097 |  Zbl 1170.46052
[32] M.A. Rieffel, “Morita equivalence for C*-algebras and W*-algebras”, J. Pure Appl. Algebra 5 (1974) no. 1, p. 51-96 Article |  MR 367670 |  Zbl 0295.46099
[33] T. Timmermann, An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS, 2008  MR 2397671 |  Zbl 1162.46001
[34] R. Tomatsu, “Amenable discrete quantum groups”, J. Math. Soc. Japan 58 (2006) no. 4, p. 949-964 Article |  MR 2276175 |  Zbl 1129.46061
[35] J. Tomiyama, “On tensor products of von Neumann algebras”, Pacific J. Math. 30 (1969) no. 1, p. 263-270 Article |  MR 246141 |  Zbl 0176.44002
[36] S. Vaes, “The unitary implementation of a locally compact quantum group action”, J. Funct. Anal. 180 (2001) no. 2, p. 426-480 Article |  MR 1814995 |  Zbl 1011.46058
[37] S. Vaes, “A new approach to induction and imprimitivity results”, J. Funct. Anal. 229 (2005) no. 2, p. 317-374 Article |  MR 2182592 |  Zbl 1087.22005
[38] S. Vaes & R. Vergnioux, “The boundary of universal discrete quantum groups, exactness and factoriality”, Duke Math. J. 140 (2007) no. 1, p. 35-84 Article |  MR 2355067 |  Zbl 1129.46062
[39] R. Vergnioux, “K-amenability for amalgamated free products of amenable discrete quantum groups”, J. Funct. Anal. 212 (2004) no. 1, p. 206-221 Article |  MR 2067164 |  Zbl 1064.46064
[40] R. Vergnioux & C. Voigt, “The K-theory of free quantum groups”, Math. Ann. 357 (2013) no. 1, p. 355-400 Article |  MR 3084350 |  Zbl 1284.46063
[41] S. Wang, “Free products of compact quantum groups”, Comm. Math. Phys. 167 (1995) no. 3, p. 671-692 Article |  MR 1316765 |  Zbl 0838.46057
[42] S. Wang, “Tensor products and crossed-products of compact quantum groups”, Proc. London Math. Soc. 71 (1995) no. 3, p. 695-720 Article |  MR 1347410 |  Zbl 0837.46052
[43] S.L. Woronowicz, “Compact quantum groups”, Symétries quantiques (Les Houches, 1995) (1998), p. 845-884  MR 1616348 |  Zbl 0997.46045
[44] JinSong Wu, “Co-amenability and Connes’s embedding problem”, Sci. China Math. 55 (2012) no. 5, p. 977-984 Article |  MR 2912489 |  Zbl 1262.46042
[45] R.J. Zimmer, “Amenable ergodic group actions and an application to Poisson boundaries of random walks”, J. Funct. Anal. 27 (1978) no. 3, p. 350-372 Article |  MR 473096 |  Zbl 0391.28011
haut