logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
V. S. Matveev; H.-B. Rademacher; M. Troyanov; A. Zeghib
Finsler Conformal Lichnerowicz-Obata conjecture
(La conjecture de Lichnerowicz-Obata sur les transformations conformes des variétés Finslériennes)
Annales de l'institut Fourier, 59 no. 3 (2009), p. 937-949, doi: 10.5802/aif.2452
Article PDF | Reviews MR 2543657 | Zbl 1179.53075
Class. Math.: 58b20, 53c60
Keywords: Finsler metric, conformal transformation

Résumé - Abstract

We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.

Bibliography

[1] H. Akbar-Zadeh, “Transformations infinitésimales conformes des variétés finslériennes compactes”, Ann. Polon. Math. 36 (1979), p. 213-229  MR 537616 |  Zbl 0413.53036
[2] D. V. Alekseevskii, “Groups of conformal transformations of Riemannian spaces”, (russian) Mat. Sbornik, 89 (131), 1972 (engl.transl.) Math. USSR Sbornik 18 (1972), p. 285-301  MR 334077 |  Zbl 0263.53029
[3] J. C. Alvarez Paiva, Some problems on Finsler geometry, Handbook of differential geometry II, p. 1–33, Elsevier/North-Holland, Amsterdam, 2006  MR 2194667 |  Zbl 1147.53059
[4] D. Bao, S.- S. Chern & Z. Shen, An Introduction to Riemann-Finsler Geometry, Grad. Texts Mathem., 200, Springer Verlag, New York, 2000  MR 1403571 |  Zbl 0954.53001
[5] R. Benedetti & V. Petronio, Lectures on Hyperbolic Geometry, Springer, Berlin, 1972  Zbl 0768.51018
[6] R. L. Bryant, “Projectively flat Finsler 2-spheres of constant curvature”, Selecta Math. 3 (1997), p. 161-203 Article |  MR 1466165 |  Zbl 0897.53052
[7] D. Burago, Yu. Burago & S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, 33, AMS, Providence, RI, 2001  Zbl 0981.51016
[8] J. Ferrand, Le groupe des automorphismes conformes d’une variété de Finsler compacte, C. R. Acad.Sci, Paris, Sér. A-B 291, (1980), A209-A210  Zbl 0451.53051
[9] J. Ferrand, “The action of conformal transformations on a Riemannian manifold”, Math. Ann. 304 (1996), p. 277-291 Article |  MR 1371767 |  Zbl 0866.53027
[10] C. Frances & C. Tarquini, “Autour du théorème de Ferrand-Obata”, Ann. Gl. Anal. Geom. 21 (2002), p. 51-62 Article |  MR 1889249 |  Zbl 1005.53011
[11] W. Kühnel & H.-B. Rademacher, “Liouville’s theorem in conformal geometry”, J. Math. pures appl. 88 (2007), p. 251-260 Article |  Zbl 1127.53014
[12] R. S. Kulkarni, Conformal structures and Möbius structures, in R. S. Kulkarni and U. Pinkall, ed., Conformal Geometry, p. 1–39, Aspects Math. E 12, Vieweg, 1988  MR 979787 |  Zbl 0659.53015
[13] J. Lafontaine, The theorem of Lelong-Ferrand andObata, in R. S. Kulkarni and U. Pinkall, ed., Conformal Geometry, p. 93–103, Aspects Math. E 12, Vieweg, 1988  MR 979790 |  Zbl 0668.53022
[14] S. Lie, “Ueber Complexe, insbesondere Linien- und Kugel-Complexe mit Anwendung auf die Theorie partieller Differentialgleichungen”, Math. Ann. 5 (1872), p. 145-246 Article |  MR 1509773 |  JFM 04.0408.01
[15] J. Liouville, Extension au cas des trois dimensions de la question du tracé géographique, Applications de l’analyse à la géométrie, Bachelier, Note VI, G. Monge, Paris, 1850, p. 609–617
[16] V. S. Matveev, “Lichnerowicz-Obata conjecture in dimension two”, Comm. Math. Helv. 81 (2005) no. 3, p. 541-570 Article |  MR 2165202 |  Zbl 1113.53025
[17] V. S. Matveev, “Proof of projective Lichnerowicz-Obata conjecture”, J. Diff. Geom. 75 (2007), p. 459-502, arXiv:math/0407337 Article |  MR 2301453 |  Zbl 1115.53029
[18] M. Obata, “The conjectures about conformal transformations”, J. Diff. Geom. 6 (1971), p. 247-258 Article |  MR 303464 |  Zbl 0236.53042
[19] R. Schoen, “On the conformal and CR automorphism groups”, Geom. Funct. Anal. 5 (1995) no. 2, p. 464-481 Article |  MR 1334876 |  Zbl 0835.53015
[20] Z. Shen, Lectures on Finsler geometry, World Scientific, Singapore, 2001  MR 1845637 |  Zbl 0974.53002
[21] Z. I. Szabó, Berwald metrics constructed by Chevalley’s polynomials arXiv
[22] R. G. Torrome, Average Riemannian structures associated with a Finsler structure arXiv
[23] Y. Yoshimatsu, “On a theorem of Alekseevskii concerning conformal transformations”, J.Math.Soc.Japan 28 (1976), p. 278-289 Article |  MR 405286 |  Zbl 0318.53043
[24] A. Zeghib, “On the conformal group of Finsler manifolds”, preprint, January 16 2005, http://www.umpa.ens-lyon.fr/~zeghib/finsconf.pdf
top