logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Shunsuke Yamana
Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$
(Périodes Symplectiques du Spectre Continu de $\mathrm{GL}(2n)$)
Annales de l'institut Fourier, 64 no. 4 (2014), p. 1561-1580, doi: 10.5802/aif.2890
Article PDF | Reviews MR 3329673 | Zbl 06387317
Class. Math.: 11F67, 11F70
Keywords: symplectic periods, intertwining periods, continuous spectrum

Résumé - Abstract

We provide a formula for the symplectic period of an Eisenstein series on $\mathrm{GL}(2n)$ and determine when it is not identically zero.

Bibliography

[1] J. Arthur, “On the inner product of truncated Eisenstein series”, Duke Math. J. 49 (1982), p. 35-70 Article |  MR 650368 |  Zbl 0518.22012
[2] J. Bernstein, $P$-invariant distributions on $\mathrm{GL}(N)$ and the classification of unitary representations of $\mathrm{GL}(N)$ (non-archimedean case), Lie Group Representations II, Lec. Notes in Math. 1041, Springer, 1984, p. 50–102  MR 748505
[3] H. Jacquet, E. Lapid & S. Rallis, A spectral identity for skew symmetric matrices, Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins University Press, 2004, p. 421–455  MR 2058616 |  Zbl 1082.11029
[4] H. Jacquet, E. Lapid & J. Rogawski, “Periods of automorphic forms”, J. Am. Math. Soc. 12 (1999), p. 173-240 Article |  MR 1625060 |  Zbl 1012.11044
[5] H. Jacquet, I.I. Piatetski-Shapiro & J. Shalika, “Rankin-Selberg Convolutions”, Am. J. Math. 105 (1983), p. 367-464 Article |  MR 701565 |  Zbl 0525.22018
[6] H. Jacquet & S. Rallis, “Symplectic periods”, J. Reine Angew. Math. 423 (1992), p. 175-197  MR 1142486 |  Zbl 0734.11035
[7] E. Lapid & J. Rogawski, “Periods of Eisenstein series: the Galois case”, Duke Math. J. 120 (2003) no. 1, p. 153-226 Article |  MR 2010737 |  Zbl 1037.11033
[8] C. Moeglin & J.-L. Waldspurger, “Le spectre résiduel de $\mathrm{GL}(n)$”, Ann. Sci. École Norm. Sup. (4) 22 (1989), p. 605-674 Numdam |  MR 1026752 |  Zbl 0696.10023
[9] C. Moeglin & J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics 113, Cambridge University Press, 1995  MR 1361168 |  Zbl 0846.11032
[10] O. Offen, “On symplectic periods of discrete spectrum of $\mathrm{GL}_{2n}$”, Israel J. Math. 154 (2006), p. 253-298 Article |  MR 2254544 |  Zbl 1148.11025
[11] O. Offen, “Residual spectrum of $\mathrm{GL}_{2n}$ distinguished by the symplectic group”, Duke Math. J. 134 (2006) no. 2, p. 313-357 Article |  MR 2248833 |  Zbl 1220.11072
[12] O. Offen & E. Sayag, “On unitary representations of $\mathrm{GL}_{2n}$ distinguished by the symplectic group”, J. Number Theory 125 (2007), p. 344-355 Article |  MR 2332593 |  Zbl 1147.11028
[13] D. Vogan, “The unitary dual of $\mathrm{GL}(n)$ over an Archimedean field”, Invent. Math. 83 (1986), p. 449-505 Article |  MR 827363 |  Zbl 0598.22008
top