With cedram.org
Table of contents for this issue | Previous article | Next article
Yuchen Liu
Construction of hyperbolic Horikawa surfaces
(Construction de surfaces d’Horikawa hyperboliques)
Annales de l'institut Fourier, 68 no. 2 (2018), p. 541-561, doi: 10.5802/aif.3169
Article PDF
Class. Math.: 32Q45, 14J29
Keywords: Brody hyperbolicity, Horikawa surfaces, cyclic covers

Résumé - Abstract

We construct a Brody hyperbolic Horikawa surface that is a double cover of $\mathbb{P}^2$ branched along a smooth curve of degree 10. We also construct Brody hyperbolic double covers of Hirzebruch surfaces with branch loci of the lowest possible bidegree.


[1] Fedor A. Bogomolov, “Families of curves on a surface of general type”, Dokl. Akad. Nauk SSSR 236 (1977) no. 5, p. 1041-1044
[2] Robert Brody, “Compact manifolds and hyperbolicity”, Trans. Am. Math. Soc. 235 (1978), p. 213-219 Article
[3] Jean-Pierre Demailly & Jawher El Goul, “Hyperbolicity of generic surfaces of high degree in projective 3-space”, Am. J. Math. 122 (2000) no. 3, p. 515-546 Article
[4] Jacques Dufresnoy, “Théorie nouvelle des familles complexes normales. Applications a l’étude des fonctions algébroïdes”, Ann. Sci. Éc. Norm. Supér. 61 (1944), p. 1-44 Article
[5] Julien Duval, “Une sextique hyperbolique dans $\mathrm{P}^3(\mathbf{C})$”, Math. Ann. 330 (2004) no. 3, p. 473-476 Article
[6] Julien Duval, “Around Brody lemma”, http://arxiv.org/abs/1703.01850, 2017
[7] Mark Green & Phillip Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, 1980, p. 41–74
[8] Eiji Horikawa, “Algebraic surfaces of general type with small $c^{2}_{1}.$ I”, Ann. Math. 104 (1976) no. 2, p. 357-387 Article
[9] Dinh Tuan Huynh, “Examples of hyperbolic hypersurfaces of low degree in projective spaces”, Int. Math. Res. Not. IMRN (2016) no. 18, p. 5518-5558 Article
[10] Atsushi Ito & Yusaku Tiba, “Curves in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded”, Ann. Inst. Fourier (Grenoble) 65 (2015) no. 5, p. 2057-2068 Article
[11] Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics 2, Marcel Dekker, Inc., 1970
[12] Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften 318, Springer, 1998 Article
[13] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 32, Springer, 1996 Article
[14] Serge Lang, “Hyperbolic and Diophantine analysis”, Bull. Am. Math. Soc. 14 (1986) no. 2, p. 159-205 Article
[15] Yuchen Liu, “Hyperbolicity of cyclic covers and complements”, to appear in Trans. Am. Math. Soc., available at http://arxiv.org/abs/1601.07514, 2016
[16] Steven Shin-Yi Lu & Shing-Tung Yau, “Holomorphic curves in surfaces of general type”, Proc. Nat. Acad. Sci. U.S.A. 87 (1990) no. 1, p. 80-82 Article
[17] Michael McQuillan, “Diophantine approximations and foliations”, Publ. Math., Inst. Hautes Étud. Sci. (1998) no. 87, p. 121-174 Article
[18] Xavier Roulleau & Erwan Rousseau, “On the hyperbolicity of surfaces of general type with small $c^2_1$”, J. Lond. Math. Soc. 87 (2013) no. 2, p. 453-477 Article
[19] Bernard Shiffman & Mikhail Zaĭdenberg, “Constructing low degree hyperbolic surfaces in $\mathbb{P}^3$”, Houston J. Math. 28 (2002) no. 2, p. 377-388
[20] Geng Xu, “Subvarieties of general hypersurfaces in projective space”, J. Differ. Geom. 39 (1994) no. 1, p. 139-172 Article
[21] Mikhail Zaĭdenberg, “Stability of hyperbolic embeddedness and the construction of examples”, Mat. Sb. (N.S.) 135(177) (1988) no. 3, p. 361-372, 415