Karl OELJEKLAUS & Matei TOMA

Non-Kähler compact complex manifolds associated to number fields

<http://aif.cedram.org/item?id=AIF_2005__55_1_161_0>
NON-KÄHLER COMPACT COMPLEX MANIFOLDS ASSOCIATED TO NUMBER FIELDS

by Karl OELJEKLAUS & Matei TOMA

1. Notations, construction and first properties.

Consider an algebraic number field K, that is a finite extension field of the field of rational numbers \mathbb{Q}. Let $n := (K : \mathbb{Q})$ be its degree. The field K admits precisely $n = s + 2t$ distinct embeddings $\sigma_1, \ldots, \sigma_n$ into \mathbb{C}, where we suppose that $\sigma_1, \ldots, \sigma_s$ are the real embeddings, $\sigma_{s+1}, \ldots, \sigma_n$ are the complex ones and that $\sigma_{s+i} = \overline{\sigma_{s+i}}$ for $1 \leq i \leq t$. We shall suppose throughout the paper that both s and t are strictly positive. Furthermore, let \mathcal{O}_K denote the ring of algebraic integers of K. This is a free \mathbb{Z}-module of rank n. In fact our construction works also for arbitrary orders \mathcal{O} of K, i.e. for subrings \mathcal{O} of \mathcal{O}_K which have rank n as \mathbb{Z}-modules.

Set now $m := s + t$ and consider the ”geometric representation” of K:

$$\sigma : K \to \mathbb{C}^m, \quad \sigma(a) := (\sigma_1(a), \ldots, \sigma_m(a)).$$

It is known that the image $\sigma(\mathcal{O}_K)$ of \mathcal{O}_K through σ is a lattice of rank n in \mathbb{C}^m, cf. [1], 2.3.1, p. 95ff. We thus get a properly discontinuous action of \mathcal{O}_K...
on \mathbb{C}^m by translations. Consider furthermore the following multiplicative action of K on \mathbb{C}^m: for $a \in K$ and $z \in \mathbb{C}^m$ set
$$az := (\sigma_1(a)z_1, ..., \sigma_m(a)z_m).$$
For $a \in \mathcal{O}_K$, $a\sigma(\mathcal{O}_K)$ is contained in $\sigma(\mathcal{O}_K)$. Let \mathcal{O}_K^* denote the group of units in \mathcal{O}_K and
$$\mathcal{O}_K^{*, +} := \{a \in \mathcal{O}_K^* \mid |\sigma_i(a)| > 0 \text{ for all } 1 \leq i \leq s\}.$$
Since for $s > 0$ the only torsion elements of $\mathcal{O}_K^{*, +}$ are 1 and -1, Dirichlet’s Units Theorem allows us to write $\mathcal{O}_K^{*} = G \cup (-G)$, where G is a free abelian (multiplicative) group of rank $m - 1$. One may choose G so that it contains $\mathcal{O}_K^{*, +}$, automatically with finite index. We denote by \mathbb{H} the upper complex half-plane, $\mathbb{H} := \{z \in \mathbb{C} \mid \text{Im } z > 0\}$. Combining the additive action of \mathcal{O}_K with the induced multiplicative action of $\mathcal{O}_K^{*, +}$ we get an action of $\mathcal{O}_K^{*, +} \ltimes \mathcal{O}_K$ on \mathbb{C}^m which is free on the invariant domain $\mathbb{H}^s \times \mathbb{C}^t$. We shall now choose a subgroup U of rank s of $\mathcal{O}_K^{*, +}$ such that the action of $U \ltimes \mathcal{O}_K$ on $\mathbb{H}^s \times \mathbb{C}^t$ becomes properly discontinuous, thus yielding a smooth quotient which will be shown to be compact. In order to do this we consider the logarithmic representation of units
$$l : \mathcal{O}_K^* \rightarrow \mathbb{R}^m, \ l(u) := (ln|\sigma_1(u)|, ..., ln|\sigma_s(u)|, 2ln|\sigma_{s+1}(u)|, ..., 2ln|\sigma_m(u)|),$$
cf. [1] 2.3.3. Dirichlet’s Units Theorem implies that $l(\mathcal{O}_K^{*, +})$ is a full lattice in the subspace $L := \{x \in \mathbb{R}^m \mid \sum_{i=1}^m x_i = 0\}$ of \mathbb{R}^m. Since $t > 0$, the projection $pr : L \rightarrow \mathbb{R}^s$ given by the first s coordinate functions is surjective. Thus there exist subgroups U of rank s of $\mathcal{O}_K^{*, +}$ such that $pr(l(U))$ is a full lattice in \mathbb{R}^s. Such a subgroup will be called admissible for K.

Take now U admissible for K. The quotient $\mathbb{H}^s \times \mathbb{C}^t / \sigma(\mathcal{O}_K)$ is clearly diffeomorphic to a trivial torus bundle $(\mathbb{R}_{>0})^s \times (S^1)^n$ and U operates properly discontinuously on it since it induces a properly discontinuous action on the base $(\mathbb{R}_{>0})^s$ by our choice. Differentiably the quotient of this action is a fiber bundle over $(S^1)^s$ with $(S^1)^n$ as fiber. We thus get an m-dimensional compact complex affine manifold
$$X = X(K, U) := (\mathbb{H}^s \times \mathbb{C}^t)/(U \ltimes \mathcal{O}_K).$$
This paper is devoted to the description of these complex manifolds.

Remark 1.1. — For every choice of natural numbers s and t, algebraic number fields with precisely s real and $2t$ complex embeddings exist.
Since we don’t know of any source for this observation we include here an argument we owe to Ph. Eyssidieux.

Proof. — Consider the non-empty open set D of points $a = (a_1, ..., a_n) \in \mathbb{Q}^n$ such that the polynomials $P = X^n + a_1 X^{n-1} + ... + a_n$ admit exactly s real distinct and $2t$ complex non-real roots. The open set D will contain arbitrarily large open balls since the map $(a_1, ..., a_n) \mapsto (ba_1, b^2a_2, ..., b^n a_n)$ leaves it invariant for any choice of rational numbers b.

Choose now a prime number p and $\tilde{P} = X^n + \tilde{a}_1 X^{n-1} + ... + \tilde{a}_n \in \mathbb{Z}[X]$ an Eisenstein polynomial with respect to p, that is $p|\tilde{a}_i$ for all i but $p^2 \nmid \tilde{a}_n$. Then the set $\tilde{a} + p^2\mathbb{Z}^n$ intersects D and consists only of Eisenstein hence irreducible polynomials.

Remark 1.2. — For $s = 1$, $t = 1$ and $U = \mathcal{O}^*_K$, $X(K, U)$ is an Inoue-Bombieri surface S_M; cf. [3].

Remark 1.3. — When $s = 1$ or $t = 1$ all subgroups U of rank s of \mathcal{O}^*_K are admissible for K. But this need not be the case in general as the following example shows. Take two field extensions K' and K'' of \mathbb{Q} with corresponding numbers of real and complex embeddings $s' = 1$, $t' = 2$, $s'' = 2$, $t'' = 1$ and K the composite of K' and K''. Then $s = 2$ but \mathcal{O}^*_K is not admissible for K.

Lemma 1.4. — Let U be a subgroup of \mathcal{O}^*_K not contained in \mathbb{Z}. Then the following are equivalent:

- The action of U on \mathcal{O}_K admits a proper non-trivial invariant submodule of lower rank.
- There exists some proper intermediate field extension $\mathbb{Q} \subset K' \subset K$ with $U \subset \mathcal{O}^*_K$.

Proof. — Suppose M is a proper \mathbb{Z}-submodule of \mathcal{O}_K which is invariant under U and with $0 < \operatorname{rank} M = r < n$. We consider the coefficient ring of M, $\mathcal{O}_M := \{a \in K \,|\, aM \subset M\}$. We have $U \subset \mathcal{O}_M$, hence \mathcal{O}_M is not contained in \mathbb{Q}. Let now K' be the field of fractions of \mathcal{O}_M. We have to show that $K' \neq K$. Let $x \in K'$ be a primitive element for K'/\mathbb{Q} with $x = a/b$, $a, b \in \mathcal{O}_M$. Then the action of x on M is described by an $r \times r$ matrix with rational coefficients in terms of a basis of M. If K' and K coincided, then the characteristic polynomial of x would allow
a factor of degree r over \mathbb{Q}. This proves the lemma in one direction. The converse is clear. \hfill \Box

Definition 1.5. — We shall call the manifold $X(K, U)$ of **simple type** if U does not satisfy the equivalent conditions of the previous lemma.

Lemma 1.6. — Let $\mathbb{Q} \subset K' \subset K$ be a proper intermediate extension and $U \subset O_{K'}^*$ an admissible subgroup for K. Let s', $2t'$ be the numbers of distinct real and respectively complex embeddings of K'. Then $s = s'$, $t' > 0$ and U is admissible for K'.

Proof. — The restrictions to K' of two different real embeddings of K cannot coincide since $U \subset K'$ and U is admissible for K. Thus $s' \geq s$. We show now that $s \geq s'$ as well.

Let $k := (K : K')$. The restriction to K' of a real embedding of K will have to coincide with the restrictions of exactly $k - 1$ complex embeddings of K. In particular since these restrictions are real these $k - 1$ complex embeddings occur in complex conjugate pairs. So $k - 1$ is even.

Suppose now that there is a real embedding of K' which is not the restriction of any real embedding of K. Such an embedding has then to be the restriction of exactly k complex embeddings of K and k would then be even by the same reason as above. Thus $s = s'$.

By Dirichlet’s Units Theorem and since U has rank s, t' has to be strictly positive. It is clear now that U is admissible for K'.

\hfill \Box

Remark 1.7. — If $X(K, U)$ is not of simple type with $\mathbb{Q} \subset K' \subset K$ as intermediate extension and $U \subset O_{K'}^*$, then there exists a holomorphic foliation of $X(K, U)$ with a leaf isomorphic to $X(K', U)$. Just look at the foliation of \mathbb{C}^m defined by the translates $V_{K'} + v, v \in \mathbb{C}^m$ of the complex vector subspace $V_{K'}$ of \mathbb{C}^m spanned by $\sigma(O_{K'})$. Its restriction to $\mathbb{H}^s \times \mathbb{C}^t$ is invariant under the action of $U \times O_K$ and thus descends to $X(K, U)$. It is clear that $(V_{K'} \cap (\mathbb{H}^s \times \mathbb{C}^t))/U \times O_{K'}$ is a leaf of this foliation which is compact since U is admissible for K'.

Remark 1.8. — Not all manifolds $X = X(K, U)$ are of simple type. Keeping the notations of Remark 1.3 take for instance K', K'' with $s' = s'' = t' = t'' = 1$ but non isomorphic and K their composite. Then $s = 1$, $t = 4$ and this time $O_{K'}^*$ is admissible for K. Note however that...
for any choice of K there are infinitely many $X(K,U)$ of simple type, since the number of intermediate extensions of K is finite.

2. Invariants and metrics.

We investigate here some properties of the varieties $X(K,U)$, where K is a number field as before and U is admissible for K.

We start with some preparations for the computation of the first Betti numbers of $X(K,U)$.

Remark 2.1. — Let $a \in \mathcal{O}_K^*$ and consider its action on $\text{Hom}_\mathbb{Z} (\mathcal{O}_K, \mathbb{C})$ by $(af)(x) := f(a^{-1}x)$ for $f \in \text{Hom}_\mathbb{Z} (\mathcal{O}_K, \mathbb{C})$ and $x \in \mathcal{O}_K$. Then the restrictions to \mathcal{O}_K of the embeddings $\sigma_1, ..., \sigma_n$ of K give a basis of $\text{Hom}_\mathbb{Z} (\mathcal{O}_K, \mathbb{C})$ of eigenvectors for this action with associated eigenvalues $\sigma_1(a^{-1}), ..., \sigma_n(a^{-1})$.

Lemma 2.2. — Let $\theta = \sum_{i=1}^n a_i \sigma_i$, $a_i \in \mathbb{C}$ be a 1-form which is \mathbb{Q}-valued on \mathcal{O}_K. Then either all coefficients a_i are non-zero or they all vanish.

Proof. — It is easy to see that there exists a primitive element α for K/\mathbb{Q} in \mathcal{O}_K. Then $\theta(\alpha^k) \in \mathbb{Q}$ for $0 \leq k \leq n - 1$. Let $\alpha_i := \sigma_i(\alpha)$ be the roots of the characteristic polynomial of α.

The rationality condition for θ can be written as a linear system of equations for the coefficients a_i:

$$\sum_{i=1}^n a_i \alpha_i^k = b_k, \quad 0 \leq k \leq n - 1,$$

for some rational numbers $b_0, ..., b_{n-1}$. Let A be the coefficient matrix $(\alpha_i^k)_{1 \leq i \leq n, 0 \leq k \leq n-1}$ of this system. By the choice of α we have $\det A \neq 0$.

We suppose now that $\theta \neq 0$, so not all b_i-s vanish, and that one of the a_i-s is zero, say $a_n = 0$. This means that the determinant of the matrix obtained from A by replacing the last column with the free vector $b = (b_0, ..., b_{n-1})$ shall vanish. Hence expanding this determinant after its last column gives us the following linear dependency relation over \mathbb{Q} among the coefficients of the polynomial $\Pi_{1 \leq i \leq n-1} (X - \alpha_i)$:

$$b_{n-1} + b_{n-2}s_1 + ... + b_0s_{n-1} = 0.$$
Here we denoted by \(s_i \) the \(i \)-th elementary symmetric function in \(a_1, \ldots, a_{n-1} \).

Now we express inductively the elementary symmetric functions in \(a_1, \ldots, a_{n-1} \) in terms of those in \(a_1, \ldots, a_n \) and the powers of \(\alpha_n \):

\[
s_1(a_1, \ldots, a_{n-1}) = s_1(a_1, \ldots, a_n) - \alpha_n,
\]

\[
s_2(a_1, \ldots, a_{n-1}) = s_2(a_1, \ldots, a_n) - \alpha_n s_1(a_1, \ldots, a_{n-1})
\]

\[= s_2(a_1, \ldots, a_n) - \alpha_n s_1(a_1, \ldots, a_n) + \alpha_n^2, \ldots\]

This leads to a non-trivial relation over \(\mathbb{Q} \) among \(1, \alpha_n, \ldots, \alpha_n^{n-1} \) which contradicts the choice of \(\alpha \). \(\Box \)

Proposition 2.3. — For all \(X = X(K,U) \) the first Betti number is \(b_1 = s \). When \(X \) is of simple type one also has \(b_2 = \binom{s}{2} \).

Proof. — The cohomology groups of \(X \) with coefficients in \(\mathbb{Q} \) are isomorphic to those of its fundamental group. We thus have to compute \(H^1(U \times \mathcal{O}_K; \mathbb{Q}) \) and \(H^2(U \times \mathcal{O}_K; \mathbb{Q}) \). The Lyndon-Hochschild-Serre spectral sequence associated to the short exact sequence

\[
0 \to \mathcal{O}_K \to U \times \mathcal{O}_K \to U \to 0
\]

gives

\[
E_2^{pq} = H^p(U; H^q(\mathcal{O}_K; \mathbb{Q})) \Longrightarrow H^{p+q}(U \times \mathcal{O}_K; \mathbb{Q})
\]

and an exact sequence of low degree terms:

\[
0 \to H^1(U; \mathbb{Q}\mathcal{O}_K) \to H^1(U \times \mathcal{O}_K; \mathbb{Q}) \to H^1(\mathcal{O}_K; \mathbb{Q})U \to H^2(U; \mathbb{Q}\mathcal{O}_K)
\]

\[
\to H^2(U \times \mathcal{O}_K; \mathbb{Q});
\]

cf. [4], 6.8. Here \(\mathbb{Q} \) is seen as a trivial \(U \times \mathcal{O}_K \)-module. Then \(H^1(\mathcal{O}_K; \mathbb{Q}) \simeq \text{Hom}(\mathcal{O}_K; \mathbb{Q}) \) is a non-trivial \(U \)-module via:

\[(uf)(x) := f(u^{-1}x), \text{ for all } u \in U, \ f \in \text{Hom}(\mathcal{O}_K, \mathbb{Q}), \ x \in \mathcal{O}_K;\]

cf. [4] 6.8.1. Thus \(H^1(\mathcal{O}_K; \mathbb{Q})U := \{f \in \text{Hom}(\mathcal{O}_K, \mathbb{Q})| uf = f, \text{ for all } u \in U\} \) and this last space is trivial by Remark 2.1. Thus \(H^1(U \times \mathcal{O}_K; \mathbb{Q}) \simeq H^1(U; \mathbb{Q}\mathcal{O}_K) \simeq H^1(U; \mathbb{Q}) \simeq H^1(\mathbb{Z}^*; \mathbb{Q}) \simeq \mathbb{Q}^* \).

Moreover, the map \(H^2(U; \mathbb{Q}\mathcal{O}_K) \to H^2(U \times \mathcal{O}_K; \mathbb{Q}) \) is injective. We only need to prove that it is surjective as well when \(X \) is of simple type. To see this it is enough to check that in this case the terms \(E_2^{0,2} \) and \(E_2^{1,1} \) of the spectral sequence vanish.

Consider first

\[
E_2^{0,2} = H^0(U; H^2(\mathcal{O}_K; \mathbb{Q})) = H^2(\mathcal{O}_K; \mathbb{Q})U \simeq \text{Alt}^2(\mathcal{O}_K; \mathbb{Q})U.
\]
This is the space of alternating 2-forms on \mathcal{O}_K which are fixed by U. Let
$$
\gamma = \sum_{1 \leq i < j \leq n} a_{ij} \sigma_i \wedge \sigma_j \in \text{Alt}^2(\mathcal{O}_K; \mathbb{Q})^U
$$
with $a_{ij} \in \mathbb{C}$. The fact that γ is invariant under the action of some $u \in U$ means that $\sigma_i(u)\sigma_j(u) = 1$ whenever $a_{ij} \neq 0$; cf. Remark 2.1. From this we get $a_{ij} = 0$ for all $1 \leq i < j \leq s$ since U is admissible for K. The relation $\sigma_i(u)\sigma_j(u) = 1$ for all $u \in U$ and the fact that X is of simple type imply moreover that $a_{ij} = 0$ whenever $1 \leq i \leq s$ and that for each $i > s$ there exists at most one $j = j(i) > i$ with $a_{ij} \neq 0$. (Otherwise we would get two equal embeddings $\sigma_j = \sigma_j$.)
Thus $\gamma = \sum_{s<i<n} a_{ij(i)} \sigma_i \wedge \sigma_{j(i)}$. Let $\alpha \in \mathcal{O}_K$ be a primitive element for \mathcal{O}_K. Then $\gamma(\alpha^k, 1) \in \mathbb{Q}$ for all $k \in \mathbb{Z}$, that is $\sum_{s<i<n} a_{ij(i)}(\sigma_i(\alpha^k) - \sigma_{j(i)}(\alpha^k)) \in \mathbb{Q}$ for all $k \in \mathbb{Z}$. But then we get a rational 1-form $\sum_{s<i<n} a_{ij(i)}(\sigma_i - \sigma_{j(i)})$ which by Lemma 2.2 has to vanish.

We now check that $E_2^{1,1} = H^1(U; H^1(\mathcal{O}_K; \mathbb{Q}))$ is trivial. Since U is free abelian we reduce ourselves by the Lyndon-Hochschild-Serre spectral sequence for $0 \to \mathbb{Z} \to \mathbb{Z}^s \to \mathbb{Z}^{s-1} \to 0$ to the computation of $H^1(\mathbb{Z}; H^1(\mathcal{O}_K; \mathbb{Q}))$ where \mathbb{Z} here is the subgroup generated by some $u \in U$. Now $H^1(\mathbb{Z}; H^1(\mathcal{O}_K; \mathbb{Q})) \cong H^1(\mathcal{O}_K; \mathbb{Q})_\mathbb{Z} \cong H^1(\mathcal{O}_K; \mathbb{Q})/\langle uf - f \mid f \in H^1(\mathcal{O}_K; \mathbb{Q}) \rangle$; cf. [4] 6.1.4. But the action of $u - id$ is invertible by Remark 2.1 hence $H^1(\mathbb{Z}; H^1(\mathcal{O}_K; \mathbb{Q}))$ vanishes.

Lemma 2.4. — Every holomorphic function on $\mathbb{H}^s \times \mathbb{C}^t/\sigma(\mathcal{O}_K)$ is constant.

Proof. — Take any element $v \in \mathbb{H}^s$. We shall first prove the following

Claim. — The image of $\{v\} \times \mathbb{C}^t$ in $(v + \mathbb{R}^s) \times \mathbb{C}^t/\sigma(\mathcal{O}_K)$ is dense in this space.

We shall just check that $0 \times \mathbb{C}^t$ has a dense image in $\mathbb{R}^s \times \mathbb{C}^t/\sigma(\mathcal{O}_K)$.
For this it is enough to prove that the image of \mathcal{O}_K through $\sigma' = (\sigma_1, \ldots, \sigma_s): \mathcal{O}_K \to \mathbb{R}^s$ is dense in \mathbb{R}^s.

Consider the connected component V of 0 of the topological closure of $\sigma'(\mathcal{O}_K)$ in \mathbb{R}^s and the \mathbb{Z}-submodule $M := \sigma'^{-1}(V)$ of \mathcal{O}_K. If $V \neq \mathbb{R}^s$ we would have rank $M < n$. Take now $\alpha \in \mathcal{O}_K$ a primitive element for K. On \mathcal{O}_K we have a multiplicative action of α. The submodule αM of \mathcal{O}_K has finite index so the induced linear action of α on \mathbb{R}^s will leave V invariant. Thus M also remains invariant under the action of α. But this would imply that the characteristic polynomial of α admits a factor of degree rank M over \mathbb{Q}, which is absurd.
Take now a holomorphic function f on $\mathbb{H}^s \times \mathbb{C}^t / \sigma(O_K)$ and $v \in \mathbb{H}^s$. Since f is bounded on $(v + \mathbb{R}^s) \times \mathbb{C}^t / \sigma(O_K) \simeq (S^1)^n$ its lift \tilde{f} to $\mathbb{H}^s \times \mathbb{C}^t$ will be bounded on each $(v + \mathbb{R}^s) \times \mathbb{C}^t$ hence constant on $\{v\} \times \mathbb{C}^t$. By our Claim it follows now that \tilde{f} is constant on $(v + \mathbb{R}^s) \times \mathbb{C}^t$. But then \tilde{f} must be constant on $\mathbb{H}^s \times \mathbb{C}^t$ by the identity principle.

Proposition 2.5. — The following vector bundles on $X = X(K, U)$ are flat and admit no non-trivial global holomorphic sections:

$$\Omega^1_X, \Theta_X, K^\otimes_k_X, \text{ for all } k \neq 0.$$

Moreover $\dim H^1(X, O_X) \geq s$. In particular $\kappa(X) = -\infty$ and X is non-Kähler.

Proof. — Let $z_1, ..., z_m$ be the standard complex coordinate functions on $\mathbb{H}^s \times \mathbb{C}^t$. A section ω of $K^\otimes_k_X$ lifted to $\mathbb{H}^s \times \mathbb{C}^t$ will have the form $\tilde{\omega} = f(dz_1 \wedge ... \wedge dz_m)^\otimes_k$. Since this section descends to $\mathbb{H}^s \times \mathbb{C}^t / \sigma(O_K)$ it follows from Lemma 2.4 that f is constant on $\mathbb{H}^s \times \mathbb{C}^t$. Moreover if $f \neq 0$, the invariance of $\tilde{\omega}$ with respect to U gives $(\Pi_{i=1}^m \sigma_i(u))^k = 1$ for all $u \in U$. Multiplying this by $(\Pi_{i=1}^m \bar{\sigma}_i(u))^k = 1$ and using the fact that $(\Pi_{i=1}^m \sigma_i(u))^k = 1$ we get $(\Pi_{i=1}^s \sigma_i(u))^k = 1$ which contradicts the admissibility of U.

In the case of Ω^1_X the automorphy factors are $\sigma_i(u), i = 1, ..., m$ and it is clear that none of them equals 1. An analogous argument works for Θ_X using the vector fields $\partial/\partial z_i$. The flatness of these bundles is evident.

The statement on $\dim H^1(O_X)$ follows now from Proposition 2.3 and the exact sequence of sheaves on X:

$$0 \rightarrow \mathbb{C} \rightarrow \mathcal{O} \rightarrow d\mathcal{O} \rightarrow 0.$$

Remark 2.6. — The above proof also shows that the embeddings of U by $\sigma_1, ..., \sigma_m$ are determined by the complex structure of $X(K, U)$ through the automorphy factors of Ω^1_X. In particular when X is of simple type its complex structure determines both K and U.

Corollary 2.7. — The group of holomorphic automorphisms of X is discrete. It is infinite when $t > 1$ since the elements of $O_{X,K}^* / U$ induce automorphisms of $X(K, U)$.

It is known that the Inoue-Bombieri surfaces S_M admit locally conformally Kähler metrics. This means that there is a representation...
\[\rho : \pi_1(S_M) \to \mathbb{R}_{>0} \] and a closed strongly positive \((1,1)\)-form \(\omega\) on the universal cover of \(S_M\) such that \(g^*\omega = \rho(g)\omega\) for all \(g \in \pi_1(S_M)\); cf. [2]. We now investigate the existence of locally conformally Kähler metrics more generally on the manifolds \(X(K,U)\).

Example. — When \(t = 1\) all manifolds \(X(K,U)\) admit locally conformally Kähler metrics. Consider indeed the following potential \(F\):

\[F : \mathbb{H}^s \times \mathbb{C} \to \mathbb{R}, \quad F(z) := \frac{1}{\prod_{j=1}^s (i(z_j - \bar{z}_j))} + |z_m|^2. \]

Then \(\omega := i\partial\bar{\partial}F\) gives the desired Kähler metric on \(\mathbb{H}^s \times \mathbb{C}\).

Remark 2.8. — The manifolds \(X(K,U)\) with \(s = 2\) and \(t = 1\) give counterexamples to a conjecture of I. Vaisman, according to which a compact locally conformally Kähler manifold admitting even Betti numbers with odd index and non-zero Betti numbers with even index should already be Kähler; (see [2], p. 8).

Proof. — We have the following Betti numbers for \(X(K,U)\): \(b_0 = b_6 = 1, b_1 = b_5 = 2, b_2 = b_4 = 1\) and \(b_3 = 0\). In fact, here \(X(K,U)\) is of simple type and therefore we can apply Proposition 2.3 to get \(b_1\) and \(b_2\). For \(b_3\) note that the Euler characteristic equals \(c_3(X(K,U)) = 0\), since \(\Theta\) is flat.

Proposition 2.9. — When \(s = 1\) and \(t > 1\) there exists no locally conformally Kähler metric on \(X(K,U)\).

Proof. — Let \(s = 1, \omega = \sum_{1 \leq i, j \leq m} g_{ij}dz_i \wedge d\bar{z}_j\) a closed strictly positive \((1,1)\)-form on \(\mathbb{H} \times \mathbb{C}^t\) and \(\rho : U \times \mathcal{O}_K \to \mathbb{R}_{>0}\) a representation such that \(g^*\omega = \rho(g)\omega\) for all \(g \in U \times \mathcal{O}_K\). We shall show that \(t = 1\).

It is clear that \(\rho\) factorizes through a representation of \(U\) which we denote again by \(\rho\). Since \(\omega\) descends to \((\mathbb{H} \times \mathbb{C}^t) / \sigma(\mathcal{O}_K) \simeq \mathbb{R}_{>0} \times (S^1)^n\), we may assume by averaging over \((S^1)^n\) that the coefficients \(g_{ij}\) are constant in the directions of \(\sigma(\mathcal{O}_K)\). In particular they are constant on the subspaces \(\{v\} \times \mathbb{C}^t\) for each \(v \in \mathbb{H}\). Since \(d\omega = 0\), this implies that for \(i, j > 1\) the coefficients \(g_{ij}\) are constant on the whole of \(\mathbb{H} \times \mathbb{C}^t\). By the compatibility of \(\omega\) with \(\rho\) we thus get

\[\rho(u) = |\sigma_2(u)|^2 = |\sigma_3(u)|^2 \ldots = |\sigma_m(u)|^2, \quad \forall u \in U. \]

Consider now a non-trivial element \(u\) of \(U\) and its characteristic polynomial \(X^n - a_1X^{n-1} + \ldots + a_{2t}X - 1\). This polynomial must be
irreducible, otherwise there would exist some \(i > 1 \) such that \(\sigma_1(u) = \sigma_i(u) \) \(\forall u \in U \). But this would imply \(\sigma_1(u) = 1 \) which is impossible.

We have
\[
\sigma_1(u) = \frac{1}{\rho(u)^t},
\]
\[
a_1 = \frac{1}{\rho(u)^t} + \sum_{j=2}^{m}(\sigma_j(u) + \bar{\sigma}_j(u)),
\]
\[
a_{2t} = \sum_{j=1}^{m} \frac{1}{\sigma_j(u)} = \rho(u)^t + \frac{\sum_{j=2}^{m}(\sigma_j(u) + \bar{\sigma}_j(u))}{\rho(u)} = \rho(u)^t + \frac{a_1}{\rho(u)} - \frac{1}{\rho(u)^{t+1}}.
\]

Thus \(\rho(u) \) satisfies the following equation:
\[
\rho(u)^n - a_{2t}\rho(u)^{t+1} + a_1\rho(u)^t - 1 = 0.
\]

Since \(\mathbb{Q}[\sigma_1(u)] \subset \mathbb{Q}[\rho(u)] \) these field extensions must be equal, hence \(\rho(u) \) is a non-torsion unit in \(\mathcal{O}_K \) having the same property as \(u \), namely that its images through the complex embeddings of \(K \) have the same absolute value: \(\rho(u)^{-1/t} = \sigma_1(u)^{1/t^2} \). But the same argument as before yields a new non-torsion unit \(\rho(u)^{-1/t} \) which for \(t > 1 \) satisfies the equation \(X^n - 1 = 0 \). This is a contradiction! \(\Box \)

BIBLIOGRAPHY

Karl Oeljeklaus,
Université d’Aix-Marseille I
CMI - LATP-UMR(CNRS) 6632
39, rue Joliot-Curie
13453 Marseille Cedex 13, (France).
karloelj@cmi.univ-mrs.fr

Matei Toma,
Institute of Mathematics of the Romanian Academy
Bucharest, 014700 (Romania).
matei@mathematik.uni-osnabrueck.de