Gabriel CALSAMIGLIA-MENDLEWICZ

Finite determinacy of dicritical singularities in \((\mathbb{C}^2, 0)\)

<http://aif.cedram.org/item?id=AIF_2007___57_2_673_0>
FINITE DETERMINACY OF DICRITICAL SINGULARITIES IN \((\mathbb{C}^2, 0)\)

by Gabriel CALSAMIGLIA-MENDLEWICZ (*)

Abstract. — For germs of singularities of holomorphic foliations in \((\mathbb{C}^2, 0)\) which are regular after one blowing-up we show that there exists a functional analytic invariant (the transverse structure to the exceptional divisor) and a finite number of numerical parameters that allow us to decide whether two such singularities are analytically equivalent. As a result we prove a formal-analytic rigidity theorem for this kind of singularities.

Résumé. — Nous montrons l’existence d’un invariant analytique fonctionnel (la structure transverse au diviseur exceptionnel) et d’un nombre fini de paramètres numériques associés aux germes de feuilletages holomorphes dans \((\mathbb{C}^2, 0)\) qui ne présentent pas de singularités après un éclatement. Ceux-ci permettent de décider si deux telles singularités sont analytiquement équivalentes. On dérive ensuite un théorème de rigidité formelle-analytique pour ce type de singularité.

1. Introduction

Given a holomorphic germ of 1-form \(\omega\) in \((\mathbb{C}^2, 0)\) with an isolated zero at the origin we can define its associated singular foliation by holomorphic curves \(F_\omega\): the origin 0 is the singular set and its leaves are the integral curves of \(\omega\) outside 0. Let \(E : \tilde{\mathbb{C}}^2 \to (\mathbb{C}^2, 0)\) denote the quadratic blow up at the origin expressed in coordinates by \(E(t, x) = (x, tx) = (X, Y)\), and \(E_0\) its exceptional divisor corresponding to the set \(\{x = 0\}\) in the chart \((t, x)\).

It is well known that \(E^* (\omega)\) defines a regular foliation in the complement of \(E_0\) which can be uniquely extended to a holomorphic foliation \(\tilde{F}_\omega\) in a neighborhood of \(E_0\) in \(\tilde{\mathbb{C}}^2\) with a finite set of isolated singularities on \(E_0\). Let \(D_0\) denote the set of foliations \(F_\omega\) such that \(\tilde{F}_\omega\) is a regular foliation. We

Keywords: Dicritical singularities, holomorphic singular foliations.
(*) The author is partially supported by CNPq, Brasil.
are interested in describing the space of analytic equivalence classes of D_0. The index theorem in ([3], p.592) forces E_0 to be generically transverse to \tilde{F}_ω, so F_ω has a dicritical singularity. However, there is a finite set of points $\Sigma_{\tilde{F}_\omega} \subset E_0$ corresponding to the points $p \in E_0$ where the leaf of \tilde{F}_ω through p is tangent to the curve E_0 with contact order $r(p) + 1$. A result by Klughertz [7] asserts that topologically there aren’t any other invariants:

Theorem 1. — Given $\mathcal{F}, \mathcal{F}' \in D_0$, there exists a homeomorphism $\Psi : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ sending leaves of \mathcal{F} to leaves of \mathcal{F}' if and only if there exists a bijection $\psi : \Sigma_\mathcal{F} \to \Sigma_{\mathcal{F}'}$ such that $r(\psi(p)) = r(p)$ for all $p \in \Sigma_\mathcal{F}$.

In other words the partition of D_0 into subsets whose elements are topologically equivalent can be described as $D_0(n; r_1, \ldots, r_n)$ where $n \in \mathbb{N}$ denotes the number of points of tangency, and $r_1, \ldots, r_n \in \mathbb{N}^*$ their orders of tangency when $n \neq 0$. The case $n = 0$ is solved by Poincaré’s linearization theorem: every $F \in D_0(0)$ is analytically equivalent to the radial foliation $\mathcal{F}_{YdX-XdY}$. Suzuki’s example (see Section 2 below or [13]) shows that there are two elements in $D_0(1; 1)$ which are not analytically equivalent. The obstruction is related to the following analytic invariant: given $F \in D_0(n; r_1, \ldots, r_n)$, consider for each $p_i \in \Sigma_F$ a local holomorphic first integral $F_i : U_i \to \mathbb{C}$ of \tilde{F} in a neighborhood U_i of p_i in $\tilde{\mathbb{C}}^2$.

Define $f_i = F_i|_{U_i \cap E_0}$. The group of invariance of F at p_i is

$$H(\mathcal{F}, p_i) = \{ h \in \text{Diff}(E_0, p_i) \mid f_i \circ h = f_i \}.$$

It is a cyclic group of germs of order $r(p_i) + 1$. We define the transverse structure of \mathcal{F} as

$$H(\mathcal{F}) = \bigcup_{p \in \Sigma_\mathcal{F}} H(\mathcal{F}, p).$$

Observe that if $\Psi : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ is a biholomorphism then $\Psi^*(\mathcal{F}) \in D_0$ and the restriction $\psi \in \text{Aut}(E_0)$ of Ψ to E_0 defines a bijection

$$h \mapsto \psi^{-1} \circ h \circ \psi$$

from $H(\mathcal{F})$ to $H(\Psi^*(\mathcal{F}))$. We thus define the projective class of the transverse structure $H[\mathcal{F}]$ as the conjugacy class of $H(\mathcal{F})$ by holomorphic automorphisms of E_0, which are just Möbius transformations. The previous argument shows that $H[\mathcal{F}]$ depends only on the analytic class $[\mathcal{F}]$ of \mathcal{F}, and also that if $\Psi^*(\mathcal{F}) = \mathcal{F}'$, then up to linear conjugacy we can suppose $H(\mathcal{F}') = H(\mathcal{F})$. On the other hand, the fact that elements in D_0 can be constructed using foliated surgery techniques (and Grauert’s Theorem)
allows us to realize any finite union of cyclic groups of germs of diffeomorphisms of \((E_0, p)\) at points \(p \in E_0\) of finite order as the transverse structure of an element of \(D_0\).

A natural question is to decide whether the projective class of the transverse structure determines the analytic class of the foliation completely. In the case of \(D_0(1; 1)\) the answer is positive:

Theorem 2 (Cerveau). — Given \(\mathcal{F}, \mathcal{F}' \in D_0(1; 1)\), there exists a germ of biholomorphism \(\Psi : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^2, 0)\) with \(\Psi^*(\mathcal{F}') = \mathcal{F}\) if and only if \(H[\mathcal{F}] = H[\mathcal{F}']\).

In the remaining cases we provide examples showing that there are elements \(\mathcal{F}, \mathcal{F}' \in D_0\) with \(H(\mathcal{F}) = H(\mathcal{F}')\) and \(#H(\mathcal{F}) > 2\) arbitrary which are not analytically equivalent. Our main result states that, apart from the projective class of the transverse structure, there are at most a finite number of analytic invariants of numerical nature in each topological class \(D_0(n; r_1, \ldots, r_n)\):

Theorem 3. — Let \(\omega, \omega'\) be two holomorphic 1-forms in \((\mathbb{C}^2, 0)\) defining foliations \(\mathcal{F}, \mathcal{F}' \in D_0(n; r_1, \ldots, r_n)\) respectively. Define

\[
N := r_1 + \cdots + r_n, \quad \kappa := (N + 1) + \max\{r_i\}(3N - 2).
\]

Suppose

(i) \(H(\mathcal{F}) = H(\mathcal{F}')\);

(ii) the jets of \(\omega\) and \(\omega'\) at 0 satisfy \(j_0^\kappa(\omega) = j_0^\kappa(\omega')\).

Then there exists a biholomorphism \(\Psi : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^2, 0)\) such that

\[
\Psi^*(\mathcal{F}') = \mathcal{F} \quad \text{and} \quad d\Psi(0, 0) = \text{Id}.
\]

As a corollary we get a theorem of formal-analytic rigidity in \(D_0\):

Corollary 4. — Two elements in \(D_0\) are formally equivalent if and only if they are analytically equivalent.

Since the algebraic multiplicity of the elements in \(D_0(n; r_1, \ldots, r_n)\) is \(N + 1\), we can state Theorem 3 in terms of the algebraic multiplicity instead of \(\kappa\). This theorem can be reinterpreted in the following way: fix a 1-form \(\omega\) such that \(\mathcal{F}_\omega \in D_0\). Consider the set

\[
(1.1) \quad D_0[\mathcal{F}_\omega] := \{\omega' \mid \mathcal{F}_\omega' \in D_0 \text{ and } H(\mathcal{F}_\omega) = H(\mathcal{F}_\omega')\}.
\]

The assertion is that each fiber of the map

\[
j_0^\kappa : D_0[\mathcal{F}_\omega] \longrightarrow \mathbb{C}^M \quad \text{where} \quad M := \binom{\kappa + 1}{2} - \binom{N + 1}{2}
\]
defines a unique equivalence class in \mathcal{D}_0. Different fibers might define the same class or not. Nevertheless we have at most C^M different analytic classes with the same transverse structure.

A theorem of finite determinacy of a similar type was proven by Klughertz [7] in her doctoral thesis. Our approach improves the order of the jet involved (in her statement the dependence is quadratic on N). On the other hand the methods used for the proof differ. We will geometrically construct a biholomorphism by choosing adequate generically transverse auxiliary foliations, whereas Klughertz used the cohomological methods developped in [8] to find a biholomorphism which is tangent to the identity up to a certain order.

Ortiz-Bobadilla, Rosales-Gonzalez and Voronin [10] have recently proved a formal-analytic rigidity theorem in $\mathcal{D}_0(n; 1, \ldots, 1)$, after what formal normal forms are constructed for the analytic classes in $\mathcal{D}_0(n; 1, \ldots, 1)$, and formal invariants are identified from this normal form. Again, the process lacks of a geometric interpretation, and we hope that our approach will shed some light on the problem of identifying the invariants and giving them a geometrical meaning, eventually enabling us to construct normal forms for every analytic class in \mathcal{D}_0.

Finally, we want to remark that a finite determinacy theorem for generalized cusps can be proven as a consequence of Theorem 3 and that the proof we present of the latter can be generalized to prove a theorem of finite determinacy for regular germs of holomorphic foliations defined in a neighborhood of the zero section of a Hopf component of negative auto-intersection having the same transverse structure (for a proof of these results see [1]). Similarly, Theorem 2 can be generalized to give the analytic classification of regular germs of foliations in a neighborhood of the zero section of a line bundle $L \to E$ over a rational or elliptic Riemann surface E having a single simple tangency with the curve E, provided that $c_1(L) < -1$. Both generalizations, and the method for the proof of these results, are inspired by the paper [2].

The content of the article is organized as follows: in Section 2 we provide examples of singularities in \mathcal{D}_0 that are not analytically equivalent; in Section 3 we prove Theorem 3 and in Section 4 we prove Corollary 4.

This article is based on the main part of my doctoral thesis at IMPA, Brazil. I thank P. Sad and J.F. Mattei for many useful conversations.
2. Examples

Let us first establish some definitions that will be used throughout this article. For \(\mathcal{F} \in \mathcal{D}_0 \) we define \(\Sigma_{\mathcal{F}} \) as the set of points \(p \in E_0 \) where the leaf \(\tilde{L}_p \) of \(\tilde{\mathcal{F}} \) is tangent to \(E_0 \) at \(p \). The order of contact at \(p \) will be denoted by \(r(p) \) + 1; remark that \(r(p) \) is the order of the zero of the normal component to \(E_0 \) of the local 1-form defining \(\tilde{\mathcal{F}} \) at \(p \). Define

\[
\text{Sep}(\tilde{\mathcal{F}}) = \bigcup_{p \in \Sigma_{\mathcal{F}}} \tilde{L}_p
\]
as the set of \textit{isolated separatrices}. The blow down of \(\text{Sep}(\tilde{\mathcal{F}}) \) by \(E \) will be denoted as \(\text{Sep}(\mathcal{F}) \). The latter is a union of germs of generalized cusps. Observe that the foliation \(\tilde{\mathcal{F}} \) is the minimal resolution of \(\mathcal{F} \). Nevertheless we will repeatedly use a different resolution \(S_{\mathcal{F}} \) that will call extended resolution which corresponds to the resolution of \(\text{Sep}(\mathcal{F}) \) in the sense of (reducible) curves. It is the result of composing \(E \) with \(S_{(p,r(p)+1)} \) at each point \(p \in \Sigma_{\mathcal{F}} \), where \(S_{(p,r(p)+1)} \) is defined inductively by the rules: \(S_{(p,1)} \) is the blowing-up of the point \(p \), and

\[
S_{(p,i)} = S_{(p,i-1)} \circ S_{(p_1,1)} \quad \text{where} \quad \hat{p}_i = S_{(p,i-1)}^{-1}(p) \cap S_{(p,i-1)}^{-1}(E_0 \setminus p).
\]

For each \(p \) we have \(r(p) + 1 \) irreducible components \(E_1^p, \ldots, E_{r(p)+1}^p \) of the divisor \(\mathcal{D}_{\mathcal{F}} \) associated to \(S_{\mathcal{F}} \). The strict transform of each irreducible component of \(\text{Sep}(\mathcal{F}) \) by \(S_{\mathcal{F}} \) intersects transversely exactly one irreducible component of \(\mathcal{D}_{\mathcal{F}} \). We call \(\tilde{\mathcal{F}} = S^*_S(\mathcal{F}) \) the pull back of \(\mathcal{F} \) by \(S_{\mathcal{F}} \).

Next observe that for a point \(p \in E_0 \) we can find a neighborhood \(U_p \subset \mathbb{C}^2 \) and a local biholomorphism \(\Phi_p : (U_p, p) \rightarrow (\mathbb{C}^2, 0) \) which call normalizing chart of \(\tilde{\mathcal{F}} \) at \(p \) such that \((u, v) = \Phi_p(t, x) = (\Phi_1(t, x), \Phi_2(t, x)) \) with \(\Phi_2(t, 0) \equiv 0 \) and such that \((\Phi_p^{-1})^*(\tilde{\mathcal{F}}|_{U_p}) \) can be described as the levels of the function \(f_p(u, v) = v - u^{r(p)+1} \). It is important to remark that the change of coordinates is local. With this at hand it is obvious that for a point \(p \in \Sigma_{\mathcal{F}} \) the group of invariance \(H(\mathcal{F}, p) \) is cyclic of order \(r(p) + 1 \); in fact \(\Phi_1(t, 0) \) conjugates it with the group of rotations of order \(r(p) + 1 \).

In particular if we choose any two elements \(\mathcal{F}, \mathcal{F}' \in \mathcal{D}_0(n; r_1, \ldots, r_n) \) with \(\Sigma_{\mathcal{F}} = \{p_1, \ldots, p_n\} \) and \(\Sigma_{\mathcal{F}'} = \{p'_1, \ldots, p'_n\} \), \(r(p_i) = r(p'_i) \), we can find germs of biholomorphism \(\psi_i : (E_0, p_i) \rightarrow (E_0, p'_i) \) conjugating \(H(\mathcal{F}, p_i) \) with \(H(\mathcal{F}', p'_i) \). However, in general, there does not exist an automorphism \(\psi \) of \(E_0 \) whose restriction to a neighborhood of \(p_i \) is \(\psi_i \) for \(i = 1, \ldots, n \), even in the case \(n = 1 \). In these cases \(\mathcal{F} \) and \(\mathcal{F}' \) cannot be analytically conjugated, for the existence of an equivalence would imply the existence...
of a ψ with the said properties. Suzuki’s example is an instance of this phenomenon: define

$$\omega = (2Y^2 + X^3) dX - 2XY dY,$$
$$\omega' = (Y^3 + Y^2 - XY) dX - (2XY^2 + XY - X^2) dY.$$

They have first integrals

$$f(X,Y) = \frac{Y^2 - X^3}{X^2}, \quad f'(X,Y) = \frac{X}{Y} e^{Y(Y+1)/X}$$

respectively, and define foliations $\mathcal{F}_\omega, \mathcal{F}_{\omega'} \in \mathcal{D}_0[1; 1]$. In the (t,x) chart of $\tilde{\mathbb{C}}^2$ we have $\Sigma_{\mathcal{F}_\omega} = \{(0,0)\}$ and $\Sigma_{\mathcal{F}_{\omega'}} = \{(1,0)\}$; $H(\mathcal{F}_\omega, (0,0)) = \langle h \rangle$ with $h(t) = -t$ and $H(\mathcal{F}_{\omega'}, (1,0)) = \langle h' \rangle$. Consider the maps

$$H : (\mathbb{C},0) \to \mathbb{C}^2, \quad t \mapsto (t, h(t)),$$
$$H' : (\mathbb{C},1) \to \mathbb{C}^2, \quad t \mapsto (t, h'(t))$$

and define $C = \text{Im} H$, $C' = \text{Im} H'$. C is algebraic in \mathbb{C}^2. Suppose there exists $\psi \in \text{Aut}(E_0)$ such that $H'(t + 1) = (\psi, \psi) \circ H(t)$. Recall that ψ is a rational function of t, so C' should also be algebraic. However C' is not algebraic (see [6] or [1]). Using this kind of argument it is possible to give necessary and sufficient conditions to decide which elements in $\mathcal{F} \in \mathcal{D}_0$ admit a meromorphic first integral (see [12]). In fact the conditions depend only on $H[\mathcal{F}]$.

When $\# H(\mathcal{F}) = 2$ the correspondence $[\mathcal{F}] \mapsto H[\mathcal{F}]$ is injective (see Theorem 2). In the remaining cases this is no longer true. Mattei [8] showed that locally (in the sense of unfoldings) there exists a vector space of dimension $\frac{1}{2} N(N - 1)$ of analytic classes once we have fixed a transverse structure.

In next paragraph we construct some explicit families of counterexamples which give a clear idea of the kind of obstructions that appear.

The first family is related to the fact that $H(\mathcal{F})$ does not determine the analytic class of $\text{Sep}(\mathcal{F})$. Fix $n \geq 2$. In the (t,x) chart of $\tilde{\mathbb{C}}^2$ choose points $p_i = (t_i, 0)$ and $r_i \in \mathbb{N}^*$ for $i = 1, \ldots, n$. Define

$$P(t) = \int (t - t_1)^{r_1} \cdots (t - t_n)^{r_n} \, dt$$

with $P(0) = 0$. In the same chart consider foliations

$$(2.1) \quad \tilde{\mathcal{F}} = \{ P(t) + x = C^{te} \}, \quad \tilde{\mathcal{F}}' = \{ P(t) + x(1 + (t - t_1)) = C^{te} \}.$$

They extend to regular holomorphic foliations in $\tilde{\mathbb{C}}^2$, and we call $\mathcal{F} = E^{-1*}(\tilde{\mathcal{F}})$ and $\mathcal{F}' = E^{-1*}(\tilde{\mathcal{F}}')$ the singular foliations they define in $(\mathbb{C}^2,0)$ after implosion. They admit meromorphic first integrals in (X,Y) with common denominator $X^{r_1 + \cdots + r_n + 1}$. From (2.1) we deduce that $\mathcal{F}, \mathcal{F}' \in \mathcal{D}_0[0; 1]$.
Let $D_0(n;r_1,\ldots,r_n)$ with $\Sigma_F = \Sigma_{F'} = \{p_1,\ldots,p_n\}$, and by the definition of the transverse structure $H(F) = H(F')$.

Lemma 2.1. — One has $[F] \neq [F']$ for a generic choice of p_i's.

Proof. — If $n > 2$, generically in the choice of p_i's we have that
\begin{equation}
\text{Aut}(H(F)) := \{ \varphi \in \text{Aut}(E_0) \mid \varphi H(F) \varphi^{-1} = H(F) \} = \{\text{Id}\}.
\end{equation}
Suppose $\Psi : (\mathbb{C}^2,0) \to (\mathbb{C}^2,0)$ is a biholomorphism such that $\Psi^*(F') = F$. From $H(F) = H(F')$ and (2.2) we deduce that there exists $\lambda \in \mathbb{C}^*$ such that $d\Psi(0,0) = \lambda \text{Id}$. We also have that $\Psi(\text{Sep}(F)) = \text{Sep}(F')$, but by the choices made in (2.1), it is easily seen by studying the action of Ψ on the divisor of the extended resolution of F and F' and the position of the points of intersection of $\text{Sep}(F)$ with it that there is no possible value for λ. In the case $n = 2$, $\text{Aut}(H(F))$ consists of two elements, but generically the case where $\Psi_0 \neq \text{Id}$ is excluded by a similar argument.

Motivated by this proof we establish the following definition:

Definition 2.2. — Given $F \in D_0(n;r_1,\ldots,r_n)$ and two families P,Q of n points in D_F we say that $P \sim Q$ if and only if there exists a biholomorphism $\Psi : (\mathbb{C}^2,0) \to (\mathbb{C}^2,0)$ whose lifting $\hat{\Psi}$ to a neighborhood of D_F satisfies $\hat{\Psi}|_{E_0} = \text{Id}$ and $\hat{\Psi}(P) = Q$. Define $Q_F \subset D_F$ as the set of n singularities of \hat{F} which are not corners of D_F and $q(F) := [Q_F]$ its class by the equivalence relation \sim.

Observe that, although $q(F)$ is not an analytic invariant of F, it is invariant by the subgroup of biholomorphisms which fix every point in E_0. By using coordinates it is easily seen that the space of classes of points of type Q_F is isomorphic to a subset of \mathbb{CP}^{n-1}. On the other hand, $q(F)$ depends only on $\text{Sep}(F)$.

The second family of examples shows that even fixing $H(F)$ and $\text{Sep}(F)$ there are analytically different elements in D_0. Fix $r \geq 3$ and consider
\begin{align*}
F &= \{ f := (X^{r+1} + Y^r)/X^r = C^{\text{te}} \}, \\
F' &= \{ f(X,Y) \cdot (1 + X) = C^{\text{te}} \}
\end{align*}
contained in $D_0(1;r-1)$. After one blowing up we have
\begin{align*}
\hat{F} &= \{ \hat{f} := x + t^r = C^{\text{te}} \}, \\
\hat{F}' &= \{ \hat{f}' := (x + t^r)(1 + x) = C^{\text{te}} \}.
\end{align*}
Clearly $H(F) = H(F')$, $\text{Sep}(F) = \text{Sep}(F')$ and $\text{Aut}(H(F))$ is the set of nonzero homotetias in the t variable. Suppose there exists a biholomorphism $\Psi : (\mathbb{C}^2,0) \to (\mathbb{C}^2,0)$ such that $\Psi^*(F) = F'$. From the previous
facts we get that after blowing up \(\mathbb{C}^2 \) at 0, \(\Psi \) lifts to
\[
\tilde{\Psi}(t, x) = (\lambda t + x\phi_1(t, x), x(\mu + \phi_2(t, x)))
\]
for some holomorphic functions \(\phi_1, \phi_2 \) defined in a neighborhood of \(E_0 \setminus \infty \) and \(\lambda, \mu \in \mathbb{C}^* \). Since \(\Psi \) conjugates the foliations we have
\[
\tilde{f}(\tilde{\Psi}(t, x)) = \lambda^r \cdot \tilde{f}'(t, x).
\]
From this last equation we get
\[
(2.3) \quad x\phi_2(t, x) = \lambda^r(x + t^r)(1 + x) - (\lambda t + x\phi_1(t, x))^r - \mu x.
\]
Now from the fact that \(\tilde{\Psi} \) is the lifting of \(\Psi \) we have that the left hand side of equation (2.3) must be a series of the form \(\sum_{i \geq 1} A_i(t)x^i \) where \(A_i \) are polynomials in \(t \) and \(\deg A_i \leq i \). Thus, to eliminate the \(t^r x \) term we need \(\phi_1(t, 0) = \lambda t \), but this will produce a nonzero term in the \(t^r x^2 \)-monomial which cannot be cancelled with any other term of the right hand side of equation (2.3), producing a contradiction. Hence \([F] \neq [F']\).

We are thus interested in determining other analytic invariants. This is quite a difficult problem even for the reducible curves \(\text{Sep}(F) \) associated to \(F \in D_0 \), for which, except in some cases (see [15], [14]), a complete list of analytic invariants is unknown.

In the examples above a short calculation shows that, denoting by \(\omega \) and \(\omega' \) the forms defining the foliations \(F \) and \(F' \) we have that
\[
j^{N+1}(\omega) = j^{N+1}(\omega') \quad \text{but} \quad j^{N+2}(\omega) \neq j^{N+2}(\omega').
\]
In the case of germs of curves we know that there is finite determinacy (see [6]): if two equations of such germs coincide up to a sufficiently high order, they are analytically equivalent. Our approach is to prove a theorem of finite determinacy in \(D_0(n; r_1, \ldots, r_n) \) (see Theorem 3) whose proof is given in the following section.

3. Proof of Theorem 3

Consider \(F = F_\omega \in D_0(n; r_1, \ldots, r_n) \) and suppose, without loss of generality, that \(\Sigma_F = \{p_1, \ldots, p_n\} \) is contained in the \((t, x)\) chart of \(\tilde{\mathbb{C}}^2 \). Denote by \(p_\infty = (\infty, 0) \) the point at infinity in this chart. Let \(C_i \) be the separatrix whose strict transform \(\tilde{C}_i \) passes through \(p_i \). Take irreducible Weierstrass polynomials in \(Y, f_i(X, Y) \) such that \(C_i = \{f_i = 0\} \) for \(i = 1, \ldots, n, \infty \), and a unit \(\phi \in \mathcal{O}^*_\omega(\mathbb{C}^2, 0) \). Define
\[
N = r_1 + \cdots + r_n, \quad F := \prod_{i=1}^n f_i
\]
and the meromorphic function in \((\mathbb{C}^2, 0)\)
\[
g = \frac{f_{\infty}^N + n + 1}{F} \cdot \phi.
\]
It defines a germ of holomorphic foliation \(\mathcal{G} = \{g = \text{Cte}\}\) with a dicritical singularity at 0 whose blowing up
\[
\tilde{\mathcal{G}} := E^*(\mathcal{G}) = \{\tilde{g} := g \circ E = \text{Cte}\}
\]
has the following properties:

Lemma 3.1. —
(i) \(E_0, \tilde{C}_1, \ldots, \tilde{C}_n, \tilde{C}_\infty\) are invariant by \(\tilde{G}\);
(ii) \(\text{Sing}(\tilde{G}) = \{p_1, \ldots, p_n, p_\infty\}\);
(iii) \(\tilde{G}\) is dicritic at \(p_1, \ldots, p_n\) and has a saddle with local holomorphic first integral and index \(-1/(N + n + 1)\) at \(p_\infty\);
(iv) the holonomy of \(\tilde{G}\) at \(p_i\) along \(E_0\) is trivial.

Moreover, for a generic choice of unit \(\phi\), we have that the set \(\text{tang}(\tilde{F}, \tilde{G})\) of tangencies between \(\tilde{F}\) and \(\tilde{G}\) satisfies
\[
\text{tang}(\tilde{F}, \tilde{G}) = \tilde{C}_\infty + \sum_{i=1}^{n} (\tilde{C}_i + \tilde{T}_i)
\]
where \(\tilde{T}_i\) is a regular irreducible analytic set tangent to \(E_0\) at \(p_i\) with order \(r_i = r(p_i)\) of contact, when \(\tilde{C}_i\) and \(E_0\) are tangent with contact \(r_i + 1\) at \(p_i\).

In this case we will say that \((\mathcal{F}, \mathcal{G})\) (or \((\tilde{\mathcal{F}}, \tilde{\mathcal{G}})\)) are companion foliations (see Figure 3.1 for diagrams).

![Figure 3.1. Companion foliations \((\tilde{\mathcal{F}}, \tilde{\mathcal{G}})\) with \(r(p_1) = 1, r(p_2) > 1\).](image)

Proof. — For the proofs of (i)–(iv) it suffices to say that
\[
\text{div}(\tilde{g}) = (N + n + 1)\tilde{C}_\infty + E_0 - \sum_{i=1}^{n} \tilde{C}_i.
\]

For the proof of (3.1) observe that \(\tilde{F}\) and \(\tilde{G}\) are transverse at all \(p \in E_0 \setminus \{p_1, \ldots, p_n, p_\infty\}\). At \(p_\infty\), \(\tilde{C}_\infty\) is a common separatrix of \(\tilde{F}\) and \(\tilde{G}\) and
since \(p_{\infty} \) is a saddle for \(\tilde{G} \) there are no other components of \(\text{tang}(\tilde{F}, \tilde{G}) \) there.

For \(i = 1, \ldots, n \), consider a normalizing chart for \(\tilde{F} \) around \(p_i : (t, x) \), where \(p_i = (0, 0) \). In this chart \(\tilde{F} \) is expressed as the levels of \(f(t, x) = x - t^{r_i+1} \) and \(\tilde{G} \) as the levels of

\[
g(t, x) = \frac{x}{x - t^{r_i+1}} \cdot \nu(t, x)
\]

where \(\nu \) is a unit depending on \(\phi \) and the normalizing chart. Hence the components of tangency are described in this chart by the expression

\[
0 = df \wedge ((x - t^{r_i+1})^2 dg)
= (x - t^{r_i+1})[x\partial_t \nu + (r_i + 1)t^{r_i}(\nu + x\partial_x \nu)]dx \wedge dt.
\]

For generic values of \(j^1(\nu) \) (which depend on generic values of \(j^1(\phi) \)) the set \(\{x\partial_t \nu + (r_i + 1)t^{r_i}(\nu + x\partial_x \nu) = 0\} \) is regular at \((0, 0) \) and has contact \(r_i \) with the set \(\{x = 0\} \). Since the inverse of the normalizing chart sends \(\{x = 0\} \) to \(E_0 \) and preserves orders of tangency we get, after (3.2), two components of \(\text{tang}(\tilde{F}, \tilde{G}) \) at \(p_i, \tilde{C} \); and \(\tilde{T} \), with the required properties.

Let \((F, G) \) and \((F', G') \) be two pairs of companion foliations where \(G = \{g = C^{\text{te}}\} \) and \(G' = \{g' = C^{\text{te}}\} \) associated to \(F, F' \in D_0(n; r_1, \ldots, r_n) \) with \(\Sigma_F = \Sigma_{F'} \). For a point \(p \in E_0 \setminus \{\Sigma_F, p_{\infty}\} \), consider holomorphic first integrals \(F_p, F'_p : (U_p, p) \to (\mathbb{C}, 0) \) of \(\tilde{F} \) and \(\tilde{F}' \) respectively defined in a small neighborhood \(U_p \) of \(p \). By transversality and Lemma 3.1, for each \(q \in U_p \) there is a unique point \(\Psi_p(q) \in U_p \) such that

\[
F'_p(\Psi_p(q)) = F_p(q), \quad g'(\Psi_p(q)) = g(q).
\]

By holomorphicity of all the foliations under consideration, \(\Psi_p : (U_p, p) \to (U_p, p) \) defines a germ of biholomorphism. If \(p, p' \in E_0 \setminus \{\Sigma_F, p_{\infty}\} \) and \(U_p \cap U_{p'} \neq \emptyset \) then \(\Psi_p \equiv \Psi_{p'} \) on \(U_p \cap U_{p'} \). Thus we have a biholomorphism \(\Psi : U \to U \) from a neighborhood \(U \) of \(E_0 \setminus \{\Sigma_F, \infty\} \) in \(\mathbb{C}^2 \) to itself. The properties of \(G \) and \(G' \) at \(p_{\infty} \) and its relations with \(F \) and \(F' \) allow us to extend \(\Psi \) to a neighborhood of \(p_{\infty} \) as a biholomorphism by using a theorem of Mattei and Moussu (see [9], p. 482). The following lemma provides necessary and sufficient conditions for \(\Psi \) to extend to neighborhoods of all points of \(\Sigma_F \):

Lemma 3.2. — \(\Psi \) extends to a neighborhood of \(E_0 \) as a biholomorphism if and only if the following conditions are fulfilled:

(a) \(H(F) = H(F') \);
(b) \(q(F) = q(F') \);
(c) there exist homeomorphisms $\psi_i : T_i \rightarrow T'_i$ between the irreducible components of $\text{tang}(\mathcal{F}, \mathcal{G})$ and $\text{tang}(\mathcal{F}', \mathcal{G}')$ not invariant by any of the foliations passing through $p_i \in \Sigma_\mathcal{F}$ such that

$$F'_i(\psi_i(q)) = F_i(q), \quad g'(\psi_i(q)) = g(q)$$

for all $q \in T_i$ and local first integrals F_i and F'_i of $\hat{\mathcal{F}}$ and $\hat{\mathcal{F}}'$ respectively around p_i whose restriction to E_0 coincide.

Proof. — Suppose first that Ψ extends to a neighborhood of E_0 as a biholomorphism. Then it is the identity on E_0 and we have already seen that this implies (a) and (b). For the proof of (c) it suffices to observe that $\Psi(T_i) = T'_i$, take $\psi_i \equiv \Psi|_{T_i}$ and apply the equations (3.3) defining Ψ in the neighborhood of p_i.

For the converse, we have to consider the extended resolution $S_\mathcal{F}$ of \mathcal{F} and \mathcal{F}'. Call $\hat{\mathcal{F}} = S^*_\mathcal{F}(\mathcal{F})$, $\hat{\mathcal{F}}' = S^*_\mathcal{F}(\mathcal{F}')$, $\hat{\mathcal{G}} = S^*_\mathcal{F}(\mathcal{G})$, $w\hat{\mathcal{G}}' = S^*_\mathcal{F}(\mathcal{G}')$ and $D_\mathcal{F}$ the exceptional divisor associated to $S_\mathcal{F}$. $D_\mathcal{F}$ consists of $N + n + 1$ irreducible components: one of them is transverse to $\hat{\mathcal{F}}$ and $\hat{\mathcal{F}}'$, and we still call it E_0 (by abuse of language). From each p_i there is a chain of $r_i + 1$ irreducible components that we will call $E^i_1, \ldots, E^i_{r_i+1}$ where E^i_j and E^i_{j+1} intersect transversally at a corner for $j = 1, \ldots, r_i$ and $p_i = E_0 \cap E^i_{r_i+1}$.

Call \hat{C}_i and \hat{T}_i the strict transforms of C_i and T_i respectively by $S_\mathcal{F}$ for $i = 1, \ldots, n$. The relevant properties of $\hat{\mathcal{F}}$ are:

1) $E^i_1, \ldots, E^i_{r_i+1}, \hat{C}_i$ and \hat{C}_∞ are invariant by $\hat{\mathcal{F}}$ for $i = 1, \ldots, n$.
2) $\text{Sing}(\hat{\mathcal{F}}) = \{\text{corners}, Q_1, \ldots, Q_n\}$ where $Q_i \in E^i_{r_i+1}$ is not a corner.
All singularities are reduced saddles.
3) For $j = 1, \ldots, r_i + 1$ the holonomy of $\hat{\mathcal{F}}$ along E^i_j of the singularities in E^i_j have degree j.

For the companion foliation $\hat{\mathcal{G}}$ the relevant properties are:

4) $\hat{\mathcal{G}}$ is regular and transversal to $E^i_{r_i+1}$ in all its points. $E_0, E^i_1, \ldots, E^i_r, \hat{C}_i$ and \hat{C}_∞ are invariant by $\hat{\mathcal{G}}$ for $i = 1, \ldots, n$.
5) $\text{Sing}(\hat{\mathcal{G}}) = \{Q^i_1, Q^i_2, p_\infty, \text{corners not contained in } E^i_{r_i+1} : i = 1, \ldots, n\}$
where $Q^i_1 \in E^i_1$ and $Q^i_2 \in E^i_{r_i}$ are not corners. All singularities are reduced saddles with holomorphic first integral.
6) From Lemma 3.1, \hat{T}_i is a regular disc transverse to $E^i_{r_i}$

All these properties are also satisfied by $\hat{\mathcal{F}}'$ and $\hat{\mathcal{G}}'$.

Condition (b) implies that after a diagonal linear change of coordinates in the original foliations we can suppose $\text{Sing}(\hat{\mathcal{F}}) = \text{Sing}(\hat{\mathcal{F}}') = \{Q_1, \ldots, Q_n\}$. Condition (a) implies that the holonomy maps of Q_i along $E^i_{r_i+1}$, and the index of Q_i are the same for $\hat{\mathcal{F}}$ and $\hat{\mathcal{F}}'$. As before we can use the theorem.
of Mattei and Moussu to extend \(\widehat{\Psi} \), the lifting of \(\Psi \), to the separatrix \(\widehat{C}_i \) for \(i = 1, \ldots, n \).

Now fix \(i \in \{1, \ldots, n\} \). Condition (a) implies the existence of the first integrals \(F_i \) and \(F'_i \) with the properties stated in (c). Let \(L, L' \) be leaves of \(\widehat{F} \) and \(\widehat{F}' \) respectively with \(L \cap E_0 = L' \cap E_0 \neq \{p_i\} \) sufficiently close to \(p_i \). The construction requires that \(\Psi(L) = L' \). Observe that \(L \cap \widehat{T}_i = \{W_1, \ldots, W_{r_i}\} \), by properties 3) and 6). Observe that these points correspond to the critical points of the restriction \(\widehat{g}_{1L} \) of \(\widehat{g} := S_{\infty}(g) \) to \(L \). Take a disc \(D \subset L \) containing \(L \cap \widehat{T}_i \), and such that the image of \(\partial D \) by \(\Psi \) has already been defined. Let \(D' \subset L' \) be the disc containing \(L' \cap \widehat{T}'_i = \{W'_1, \ldots, W'_{r_i}\} \) such that \(\partial D' = \Psi(\partial D) \). If \(L \) is sufficiently close to \(E^{i}_{r_i} \) then all the multiplicities \(v(W_j) \) of the critical points of \(\widehat{g}_{1D} \) coincide and are equal to some \(v > 1 \). Applying Hurwitz’s formula applied to the pasting of two copies of \(\widehat{g}_{1D} \) we get

\[
2 = 2 \cdot (r_i + 1) - 2 \left(\sum_{q \in D} (v(q) - 1) \right)
\]

which means that \(v = 2 \) and that \(v(q) = 1 \) for all \(q \in D \setminus \{W_1, \ldots, W_{r_i}\} \).

The second equation in (3.4) means that by renaming the points we can suppose \(\widehat{g}'(W'_j) = \widehat{g}(W_j) =: w_j \in \mathbb{C} \) for \(j = 1, \ldots, r_i \). Observe that \(\widehat{g}^{-1}(w_j) \) contains \(r_i \) points. Define \(V = \{w_1, \ldots, w_{r_i}\} \). Suppose \(D \) is big enough to contain \(\widehat{g}^{-1}(V) \cap L =: W \). Define \(W' = \widehat{g}'^{-1}(V) \cap L' \). Thus \(\widehat{g}_{1D \setminus W} : D \setminus W \to \widehat{g}(D) \setminus V \) is a \((r_i + 1):1\) holomorphic covering. We can copy the construction with \(\widehat{g}' \) and observe that the image of both coverings is the same. Thus, using a covering argument, we can find a unique topological extension \(\widehat{\Psi}_D \) making the following diagram commutative

\[
\begin{array}{ccc}
D \setminus W & \xrightarrow{\widehat{\Psi}_D} & D' \setminus W' \\
\widehat{g} \downarrow & & \downarrow \widehat{g}' \\
\widehat{g}(D) \setminus V & = & \widehat{g}'(D') \setminus V
\end{array}
\]

which is holomorphic and extends holomorphically to \(W \) because we can interpret \(\widehat{\Psi}_D \) as a holomorphic map between subsets of discs. This can be done for each leaf \(L \) not containing \(p_i \).

The holomorphicity in the transverse direction to \(\widehat{F} \) comes from (3.4). Thus after blowing \(E^j_1 \) down for \(j = 1, \ldots, r_i + 1 \), \(\Psi \) extends biholomorphically to \(U_i \setminus p_i \) where \(U_i \) is a neighborhood of \(p_i \) in \(\widetilde{\mathbb{C}}^2 \), and by Hartogs’ theorem (see [11], p. 341) we extend it to \(p_i \). \(\square \)

The following lemma finishes the proof of Theorem 3:
Lemma 3.3. — The hypotheses in Theorem 3 imply the existence of functions \(g, g' \) satisfying (a), (b) and (c) of Lemma 3.2.

Proof: Suppose \(\mathcal{F} = \mathcal{F}_\omega \) and \(\mathcal{F}' = \mathcal{F}_{\omega'} \in \mathcal{D}_0(n; r_1, \ldots, r_n) \) with \(H(\mathcal{F}) = H(\mathcal{F}') \). Thus (a) is already satisfied. Recall \(N = r_1 + \cdots + r_n \) and that the algebraic multiplicity of \(\omega \) and \(\omega' \) is \(N + 1 \). After a linear change of coordinates we can suppose \(\Sigma_\mathcal{F} = \{ p_1, \ldots, p_n \} \) with coordinates \(p_i = (t_i, 0) \) in the chart \((t, x) \) of \(\mathbb{C}^2 \) such that \(|t_i| \neq |t_j| \) for \(i \neq j \). A direct calculation shows that \(j^{N+2}(\omega) = j^{N+2}(\omega') \) implies (b). For the proof of (c), consider a companion foliation \(\mathcal{G} = \{ g = C^{\text{te}} \} \) for \(\mathcal{F} \). Recall that \(C_i = \{ f_i = 0 \} \) (resp. \(C'_i = \{ f'_i = 0 \} \)) is the Weierstrass polynomial of the separatrix of \(\mathcal{F} \) (resp. \(\mathcal{F}' \)) whose strict transform by \(E \) passes through \(p_i \) for \(i = 1, \ldots, n, \infty \). Let \(F = \prod_{i=1}^n f_i, F' = \prod_{i=1}^n f'_i \). We need to find a unit \(u \in \mathcal{O}^*_0(\mathbb{C}^2) \) such that

\[
\mathcal{G}' = \left\{ g' := \frac{f_{\infty}^{N+n+1}}{F'} \cdot u = C^{\text{te}} \right\}
\]

is a companion foliation for \(\mathcal{F}' \) and

\((*)\) \(\text{tang}(\mathcal{F}, \mathcal{G}) = \text{tang}(\mathcal{F}', \mathcal{G}') \);

\((**)\) \(g \) and \(g' \) satisfy (3.4) on each component of type \(T_i \) of \(\text{tang}(\mathcal{F}, \mathcal{G}) \), where \(\psi_i : T_1 \rightarrow T_i \) is defined by the first equation of (3.4).

We know \(C_i = \{ f_i = 0 \} \) is invariant by \(\mathcal{F}_\omega \) so

\[
df_i \wedge \omega = f_i \cdot H_i dX \wedge dY
\]

for some holomorphic function \(H_i \in \mathcal{O}^*_0(\mathbb{C}^2) \). The divisor \(\text{tang}(\mathcal{F}, \mathcal{G}) \) is defined by

\[
0 = (F^2 dg) \wedge \omega
\]

\[(3.5)\]

\[
f_{\infty}^{N+n+1} F \left(H_{\infty} - \sum_{i=1}^n H_i \right) dX \wedge dY =: f_{\infty}^{N+n+1} F H dX \wedge dY.
\]

As we saw in Lemma 3.1 the divisor \(T = \{ H = 0 \} \) has \(n \) irreducible components \(T_1, \ldots, T_n \) with multiplicity one. Each \(T_i \) is a generalized cusp of type \((r_i, r_i + 1) \) (when \(r_i = 1 \) it is just a regular disc). We will decompose the problem of constructing \(u \) in two steps by finding functions \(\phi \in \mathcal{O}^*_0(\mathbb{C}^2) \) and \(\varphi \in \mathcal{O}(\mathbb{C}^2) \) such that \(u = \phi + H \cdot \varphi \). The idea is that conditions \((*)\) and \((**)\) define the values of \(\phi \) and \(\varphi \) on the analytic subset of dimension one \(T \). We then need to find holomorphic functions defined in the whole neighborhood of the origin in \(\mathbb{C}^2 \) taking the same values on \(T \). For this purpose we need to construct the \(\psi_i \)'s appearing in (3.4) first:
Using Lemma 3.4 (i) consider \(F_i, F'_i \) local holomorphic first integrals of \(\mathcal{F} \) and \(\mathcal{F}' \) respectively around \(p_i \) such that \(F_i|_{V_i} = F'_i|_{V_i} \) in a neighborhood \(V_i \subset E_0 \) of \(p_i \). Consider the following diagram:

\[
\begin{align*}
\tilde{T}_i \setminus p_i \quad &\quad \tilde{T}_i \setminus p_i \\
\pi_i \downarrow \quad &\quad \pi'_i \downarrow \\
(\tilde{T}_i \setminus p_i)/F_i \quad &\quad (\tilde{T}_i \setminus p_i)/F'_i \\
\cong \quad &\quad \cong (V_i \setminus p_i)/F_i = (V_i \setminus p_i)/F'_i
\end{align*}
\]

where \(\pi_i \) and \(\pi'_i \) are \(r_i \) : 1 holomorphic coverings corresponding to the projections onto the local leave spaces. Hence we can construct a homeomorphism \(\psi_i : \tilde{T}_i \setminus p_i \to \tilde{T}_i \setminus p_i \) such that \(\pi'_i \circ \psi_i = \pi_i \). In fact there are \(r_i \) different possibilities for constructing \(\psi_i \). After blowing down we can consider \(\psi_i : T_i \to T_i \) as a homeomorphism.

Define the function \(\phi_i := \phi|_{T_i} : (T_i, p_i) \to (\mathbb{C}, 1) \) using condition (**):

\[
\phi_i(q) = \left(\frac{f_{\infty} \circ \psi_i^{-1}}{f'_\infty} \right)^{N+n+1} \left(\prod_{i=1}^{n} \frac{f'_i}{f_i \circ \psi_i^{-1}} \right)^{(q)}
\]

for \(q \in T_i \). From now on we will suppose \(j^s(\omega) = j^s(\omega') \) and find bounds for \(s \) to insure that the construction can be done.

Claim 1. — If \(s \geq (N + 1) + \max\{r_i\}(N - 1) \) there exists \(\phi \in \mathcal{O}^*_r(\mathbb{C}^2, 0) \) such that \(\phi|_{T_i} = \phi_i \) for \(i = 1, \ldots, n \). Moreover,

\[
d\phi(X, Y) = X^{(s-(N+1))/\max\{r_i\}} \nu(X, Y)
\]

for some holomorphic germ of 1-form \(\nu \).

Proof of Claim 1. — We need to analyse the relations between the jets of the 1-form \(\omega = \sum_{j \geq N+1} (P_j dX + Q_j dY) \) where \(P_j(X, Y), Q_j(X, Y) \) are homogeneous polynomials of degree \(j \) and the form defining \(\check{\mathcal{F}}_\omega \) in the \((t, x)\) chart of \(\mathbb{C}^2 \):

\[
\check{\omega}(t, x) := \frac{E^*\omega(t, x)}{x^{N+2}} = \sum_{j \geq 0} x^j [Q_{j+N+1}(1, t) dt + R_{j+N+2}(t) dx]
\]

where \(R_{j+N+2}(t) := P_{j+N+2}(1, t) + tQ_{j+N+2}(1, t) \).

Lemma 3.4. — If \(\mathcal{F}_\omega, \mathcal{F}_{\omega'} \in \mathcal{D}_0(n; r_1, \ldots, r_n) \) satisfy \(j^s_0(\omega) = j^s_0(\omega') \), then:

(i) \(\check{\omega}'(t, x) = \check{\omega}(t, x) + x^{s-(N+1)}\omega_2(t, x) \) for some holomorphic 1-form \(\omega_2 \). We define \(K(s) := s - (N + 1) \in \mathbb{N} \).
(ii) If moreover, $H(\widetilde{F}_ω, p) = H(\widetilde{F}_ω', p)$ for $p ∈ E₀$, given a local holomorphic first integral f of $\widetilde{F}_ω$ there exists a local holomorphic first integral f' of $\widetilde{F}_ω'$ in a neighborhood of p such that

$$f'(t, x) = f(t, x) + x^{K(s)+1}h(t, x)$$

for some holomorphic function h defined in a neighborhood of p.

(iii) Equation (3.7) implies that $j^{K(s)+r_i}(f_i) = j^{K(s)+r_i}(f_i')$ for the Weierstrass polynomials f_i, f_i' of C_i and C_i' respectively.

Proof. — To prove (i), observe that in (3.7), the terms in the j-th member of the sum depend on the $(j+1)+N+1$ jet of $ω$. For the proof of (ii) we can construct f' by extending the function $f(t, 0)$ along the leaves of $\widetilde{F}_ω'$ in a neighborhood of $p = (t₀, 0)$. We can assume $∂f/∂x(p) ≠ 0$. Write $h(t, x) = f(t, x) - f'(t, x) = \sum_{i≥0}h_i(t)x^i$ with h_i holomorphic functions of t. From item (i) we get

$$x^{K(s)}(ω₂ \wedge df') + \widetilde{ω} \wedge dh = \widetilde{ω}' \wedge df' ≡ 0$$

Since $\widetilde{ω} = Adt + Bdx$ is regular at p, and $dh = \sum_{i≥1}∂h_i/∂t x^i dt + ix^i-1h_i(t)dx$ we get, by comparing jets:

$$0 ≡ \sum_{i=0}^{K(s)} x^{i-1}Ah_i - \sum_{i=0}^{K(s)-1} Bx^i∂h_i/∂t$$

By hypothesis $h_0 ≡ 0$. Inductively we get $h_1(t) ≡ \ldots ≡ h_{K(s)}(t) ≡ 0$.

For the proof of (iii) we take Puiseux parametrizations $w ↦ (w^{r_i+1}, Q_i(w))$ and $w ↦ (w^{r_i+1}, Q'_i(w))$ of C_i and C_i' respectively. By (3.7) we get, by comparing terms after the blowing up, $j^{K(s)+r_i}(Q_i) = j^{K(s)+r_i}(Q'_i)$ which implies the assertion in (iii).

Now consider a Puiseux parametrization

$$τ_i : D → T_i, \quad w ↦ (w^{r_i}, \hat{P}_i(w))$$

from a small disc D to T_i. Hence there exists a homeomorphism $b_i : D → D$ such that

$$ψ_i(w^{r_i}, \hat{P}_i(w)) = (b_i(w))^{r_i}, \hat{P}_i(b_i(w)))$$

In fact b_i is holomorphic outside 0, which implies that it is also holomorphic there. Suppose $b_i(w) = \sum_{j≥0}b_j^i w^j$ and that we have chosen $ψ_i$ by imposing $b_1^i = 1$. Using (3.7) and the fact that $h \circ E^{-1} \circ τ_i(w) = a_iw^{r_i} + \ldots$ with $a_i ≠ 0$ we see inductively that $b_2^i = b_3^i = \ldots = b_{K(s)}^i = 0$. This together with (3.6) and Lemma 3.4 (iii) implies that

$$φ_i(w^{r_i}, \hat{P}_i(w)) = 1 + w^{K(s)}φ_i(w)$$
for some holomorphic function \(\tilde{\phi}_i \). Since \(\tilde{P}_i(w) = ti, w^{r_i}, \ldots \) and \(|t_i| \neq |t_j| \) if \(i \neq j \) we can apply the following interpolation result due to Cartan (see [5], p. 102), which has been adapted to our situation:

For each \(i \in \{1, \ldots, n\} \) consider a germ of analytic irreducible set

\[
T_i = \left\{ (X, Y) \in \mathbb{C}^2 \mid Y^{r_i} \sum_{j=0}^{r_i-1} \alpha_j(X)Y^j = 0 \right\}
\]

with its Puiseux parametrization \(x \mapsto (x^{r_i}, \tilde{P}_i(x)) \). Suppose that \(\tilde{P}_i(x) = A_ix^{r_i} + \cdots \) for \(A_i \in \mathbb{C} \) with \(A_i^{r_k} \neq A_j^{r_k} \) if \(i \neq j \) and \(i, j, k \in \{1, \ldots, n\} \).

Lemma 3.5. — Let \(\nu_i : T_i \to \mathbb{C} \) be a continuous function such that \(\nu_i(0, 0) = a \in \mathbb{C} \) (independently of \(i \)) and \(\nu_i(x^{r_i}, \tilde{P}_i(x)) = a + c_i x^{\ell_i} + \cdots \) is holomorphic with \(c_i \neq 0 \). If \(\ell := \min \ell_i/r_i \geq (\sum_{i=1}^{n} r_i) - 1 =: N - 1 \), then there exists a holomorphic function \(\nu \in \mathcal{O}(\mathbb{C}^2, 0) \) such that

(i) \(\nu|_{T_i} = \nu_i; \)

(ii) \(d\nu(X, Y) = X^{\ell-N} \eta(X, Y) \) for a holomorphic 1-form \(\eta \).

In other words, \(\nu \) extends holomorphically to a neighborhood of \((0, 0) \) in \(\mathbb{C}^2 \) the functions \(\nu_i \) defined on the analytic subsets \(T_i \) (of dimension 1).

Proof of Lemma 3.5. — For each \(i \in \{1, \ldots, n\} \) choose a branch \((\cdot)^{1/r_i}\) of the \(r_i \)-th root and a primitive \(r_i \)-th root of unity \(\zeta_i \). We index with \(j \) the set of all branches of the union \(T \) of all the \(T_i \)'s: let \(r_0 := 0 \) and for \(j \in \{1, \ldots, N\} \) define \(P_j(X) := \tilde{P}_i(\zeta_i^{[j]} X^{1/r_i}) \) where \([j] = j - (r_0 + \cdots + r_{i-1}) \) if \(j \in \{r_0 + \cdots + r_i - 1, \ldots, r_0 + \cdots + r_i\} \). We claim that the expression

\[
\nu(X, Y) := \sum_{i=1}^{N} \left(\prod_{j \neq i} \frac{Y - P_j(X)}{P_i(X) - P_j(X)} \right) \nu_i(X, P_i(X))
\]

defines an univaluated, continuous function in \((\mathbb{C}^2, 0) \) with \(\nu(p) = \nu_i(p) \) for \(p \in T_i \). Outside \(\{X = 0\} \) this is a consequence of the symmetry of the expression, for when we follow a loop around the origin in the \(X \)-plane, we exchange the order of the members of the sum, leaving its value unchanged.

Define \(\mathcal{K} := \mathcal{M}(X) \) the field of meromorphic functions in \(X \), and \(\overline{\mathcal{K}} \) its algebraic closure. Obviously \(P_j \in \overline{\mathcal{K}} \) and \(P_i \neq P_j \) if \(i \neq j \). Hence for any \(a \in \mathbb{C} \) the polynomial in \(\overline{\mathcal{K}}[Y] \) of degree \(N - 1 \) defined by

\[
\left(\sum_{i=1}^{N} \left(\prod_{j \neq i} \frac{Y - P_j(X)}{P_i(X) - P_j(X)} \right) a \right) - a
\]

has \(N \) different roots, and is therefore the zero polynomial. From \(A_i^{r_k} \neq A_j^{r_k} \) if \(i \neq j \) we obtain \(|P_i(X) - P_j(X)| = |X| \cdot |h_{ij}(X)| \) for a continuous function \(h_{ij} \) such that \(h_{ij}(0) \neq 0 \). From the hypotheses on \(\nu_i \) we have...
\[|\nu_i(X, P_i(X)) - a| \leq |X|^{N-1} h_i(|X|) \] for real continuous functions \(h_i \) defined in the neighborhood of 0. Therefore,

\[(3.11) \quad |\nu(X, Y) - a| \leq \left(\sum_{i=1}^{N} \left(\prod_{j \neq i} \frac{|Y - P_j(X)|}{|h_{ij}(X)|} \right) h_i(|X|) \right) |X|^{N-1} \rightarrow 0 \]

when \((X, Y) \rightarrow (0, 0)\). A similar argument can be used to prove continuity on the remaining points of \(\{X = 0\} \). Hence \(\nu \) is continuous on \((\mathbb{C}^2, 0)\) and trivially holomorphic on \((\mathbb{C}^2, 0) \setminus \{X = 0\} \), hence holomorphic on \((\mathbb{C}^2, 0)\).

For the proof of (ii) write \(\nu(X, Y) = \sum_{j=0}^{N-1} a_j(X) Y^j \) where \(a_0(X) - a \) and \(a_j(X) \) are holomorphic functions of \(X \). By (3.11) they are zero up to order \(\ell - (N - 1) \) for \(j = 1, \ldots, N - 1 \), and taking derivatives we have that \(X^{\ell-N} \) divides all terms of \(d\nu(X, Y) \).

This finishes the proof of Claim 1. Let us continue with the proof of Lemma 3.3. Condition (*) is satisfied if \(\varphi_i := \varphi|_{T_i} \) satisfies

\[0 = (F'^2 dg') \wedge \omega'|_{T_i} \]

\[(3.12) \quad F' \cdot f_i^{N+n+1}(\phi H' dX \wedge dY + d\phi \wedge \omega' + \varphi_i dH \wedge \omega'(q))|_{T_i} \]

where \(H' \) is obtained by a process similar to equation (3.5) but using the \(f_i' \)'s. In fact, from Lemma 3.4 (iii) we have

\[(3.13) \quad j^{K(s)+N}(H) = j^{K(s)+N}(H'). \]

Equation (3.12) is equivalent to

\[(3.14) \quad \phi(q)H'(q)dX \wedge dY + d\phi \wedge \omega'(q) + \varphi_i(q)(dH \wedge \omega'(q)) = 0 \]

for each point \(q \in T_i \). The expression in (3.14) defines the values of \(\varphi_i \).

Claim 2. — If \(s \geq (N + 1) + \max\{r_i\}(3N - 2) =: \kappa \) there exists \(\varphi \in \mathcal{O}(\mathbb{C}^2, 0) \) such that \(\varphi|_{T_i} = \varphi_i \) for \(i = 1, \ldots, n \).

Proof of Claim 2. — To use Lemma 3.5 for interpolation, we need to analyse the order of \(\varphi_i(w^{r_i}, \hat{P}(w)) \). This can be done using (3.14):

- \(H'(w^{r_i}, \hat{P}(w)) \) has order \(r_i(K(s) + N) \), from (3.13) and the fact that \(\hat{P}_i \) has order \(r_i \);
- \(dH(w^{r_i}, \hat{P}(w)) \) has order \(r_i N - 1 \), since the tangent cone of \(H \) is \(\prod_{i=1}^{n} (Y - t_i X)^{r_i} \);
- \(\omega'(w^{r_i}, P'_i(w)) \) has order \(r_i(N + 2) \), since

\[j^{N+1}(\omega') = \prod_{i=1}^{n} (Y - t_i X)^{r_i}(Y dX - X dY); \]

- \(d\phi(w^{r_i}, P'_i(w)) \) has order \(r_i(K(s)/\max r_i - N) \), by the the second part of Claim 1.
Hence, if
\begin{equation}
\begin{aligned}
& r_i(K(s) + N) - (r_iN - 1) - r_i(N + 2) \geq r_i(N - 1), \\
& r_i\left(\frac{K(s)}{\max r_i} - N\right) - (r_iN - 1) \geq r_i(N - 1) \quad \text{for } i = 1, \ldots, n
\end{aligned}
\end{equation}
then we have \(\varphi_i(w^r_i, P_i^r(w)) = w^r_i(N-1)\tilde{\varphi}_i(w) \) for some holomorphic function \(\tilde{\varphi}_i \). The hypothesis \(s \geq \kappa \) guarantees that the hypothesis of Claim 1 and the inequalities in (3.15) are satisfied. Applying Lemma 3.5 we obtain the desired function \(\varphi \).
\[\square\]

4. Proof of Corollary 4

Proof of Corollary 4. — Take \(F_\omega \) and \(F_{\omega'} \) in \(D_0 \), and suppose there exists a formal equivalence \(\hat{\phi} \) in \((\mathbb{C}^2,0) \) and a formal power series \(\hat{h} \) such that \(\hat{\phi}^*\omega' = \hat{h}\omega \). After a linear change of coordinates we can suppose \(\Sigma_{F_\omega} = \Sigma_{F_{\omega'}} \), with the same orders of tangency and \(\hat{\phi} \) tangent to the identity. Given \(\ell \in \mathbb{N} \) there exist 1-forms \(\omega_\ell \in \omega'_\ell \) such that \(F_{\omega_\ell} = F_\omega, F_{\omega'_\ell} \) is analytically equivalent to \(F_{\omega'}, j^\ell(\omega_\ell) = j^\ell(\omega'_\ell), H(\omega) = H(\omega_\ell) \) and \(H(\omega') = H(\omega'_\ell) \). Let us prove \(H(\omega') = H(\omega) \). Let \(h_p \in H(\tilde{F}_\omega, p) \) (resp. \(h'_p \in H(\tilde{F}_{\omega'}, p) \)) be a generator, where \(p \in \Sigma_\omega \). Given \(s \in \mathbb{N} \), there exists a big enough \(\ell(s) \in \mathbb{N} \) such that \(j^\ell(s)(\omega_{\ell(s)}) \) determines \(j^s(h_p) \) uniquely where the jet of \(h_p \) is taken in a global coordinate \(t \) of \(E_0 \). Therefore we have \(j^s(h_p) = j^s(h'_p) \) for each \(s \in \mathbb{N} \) and \(h_p = h'_p \). Now apply Theorem 3 to \(\omega_\ell \) and \(\omega'_\ell \), for a big \(\ell \) and we get a biholomorphism from \(F_\omega \) to \(F_{\omega'} \).
\[\square\]

5. Addendum

In section 3, when \(n = 1 \) we need to define the companion foliation in a different manner to be able to construct the biholomorphism. The problem is that in this case the set of tangencies between \(F \) and \(G \) is not a regular curve after applying a blow-up. To avoid this we consider the function defining the companion foliation \(\omega \) to be a product \(g = \frac{f_{r+1}^2}{f_1 : f_2} \) where \(f_1 = 0 \) is the isolated separatrix and \(f_2 = 0 \) is a (regular) separatrix tangent to some other direction \(p_2 \). This produces a radial singularity at the point \(p_2 \) in \(E_0 \) for the companion foliation \(\omega \). The construction of the biholomorphism between two elements \(F, F' \in D_0(1;r) \) by using the values of their companion foliations extends without any extra conditions to a neighborhood of \(p_2 \), as can be seen by blowing this point once and using the same argument as at \(p_\infty \).
FINITE DETERMINACY OF DICRITICAL SINGULARITIES IN \((\mathbb{C}^2, 0)\) 691

BIBLIOGRAPHY

Manuscrit reçu le 24 janvier 2006,
accepté le 13 mars 2006.

Gabriel Calsamiglia-Mendlewicz
Universidade Federal Fluminense
Departamento de Matemática Aplicada
Rua Mário Santos Braga S/N
24020-140 Niterói
Rio de Janeiro (Brasil)
gabri@impa.br