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ON THE BRIANÇON-SKODA THEOREM ON A
SINGULAR VARIETY

by Mats ANDERSSON,
Håkan SAMUELSSON & Jacob SZNAJDMAN (*)

Abstract. — Let Z be a germ of a reduced analytic space of pure dimension.
We provide an analytic proof of the uniform Briançon-Skoda theorem for the local
ring OZ ; a result which was previously proved by Huneke by algebraic methods.
For ideals with few generators we also get much sharper results.

Résumé. — Soit Z un germe d’un espace analytique réduit de dimension pure.
Nous donnons une démonstration analytique du théorème de Briançon-Skoda pour
l’anneau local OZ . Ce résultat a déjà été démontré par Huneke en utilisant des
méthodes algébriques. Nous obtenons également un résultat beaucoup plus fort
pour les idéaux engendrés par peu d’éléments.

1. Introduction

Let a = (a) = (a1, . . . , am) be an ideal in the local ring O = O0 of
holomorphic functions at 0 ∈ Cd and let |a| =

∑
j |aj |. Up to constants, this

function is independent of the choice of generators of a. In [26], Briançon
and Skoda proved:
If φ ∈ O and

(1.1) |φ| 6 C|a|min(m,d)+`−1, ` = 1, 2, 3, . . . ,

then φ ∈ a`.
If m 6 d, then the statement follows directly from Skoda’s L2-estimate

in [25]; if m > d one uses that there is an ideal b ⊂ a such that |a| ∼ |b|, a
so-called reduction of a, with d generators.

Keywords: Briançon-Skoda theorem, analytic space, residue current.
Math. classification: 32C30, 32A27, 13A05.
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If b is any ideal in O then |φ| 6 C|b| if and only if φ is in the integral
closure b. Therefore, the statement is equivalent to the inclusion

(1.2) amin(m,d)+`−1 ⊂ a`.

This is a notable example of a purely algebraic theorem that was first
proved by transcendental methods. It took several years before algebraic
proofs appeared, [21] and [20]. In [11] there is a proof by integral formulas
and residue theory.

Assume now that Z is a germ of an analytic space of pure dimension d and
let OZ be its structure ring of germs of (strongly) holomorphic functions.
It is non-regular if (and only if) Z is non-regular. It is easy to see that the
usual Briançon-Skoda theorem cannot hold in general in the non-regular
case, not even for m = 1, see Example 1 below. However, Huneke proved
in [16] that there is a number µ only depending on Z such that for any
ideal a ⊂ OZ , and integer ` > 1,

(1.3) aµ+`−1 ⊂ a`.

Huneke’s proof is completely algebraic (and holds for some more general
rings as well), so it is natural to look for an analytic proof. In this paper
we give a proof by means of residue calculus, and the membership can be
realized by an integral formula on Z. A problem of general interest, see, e.g.
p. 657 in [17] and Remark 4.14 in [16], is to estimate the Briançon-Skoda
number, µ, in Huneke’s theorem in terms of invariants of the ring. Our
proof relates µ to the complexity of a free resolution of OZ . We have also a
sharper statement in case a has “few” generators, and the zero set, Za, of
the ideal does not overlap the singular set of Z “too much”. To formulate
this we first have to describe (germs of) subvarieties, Zr, associated with Z:

To begin with we choose an embedding of Z and consider it as a subva-
riety at, say, the origin of Cn for some n. If I is the corresponding radical
ideal in O = OCn,0, then OZ = O/I. Let

(1.4) 0 −→ O(EN ) fN−→ · · · f3−→ O(E2) f2−→ O(E1) f1−→ O(E0)

be a free resolution of O/I. Here Ek are trivial vector bundles and E0 is a
trivial line bundle. Thus fk are just holomorphic matrices in a neighborhood
of 0. We let Zk be the set of points x such that fk(x) does not have optimal
rank. These varieties are, see, [14] Ch. 20, independent of the choice of
resolution, and we have the inclusions

· · · ⊂ Zp+2 ⊂ Zp+1 ⊂ Zsing ⊂ Zp = · · · = Z1 = Z,

ANNALES DE L’INSTITUT FOURIER
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where p = n− d. Now let

(1.5) Z0 = Zsing, Zr = Zp+r, r > 0.

Since any two minimal embeddings are equivalent, and any embedding
factors in a simple way over a minimal embedding, one can verify that
these subsets Zr are intrinsic subvarieties of the analytic space Z, that
reflect the degree of complexity of Z. To begin with, since Z has pure
dimension (Corollary 20.14 in [14]),

codimZr > r + 1, r > 0.

Moreover, Zr = ∅ for r > d − ν if and only if the depth of the ring OZ
is at least ν. In particular, Zr = ∅ for r > 0 if and only if Z (i.e. OZ) is
Cohen-Macaulay.

Theorem 1.1. — Let Z be a germ of an analytic space of pure dimen-
sion.

(i) There is a natural number µ, only depending on Z, such that for
any ideal a = (a1, . . . , am) in OZ and φ ∈ OZ ,

(1.6) |φ| 6 C|a|µ+`−1

implies that φ ∈ a`.
(ii) If for a given ideal a = (a1, . . . , am)

(1.7) codim (Zr ∩ Za) > m+ 1 + r, r > 0,

then for any φ ∈ OZ ,

(1.8) |φ| 6 C|a|m+`−1

implies that φ ∈ a`.

Huneke’s theorem (1.3) follows immediately from part (i) of Theorem 1.1,
since even in the non-regular case φ ∈ (b) immediately implies that |φ| 6
C|b|. The less obvious implication |φ| 6 C|b| ⇒ φ ∈ (b) also holds, see,
e.g. [19], and so Theorem 1.1 (i) is in fact equivalent to Huneke’s theorem.

Example 1. — If Z is the zero set of zp−w2 in C2, where p > 2 is odd,
then |w| 6 |z|[p/2] on Z, but w is not in (z). However, if |φ| 6 C|z|(p+1)/2,
then φ ∈ (z), i.e. φ/z is strongly holomorphic on Z.

Remark 1. — The important point in Huneke’s theorem is the unifor-
mity in a and `. Notice that (1.3) implies the slightly weaker statement

(1.9) aµ+`−1 ⊂ a`.

TOME 60 (2010), FASCICULE 2
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It is quite easy to prove such an inclusion for fixed a and `. In fact, assume
that Z is a germ of a subvariety in Cn and choose a tuple f such that
Z = {f = 0}. Let A = (A1, . . . , Am) and Φ denote fixed representatives in
OCn of a = (a1, . . . , am) and φ ∈ a. Then

|Φ(z)| 6 C dist(z, Za ∩ Z) 6 C ′(|A|+ |f |)1/M

for some M by Lojasiewicz’ inequality, and hence ΦMn is in the ideal
(A)+(f) by the usual Briançon-Skoda theorem in the ambient space. Thus
φMn ∈ a and therefore φMn` ∈ a`. Thus aMn` ⊂ a`.

>From Theorem 1.1 (ii) we get:

Corollary 1.2. — If

(1.10) codimZr > m+ 1 + r, r > 0,

then (1.8) implies that φ ∈ a` for any a with m generators.

Assume that (1.10) holds for m = 1. The conclusion for ` = 1 then
is that each weakly holomorphic function is indeed holomorphic, i.e. Z
(or equivalently OZ) is normal. In fact, if φ is weakly holomorphic, i.e.
holomorphic on Zreg and locally bounded, then it is meromorphic, so φ =
g/h for some g, h ∈ OZ . The boundedness means that |g| 6 C|h| and
by the corollary thus φ is in OZ . One can check that (1.10) with m = 1
is equivalent to Serre’s condition for normality of the local ring OZ and
therefore both necessary and sufficient.

The basic tool in our proof is the residue calculus developed in [4], [10],
and [9], and we recall the necessary material in Section 2. Given an ideal
sheaf J one can associate a current R such that a holomorphic function
φ is in J as soon as φR = 0. We use such a current Ra,` associated with
the ideal a`. For ` = 1 it is the current of Bochner-Martinelli type from [4],
whereas for ` > 1 we use a variant from [5]. Since we are to prove the
membership on Z rather than on some ambient space, thinking of Z as
embedded in some Cn, we will also use a current RZ associated to the
radical ideal I of the embedding. For the analysis of this current we rely
on results from [8], described in Section 3. It turns out that one can form
the “product” Ra,` ∧RZ such that φRa,` ∧RZ only depends on the values
of φ on Z; moreover, if the hypotheses in Theorem 1.1 are fulfilled then
it vanishes (Proposition 4.1), which in turn implies that φ belongs to the
ideal a modulo I. In the last section we present an integral formula that
provides an explicit representation of the membership.

ANNALES DE L’INSTITUT FOURIER
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2. Currents obtained from locally free complexes

Let

(2.1) 0→ EN
fN−→ EN−1

fN−1−→ · · · f2−→ E1
f1−→ E0 → 0

be a generically exact holomorphic complex of Hermitian vector bundles
over a complex manifold X, say a neighborhood of the origin in Cn. We
assume that E0 is a trivial line bundle so that O(E0) = O. There is an
associated complex, like (1.4), of (locally) free sheaves of O-modules, and
we let J = f1O(E1) ⊂ O be the ideal sheaf generated by (the entries in)
f1. Let Z be the analytic set where (2.1) is not pointwise exact. In X r Z

we let σk be the section of Hom(Ek−1, Ek) that vanishes on the orthogonal
complement of the pointwise image of fk and is the minimal left inverse
of fk on the image of fk. If E = ⊕Ek, f = ⊕fk, and σ = ⊕σk, then
σf + fσ = I, where I is the identity on E. Since E0 is trivial we identify
Hom(E0, E) with E. Following [10], in X r Z we define the form-valued
sections

(2.2) u =
N∑
k=1

uk, uk = (∂̄σk) · · · (∂̄σ2)σ1,

of E. If ∇f = f− ∂̄ we have that ∇fu = 1. It turns out that u has a current
extension U to X as a principal value current: If F is a tuple of holomorphic
functions such that F = 0 on Z, then |F |2λu has a current-valued analytic
continuation to Reλ > −ε and U is the value at λ = 0. Alternatively
one can take a smooth approximand of the characteristic function χ for
[1,∞), and let χδ = χ(|F |2/δ2). Then U is the weak limit of χδu when
δ → 0, see, e.g. the proofs of Theorems 16 and 21 in [23]. In this paper
the latter definition will be more convenient. Clearly ∇f also operates on
currents, and

(2.3) ∇fU = 1−R,

where R is a residue current with support on Z; more precisely R =
limδ→0 R

δ, where

Rδ = Rδ0 +Rδ1 +Rδ2 + · · · = (1− χδ) + ∂̄χδ ∧ u1 + ∂̄χδ ∧ u2 + · · · ;

notice that Rδk is an Ek-valued (0, k)-current.
A basic observation is that the annihilator sheaf, annR, of R is contained

in the sheaf J , i.e.

(2.4) annR ⊂ J .

TOME 60 (2010), FASCICULE 2
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In fact, if φ ∈ O and φR = 0, then by (2.3), ∇f (φU) = φ − φR = φ. By
solving a sequence of ∂̄-equations, which is always possible locally at least,
we get a holomorphic solution ψ ∈ O(E1) to f1ψ = φ, which means that
φ is in the ideal J . One can also prove (2.4) by an integral formula that
gives an explicit realization of the membership of φ in J , see Section 5.

In general the converse inclusion is not true. However, if the associated
sheaf complex is exact, i.e. a resolution of O/J , then indeed annR = J
(Theorem 1.1 in [10]).

Example 2. — Let a1, . . . , am be holomorphic functions in X. Choose
a nonsense basis {e1, . . . , em} and consider E1 = sp{ej} as a trivial vector
bundle of rank m, let e∗j be the dual basis, and consider a = a1e

∗
1 + · · · +

ame
∗
m as a section of the dual bundle E∗1 . If Ek = ΛkE1 we then get

a complex (2.1), the Koszul complex, with the mappings fk as interior
multiplication δa with a. Following the recipe above (with the trivial metric
on the Ek) we get, cf. [10] Example 1, the corresponding form

ua =
m∑
k=1

(
∑m
j=1 ājej) ∧ (

∑m
j=1 ∂̄āj ∧ ej)k−1

|a|2k
(2.5)

outside {a = 0} and the associated residue current Ra = limδ→0 R
a,δ where

Ra,δ = (1 − χδ) + ∂̄χδ ∧ ua and χδ = χ(|a|2/δ2). This current of so-called
Bochner-Martinelli type was introduced already in [22], and its relation to
the Koszul complex and division problems was noticed in [4]. Now (2.4)
means that

(2.6) annRa ⊂ (a).

Except for the case when a is a complete intersection, in which case the
Koszul complex provides a resolution of O/(a), the inclusion (2.6) is strict,
see [28] and [18]. Nevertheless, the singularities of Ra reflect the charac-
teristic varieties associated to the ideal, see [18] and [7], which are closely
related to the integral closure of powers of (a), and therefore Ra is well
suited for the Briançon-Skoda theorem.

A slight modification of the Koszul complex, derived from the so-called
Eagon-Northcott complex, with associated ideal sheaf J = (a)`, was intro-
duced in [5]. The associated form ua,` is a sum of terms like

āI1 · · · āI` ∂̄āI`+1 ∧ · · · ∧ ∂̄āIk+`−1

|a|2(k+`−1) , k 6 m,

see the proof of Theorem 1.1 in [5] for a precise description of ua,` and
the corresponding residue current Ra,`. It turns out that φ annihilates Ra,`

ANNALES DE L’INSTITUT FOURIER
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if (1.1) holds, and thus φ ∈ (a)`, so the classical Briançon-Skoda theo-
rem follows. The most expedient way to prove this annihilation is to use
a resolution of singularities where a is principal. However, it is not really
necessary to define the current Ra,` in itself; it is actually enough to make
sure that φRa,`,δ → 0 when δ → 0, and this can be proved essentially by in-
tegration by part in an ingenious way, thus providing a proof of the classical
Briançon-Skoda theorem by completely elementary means, see [27].

In [9] was introduced the sheaf of pseudomeromorphic currents, PM. It
is closed under ∂̄ and multiplication with smooth forms. In particular, the
currents U and R are pseudomeromorphic. The following fact (Corollary 2.4
in [9]) will be used repeatedly.

Proposition 2.1. — If T ∈ PM has bidegree (r, k) and the support
of T is contained in a variety of codimension strictly larger than k, then
T = 0.

In particular, this means that if Z (the variety where (2.1) is not point-
wise exact) has codimension p then R = Rp +Rp+1 + · · · .

As mentioned in the introduction, we need to form products of currents
associated to complexes as in [2]. Assume therefore that (O(Eg•), g•) and
(O(Eh• ), h•) are two complexes as above and I and J are the corresponding
ideal sheaves. We can define a complex (2.1) with

(2.7) Ek =
⊕
i+j=k

Egi ⊗ E
h
j ,

and f = g + h, or more formally, f = g ⊗ IEh + IEg ⊗ h, such that

(2.8) f(ξ ⊗ η) = gξ ⊗ η + (−1)deg ξξ ⊗ hη.

Notice that E0 = Eg0 ⊗ Eh0 = C and that f1O(E1) = I + J . One can
extend (2.8) to form-valued or current-valued sections ξ and η and deg ξ
then means total degree. It is natural to write ξ ∧ η rather than ξ ⊗ η, and
we define η ∧ ξ as (−1)deg ξ deg ηξ ∧ η. Notice that

(2.9) ∇f (ξ ⊗ η) = ∇gξ ⊗ η + (−1)deg ξξ ⊗∇hη.

Let ug and uh be the corresponding Eg-valued and Eh-valued forms,
cf. (2.2). Then u = uh ∧ug is an E-valued form outside Zg ∪Zh. Following
the proof of Proposition 2.1 in [9] we can define E-valued pseudomeromor-
phic currents

Rh ∧Rg = lim
δ→0

Rh,δ ∧Rg, Uh ∧Rg = lim
δ→0

Uh,δ ∧Rg,

TOME 60 (2010), FASCICULE 2
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where Uh,δ = χδu
h and Rh,δ = 1 − χδ + ∂̄χδ ∧ uh, and χδ = χ(|H|2/δ2)

as before. The “product” Rh ∧ Rg so defined is not equal to Rg ∧ Rh in
general. It is also understood here that H only vanishes where it has to,
i.e. on the set where the complex (Eh• , h•) is not pointwise exact. If we use
an H that vanishes on a larger set, the result will be affected. It is worth
to point out that a certain component Rhk ∧Rg may be nonzero even if Rhk
itself vanishes.

Proposition 2.2. — With the notation above we have that

(2.10) ∇f (Ug + Uh ∧Rg) = 1−Rh ∧Rg.

Moreover, φRh ∧Rg = 0 implies that φ ∈ I + J .

Proof. — Recall that ∇hUh,δ = 1−Rh,δ, ∇gUg = 1−Rg and ∇gRg = 0.
Therefore,

∇f (Ug + Uh,δ ∧Rg) = 1−Rg + (1−Rh,δ) ∧Rg = 1−Rh,δ ∧Rg.

Taking limits, we get (2.10). The second statement now follows in the same
way as (2.4) above. �

3. The residue current associated to the variety Z

Consider a subvariety Z of a neighborhood of the origin in Cn with
radical ideal sheaf I and let (1.4) be a resolution of O/I. Let RZ be the
associated residue current obtained as in the previous section. We then
know that RZ has support on Z and that annRZ = I. Outside the set Zk,
cf. Section 1, the mapping fk has constant rank, and hence σk is smooth
there. Outside Zk we therefore have that

(3.1) RZk+1 = αk+1R
Z
k

where αk+1 = ∂̄σk+1 is a smooth Hom(Ek, Ek+1)-valued (0, 1)-form,
cf. (2.2).

Locally on Zreg, the current RZ is essentially the integration current [Z].
We have the following more precise statement that gives a Dolbeault-
Lelong-type representation, in the sense of [12], of the current RZ . Let
χ be a smooth regularization of the characteristic function of [1,∞) and
p = codimZ as before.

Proposition 3.1. — For each given x ∈ Zreg, there is a hypersurface
{h = 0} in Z, avoiding x but containing Zsing and intersecting Z properly,

ANNALES DE L’INSTITUT FOURIER
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and Ek-valued (n− p, k − p)-forms βk, smooth outside {h = 0}, such that

RZk .(dz ∧ ξ) = lim
ε→0

∫
Z

χ(|h|/ε)βk ∧ ξ, ξ ∈ D0,n−k(X),

for p 6 k 6 n. Moreover, in a suitable resolution π : Z̃ → Z the forms βk
locally have the form αk/mk, where αk are smooth and mk are monomials.

Here, dz = dz1 ∧ · · · ∧ dzn.
Proof. — Following Section 5 in [8] (the proof of Proposition 2.2) one can

find, for each given x ∈ Zreg, a holomorphic function h such that h(x) 6= 0
and h does not vanish identically on any component of Zreg. Moreover, for
k > p,

RZk = γky[Z],
where γk is an Ek-valued and (0, k− p)-form-valued (p, 0)-vector field that
is smooth outside {h = 0}, see [8]. Let ξ be a test form of bidegree (0, n−k).
The current RZ has the so-called standard extension property, SEP, see [9]
Section 5, which means that

RZk .(ξ ∧ dz) = lim
ε→0

∫
χ(|h|/ε)γky[Z] ∧ ξ ∧ dz = ± lim

ε→0

∫
Z

χ(|h|/ε)ξ ∧ γkydz.

Thus we can take βk = ±γkydz.
More precisely, according to the last paragraph of Section 5 in [8], γp

is a meromorphic (p, 0)-field (with poles where h = 0) composed by the
orthogonal projection of Ep onto the orthogonal complement in Ep of the
pointwise image of fp+1. This projection is given by

IEp − fp+1σp+1.

Furthermore, cf. (3.1),

γk = (∂̄σk) · · · (∂̄σp+1)γp
for k > p. Now choose a resolution of singularities Z̃ → Z such that for each
k the determinant ideal of fk is principal. On Z̃, then each σk (locally) is a
smooth form over a monomial, see Section 2 in [10], and thus βk = γkydz
has this form as well. �

We can choose the resolution of singularities Z̃ → Z so that also h̃ = π∗h

is a monomial. By a partition of unity it follows that RZk .(dz ∧ ξ) is a finite
sum of terms like

(3.2) lim
ε→0

∫
s

χ(|h̃|/ε) ds1 ∧ · · · ∧ dsν
sα1+1

1 · · · sαν+1
ν

∧ ξ̃ ∧ ψ,

where s1, . . . , sn−p are local holomorphic coordinates and ν 6 n − p,
ξ̃ = π∗ξ, and ψ is a smooth form with compact support. It is easily checked

TOME 60 (2010), FASCICULE 2
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that this limit is the tensor product of the one-variable principal value cur-
rents dsi/sαi+1

i , 1 6 j 6 ν, acting on ξ̃ ∧ ψ. Therefore (3.2) is equal to (a
constant times)

(3.3)
∫
ds1 ∧ · · · ∧ dsν

s1 · · · sν
∧ ∂αs (ξ̃ ∧ ψ),

if ∂αs = ∂α1
s1
· · · ∂ανsν .

4. Proof of Theorem 1.1

To prove Theorem 1.1 we are going to apply the idea in Example 2 but
performed on Z. To this end we assume that Z is embedded in Cn and we
let RZ be the current introduced in the previous section. Let a = (a) be the
ideal in OZ and suppose for the moment that a also denotes representatives
in O of the generators. If Ra,` = limδ→0 R

a,`,δ denotes the current from
Example 2 we can form, cf. the end of Section 2, the product

Ra,` ∧RZ = lim
δ→0

Ra,`,δ ∧RZ .

Since RZ annihilates I it follows that Ra,` ∧RZ only depends on a ⊂ OZ .
For the same reason, φRa,` ∧RZ is well-defined for φ ∈ OZ . We know from
Proposition 2.2 that φ belongs to a if it annihilates this current, and thus
Theorem 1.1 follows from the following proposition.

Proposition 4.1. — If the hypotheses of Theorem 1.1 are fulfilled i.e.
either (1.6), or (1.8) together with the geometric conditions (1.7), then
φRa,` ∧RZ = 0.

Remark 2. — It is natural to try to use the Lelong current [Z] rather
than RZ . There is, see [1] Example 1, a holomorphic Ep-valued form ξ

such that [Z] = ξ · RZp . Thus the hypotheses in Theorem 1.1 imply that
φRa ∧ [Z] = 0. However, this in turn does not imply that φ is in (a).

In fact, if m = 1 so that a is one single function, then

0 = φRa ∧ [Z] = φ∂̄
1
a
∧ [Z],

and this means that φ/a is in the sheaf ω0
Z introduced by Barlet, see

e.g. [15], and this class is wider than OZ in general.

Proof of Proposition 4.1. — We first assume that (1.7) and (1.8) hold.
Considering φRa,` as an intrinsic current on the submanifold Zreg (cf. the
beginning of this section) it follows from the residue proof of the Briançon-
Skoda theorem in the regular case that φRa,` must vanish on Zreg since (1.8)
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holds. Thus, φRa,`∧ [Z] vanishes on Zreg and so, in view of Proposition 3.1,
it follows that the support of φRa,`∧RZ is contained in Zsing. On the other
hand it is readily verified that Ra,` ∧RZ must vanish if a is nonvanishing.
Thus the support of φRa,` ∧RZ is contained in Zsing ∩ Za.

The current Ra,` has (maximal) bidegree (0,m) and hence Ra,`∧RZp has
(maximal) bidegree (0,m+ p). Since it has support on Zsing ∩Za that has
codimension > p+m+ 1 by (1.7), it follows that φRa,` ∧RZp = 0. Outside
Zp+1 we have that RZp+1 = αp+1R

Z
p for a smooth form αp+1, and hence

φRa,` ∧RZp+1 = φRa,` ∧ αp+1R
Z
p = αp+1φR

a,` ∧RZp = 0

there. Thus φRa,` ∧RZp+1 has support on Zp+1 ∩ Za, and again for degree
reasons we find that φRa,` ∧ RZp+1 = 0. Continuing in this way we can
conclude that φRa,` ∧RZ = 0.

We now assume that (1.6) holds. We have to prove that RZ .(dz∧ ξ)→ 0
when δ → 0, for

(4.1) ξ = φRa,`,δ ∧ η,

with test forms η of bidegree (0, ∗). In view of the comments after the proof
of Proposition 3.1 it is enough to prove that each term (3.3) tends to zero
if (1.6) holds and µ is large enough (independently of (a) and `). For this
particular term we will see that we need µ > µ0, where

(4.2) µ0 = |α|+ 2 min(m,n− p).

For simplicity we omit all snakes from now on and write φ rather than φ̃

etc. Moreover, we assume that ` = 1, the general case follows completely
analogously. Since Z̃ is smooth, by the usual Briançon-Skoda theorem we
have that

(4.3) φ ∈ (a)|α|+min(m,n−p)+1.

Notice that

Ra,δk = χ′(|a|2/δ2) ∧ ∂̄|a|
2

δ2 ∧ u
a
k, k > 0,

and thus Ra,δk is a sum of terms like

χ′
∂̄āI1 ∧ · · · ∧ ∂̄āIk

δ2|a|2k
āa ∧ ω

for |I| = k, where in what follows ar denotes a product of r factors ai,
and similarly with ār, and ω denotes a smooth form. For degree reasons
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k 6 ν = min(m,n− p). In view of (4.3) therefore φRa,δk is a sum of terms
like

χ′
∂̄āI1 ∧ · · · ∧ ∂̄āIν

δ2|a|2ν
āa2+ν+|α| ∧ ω

plus lower order terms. A straight forward computation yields that
∂αs (φRa,δk ) is a finite sum of terms like

χ(r+1) ∂̄āI1 ∧ · · · ∧ ∂̄āIν
δ2(r+1)|a|2(ν+|γ|−r) ā

1+|γ|a2+ν+|γ| ∧ ω,

where γ 6 α and r 6 |γ|, plus lower order terms.
We thus have to see that each

(4.4)
∫
s

ds1 ∧ · · · ∧ dsν
s1 · · · sν

χ(r+1) ∂̄āI1 ∧ · · · ∧ ∂̄āIν
δ2(r+1)|a|2(ν+|γ|−r) ā

1+|γ|a2+ν+|γ| ∧ ω

tends to 0 when δ → 0. After a suitable further resolution we may assume
that locally a = a0a

′ where a0 is holomorphic and a′ is a non-vanishing
tuple. Then

∂̄āI1 ∧ · · · ∧ ∂̄āIν = āν−1
0 ∧ ω.

Also notice that the expression

(4.5) ds1 ∧ · · · ∧ dsν
s1 · · · sν

becomes a sum of similar expressions in this new resolution. Altogether we
end up with a finite sum of terms like∫

s

ds1 ∧ · · · ∧ dsν
s1 · · · sν

χ(r+1)(|a|2/δ2) ∧ O(1),

and each such integral tends to zero by dominated convergence.
The term corresponding to Ra,δ0 = 1− χ(|a|2/δ2) is handled in a similar

but easier way. �

5. Integral representation of the membership

Finally we describe how one can obtain an explicit integral represen-
tation of the membership provided that the residue is annihilated. The
starting point is the formalism in [3] to generate integral representations
for holomorphic functions. Let δη denote interior multiplication with the
vector field

2πi
n∑
1

(ζj − zj)
∂

∂ζj
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and let ∇η = δη − ∂̄. A smooth form g = g0 + g1 + · · · + gn, where gk
has bidegree (k, k), is called a weight (with respect to z) if ∇ηg = 0 and
g0(z, z) = 1. Notice that the product of two weights is again a weight.

Example 3. — Let χ be a cutoff function that is identically 1 in a
neighborhood of the closed unit ball, and let

s = 1
2πi

∂|ζ|2

|ζ|2 − ζ̄ · z
.

Then ∇ηs = 1− ∂̄s and therefore

g = χ− ∂̄χ ∧ [s+ s ∧ ∂̄s+ · · ·+ s ∧ (∂̄s)n−1]

is a weight with respect to z for each z in the ball, with compact support,
and it depends holomorphically on z.

If g is a weight with compact support and z is holomorphic on the sup-
port, then

φ(z) =
∫
gφ =

∫
gnφ.

Now consider a complex like (2.1) in Section 2, defined in a neighborhood
of the closed ball, and let Uδ and Rδ be the associated E-valued forms. One
can find, see [6] Proposition 5.3, holomorphic E∗k-valued (k, 0)-forms H0

k

and Hom(Ek, E1)-valued (k−1, 0)-forms H1
k such that δηH0

k = H0
k−1fk(ζ)−

f1(z)H1
k and Hjj = IdEj . Using that ∇fUδ = 1−Rδ one verifies that

f1(z)HUδ +HRδ = 1−∇η
(∑

H0
kU
δ
k

)
,

where
HU δ =

∑
H1
kU
δ
k , HRδ =

∑
H0
kR
δ
k.

It follows that gδ := f1(z)HU δ + HRδ is a weight with respect to z. If g
is, e.g. the weight from Example 3 we thus get the representation

φ(z) =
∫
gδ ∧ gφ = f1(z)

∫
HU δ ∧ gφ+

∫
HRδ ∧ gφ.

Taking limits we obtain the interpolation-division formula

(5.1) φ(z) = f1(z)
∫
HU ∧ gφ+

∫
HR ∧ gφ.

To be precise, the integrals here are the action of currents on smooth forms.
In particular, (5.1) implies that φ belongs to the ideal generated by f1 if
φR = 0.
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If we now choose as our complex the resolution of the sheaf I = IZ , we
get the formula

φ(z) =
∫
g ∧HZRZφ, z ∈ Z,

for φ ∈ OZ . We then replace g by the weight ga,`,δ ∧ g, where

ga,`,δ = a(z)` ·Ha,`Ua,`,δ +Ha,`Ra,`,δ;

here a(z)` denotes the first mapping in the complex associated with (a)`,
cf. Example 2, so that its entries are elements in the ideal (a)`. We get

φ(z) = a(z)` ·
∫
ζ

HaUa,`,δ ∧HZRZφ ∧ g +
∫
ζ

HaRa,`,δ ∧HZRZ ∧ gφ.

If the hypotheses in Theorem 1.1 are fulfilled, since HZ , Ha and g are
smooth, the second integral tends to zero when δ → 0, and the first integral
on the right hand side converges to an Ea,`1 -valued holomorphic function.
Thus we get the explicit representation

φ(z) = a(z)` ·
∫
ζ

HaUa,` ∧HZRZφ ∧ g

of the membership.
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