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TENSOR PRODUCT THEOREM FOR HITCHIN PAIRS
— AN ALGEBRAIC APPROACH

by V. BALAJI & A.J. PARAMESWARAN (%)

ABSTRACT. — We give an algebraic approach to the study of Hitchin pairs
and prove the tensor product theorem for Higgs semistable Hitchin pairs over
smooth projective curves defined over algebraically closed fields of characteristic
zero and characteristic p, with p satisfying some natural bounds. We also prove the
corresponding theorem for polystable Hitchin pairs.

RESUME. On donne une approche algébrique a ’étude des paires de Hit-
chin et on démontre le théoréme du produit tensoriel pour des paires de Hitchin
semistables sur les courbes projectives lisses définies sur un corps algébrique clos
de caractéristique nulle ou bien de caractéristique p, ou p désigne un nombre pre-
mier borné. On démontre aussi un théoréme similaire pour des paires de Hitchin
polystables.

1. Introduction

Let X be a smooth projective curve over an algebraically closed field k.
When the ground field & is C, the notion of a Hitchin pair is due to Nigel
Hitchin. In ([9], [10]) he proves the basic theorem that the category of
semistable Hitchin pairs of degree 0 is equivalent to the category of com-
plex GL(n) representations of the fundamental group 71 (X). One of the
fundamental consequences of this correspondence is that the tensor prod-
uct of two semistable Hitchin pairs of degree 0 is again semistable. The
Kobayashi-Hitchin correspondence in the setting of Hitchin pairs has been
generalized and extended in a number of ways starting with the far reaching
one by C. Simpson ([26], [27]). Simpson develops the more general objects
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2362 V. BALAJI & A.J. PARAMESWARAN

which he terms A-modules. This gives differential geometric proofs of the
tensor product theorem for Hitchin pairs as well as for objects such as A-
modules. In ([4]) Biswas and Schumacher prove similar results for stable
Higgs sheaves over arbitrary Kahler manifolds.

For the classical case of semistable bundles the tensor product theorem
is usually derived as a consequence of the Narasimhan-Seshadri theorem
or by using the usual Kobayashi-Hitchin correspondence. The first purely
algebraic proof of the tensor product theorem is due to Bogomolov ([5])
and little later by Gieseker([7]) using very different methods. The third
approach due to Ramanan and Ramanathan ([20]) has the advantage of
being amenable to generalizations to the positive characteristic case as
well (cf. [11] and [1]).

The aim of this paper is to give algebraic proofs of the tensor product
theorem for Hitchin pairs over ground fields of all characteristics. Towards
this, we need to first develop a purely algebraic notion of Hitchin schemes,
an object dual in a certain sense to a Hitchin pair. This is indispensable for
the algebraic proof since the standard methods of proof for usual principal
bundles do not apply for the setting of principal Hitchin pairs; the Higgs
structure datum has to be suitably incorporated in the algebraic setting.
In the present paper, our approach, following Nori ([19]), is a Tannakian
one and the notions of “associated” Hitchin schemes (analogous to “asso-
ciated fibrations” to principal bundles) and geometric Higgs sections arises
naturally.

We then use this new machinery for our purposes, along with a suitable
modification of the invariant theoretic ideas due to Bogomolov ([5]) and
Ramanan-Ramanathan ([20]). In positive characteristics we use the results
due to Kirwan ([13]) and Hesselink ([8]) synthesized with the methods of
Ramanan-Ramanathan. This is absolutely essential in the setting of Hitchin
pairs since the reduction of structure group to the Kempf-Rousseau para-
bolic, which is key to proof of the main theorem, is realizable geometrically
only if we employ Kirwan’s stratification. Representation theoretic bounds
such as low heights (see [11]) come up as expected when we work in char p
(see Theorem 8.14). In characteristic zero we generalize Bogomolov’s ap-
proach to the setting of Hitchin pairs and give a different proof of the main
theorem; we do this for its sesthetic elegance. For generalizing Bogomolov’s
results, we find the exposé due to Rousseau ([22]) just the right one and we
use it freely. It would be very interesting to compare these two methods of
proof since Bogomolov also provides a stratification of the unstable locus
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TENSOR PRODUCT THEOREM 2363

(as does Kirwan) and defines the concept of a model which is in a sense
“universal” for instability.

A word about the central principle which underlies these “algebraic”
proofs of tensor product theorems. The idea is to connect the concepts
of Higgs semistability of G-Hitchin pair (F,0) (see Definition 4.10) with
that of Bogomolov stability of Higgs sections of associated Hitchin pairs
(E(V),0y) via a representation G — GL(V) (see Definition 4.13). Since
we work in the setting of Hitchin pairs, we need to work with Higgs sections
of the associated objects.

The new result that emerges by this approach, apart from the sesthetics
of a purely algebraic proof, are variations in positive characteristics for the
notions of principal Hitchin pairs. We observe that the Frobenius pull-back
is an inconsequential operation for Hitchin pairs and therefore notions such
as strong semistability do not provide anything new in the Higgs setting.
But we show that the bounds (height and separability index) developed in
[11] and [1] are immediately applicable. In the context of the recent work
of Ngb Bao Chéau ([18]) we believe that our approach could be of interest
in positive characteristics (see also [14]). The following theorems are the
main results in the paper:

THEOREM 1.1 (Theorem 7.1, Theorem 8.16). — Let (V1,6;) and (Va, 63)
be two Higgs semistable Hitchin pairs with det(V;) ~ Ox,i = 1,2. Suppose
that the ground field k has characteristic p such that

rank (V1) + rank(V2) < p + 2.
Then the tensor product (V1 ® V2,01 ® 1 +1® 65) is also Higgs semistable.

THEOREM 1.2 (Theorem 9.11). — Let (E,0) be a stable G-Hitchin pair
of degree zero with G semisimple and p: G — SL(M) be a representation.

Let (M) be as in (9.2) and Definition 9.3. Suppose that p > g(M).
Then the associated Hitchin pair (E(M),0yr) is polystable.

The layout of the paper is as follows: in Section 2 we develop the gen-
eralities about Hitchin pairs and define the concept of a Hitchin scheme.
In Section 3 we study principal G-Hitchin pairs and the associated Hitchin
schemes. Section 4 contains generalization of Bogomolov stability of sec-
tions in the Hitchin pair setting. In Section 5 we recall results from the
papers of Kempf, Hesselink, Kirwan and Ramanan-Ramanathan. In Sec-
tion 6 and Section 7 we give an approach following Bogomolov for the proof
of the main theorem in char 0. In Section 8 we prove the main semistability
theorem in positive characteristics with the low height assumptions. In the
last section we prove the theorem on polystability of associated bundles
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2364 V. BALAJI & A.J. PARAMESWARAN

under assumptions that the characteristic p is larger than the low sepa-
rability index of some natural representation spaces (see Remark 9.13 for
some clarifications on earlier papers on this result, which treat bundles
without Higgs structures). The final remarks (Remark 9.16) indicate how
these notions easily generalize to the case when X is a higher dimensional
variety since we work with u-semistability.

Acknowledgements. — We thank Jochen Heinloth, Madhav Nori and
D.S. Nagaraj for some helpful discussions and suggestions. We sincerely
thank the referee for his/her comments and suggestions. They have gone
a long way to clarify the paper. The first author thanks the hospitality of
TIFR and KSOM. The second author thanks the hospitality of CMI and
IMSc.

2. Hitchin pairs, basic facts

Throughout this paper, unless otherwise stated, we have the following
notations and assumptions:

2.1. The category of Hitchin pairs

Let X be a smooth projective curve over k. Let Ll be a locally free Ox-
module.

DEFINITION 2.1. — A $-Higgs structure (or simply a Higgs structure,
since il is fixed) on a locally free Ox-module F is an Ox-module map
0: F — F @M together with the integrability condition § A § = 0, where
ONO: F— F o A2Y).

DEFINITION 2.2. — A Hitchin pair is a locally free Ox-module F which

is equipped with a $1-Higgs structure § and we denote it by (F,0).

Remark 2.3. — The structure sheaf Ox of the base curve X will always
carry the trivial Higgs structure, i.e., the zero map Ox — Ox ® 4l unless
otherwise stated.

DEFINITION 2.4. — The space of Higgs sections of a Hitchin pair (F,0)
is defined to be the space of sections s of the Ox-module F such that
fos=0.

The tensor product of two Hitchin pairs (€, ¢) ® (F,0) has £ ® F as the
underlying bundle and the Higgs structure is defined as

(2.1) PpR1+1R46.
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DEFINITION 2.5. — The dual Hitchin pair is defined as the pair where
(F*,—6"), where F* is the usual dual of F and 6" is defined as follows:
consider the Higgs structure 8: F — F ® il. Taking duals, we get 0*: F* ®
U — F*. Tensor this with ${ to get 1 ® 0*: F* @ (U@ U*) — F* @ i. Now
embed F* — F* ® (U ® U*) using the identity section Ox — Hom(i, i) =
(U@ U*). Composing these maps we get

(2.2) o' F* = Fr ol

The dual Higgs structure is given by taking —0' to be the Higgs structure
on F*.

Remark 2.6. — The sign —6" is given to take care that (F,0)®(F*, —6")
gives (Ox,0) when rank F is 1 (cf. [26, page 14]).

Morphisms of Hitchin pairs are defined as usual, i.e., morphisms of the
Ox-modules compatible with the Higgs structures. We denote by Hitch(X)
the category of Hitchin pairs with the tensor structure, duals and mor-
phisms as described above.

Remark 2.7. — A Higgs section can also be thought of as a Higgs mor-
phism s: Ox — F, where Ox is given the trivial Higgs structure, i.e., the
zero map Ox — 4.

2.2. Hitchin pairs as A-modules

C. Simpson in ([27, Section 2]) gives an equivalent description of Hitchin
pairs; although this is stated under assumptions of characteristic zero, it is
not hard to see that the formalism holds good over positive characteristics
as well. Let A be the Ox-algebra defined by

(2.3) A = Sym(L*).

If « € 4* and if V and W are A-modules, then V ®po, W gets a A-module
structure by the Leibnitz formula
(2.4) a(v®@w) =av) @w+ v alw).

Then we have
LEMMA 2.8 (cf. [27], Lemma 2.13, page 85).
(1) Giving a Higgs structure on an Ox-module F is equivalent to giving
a A-module structure on F.
(2) Morphism of Hitchin pairs are equivalently morphism of Ox-
modules which are simultaneously also A-module maps.

TOME 61 (2011), FASCICULE 6
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(3) We have an equivalence of categories between Hitch(X) and locally
free A-Modules.

Remark 2.9. — In fact, Simpson ([27, Section 2, page 77]) considers
more general objects such as bundles with integrable connections. For ex-
ample, if we take Dx to be the sheaf of differential operators on a smooth
complex curve then we could work with the category of left Dx-modules.

2.3. Hitchin algebras and Hitchin schemes

We work with the category of affine X-schemes. The generalities that we
develop here are essential in the paper.

DEFINITION 2.10. — A Hitchin Ox-algebra is a faithfully flat Ox-
algebra A such that

(1) A gets a A-module structure, i.e., a map
0: A— Ao,

(2) Furthermore, for the natural A-module structure on A ® A, the
multiplication map

A®o, A= A

and the map Ox — A, given by the unit in A, are A-module maps.

A Hitchin X-scheme is an affine X-scheme f: Z — X such that f.(Oz)

gets the structure of a Hitchin Ox-algebra. In particular, for f =idx, the
trivial Higgs structure on Ox gives a Hitchin X -scheme structure on X.

Remark 2.11. — Equivalently (following Beilinson-Drinfeld ([3])), a
Hitchin Ox-algebra is a faithfully flat Ox-algebra in the tensor category of
A-modules. For example, Ox is a Hitchin Ox-algebra and if B is a com-
mutative k-algebra, then B xj Ox is a Hitchin algebra. A word of caution
here: a Hitchin Ox-algebra is not a A-algebra in the usual sense of the term
as can be seen from (2.4).

Let @ denote the category of Hitchin X-schemes. A morphism between
two Hitchin X-schemes is a morphism ¢: Z — Y which preserves the A-
module structure, i.e., the canonical map

(2.5) Z v Y

N
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where ¢ induces a morphism of Ox-algebras ¢.(Oy) — f«(Oz) which
should be also a A-module map.

LEMMA 2.12 (Fibre products in €). — Let Z and T be in €. Then the
fibre product Z xx T is in €.

Proof. — This is clear if one uses (2.4). O

COROLLARY 2.13. — Let ¢: Z — T be a morphism of Hitchin X-
schemes. Let T} C T be a closed Higgs subscheme. Then the inverse image
scheme Z; = ¢~1(Ti) C Z, being a fibre product, is a closed Higgs sub-
scheme of Z.

Remark 2.14. — Let K = k(X) be the function field of X. We observe
that we can define Hitchin algebras over K as follows: let A be a finite

type K-algebra and fix a finite dimensional projective K-module L. Let
A = Sym(U3). A Higgs structure is a map

0: ARk ﬂ} — A.
Furthermore, for the natural A g-module structure on A ® A, the multipli-

cation map
AQg A— A

is a Ag-morphism. A Hitchin scheme over K is Spec(A) for a Hitchin
algebra A over K.

3. Hitchin functors and principal bundles
3.1. Hitchin functors following Nori

Let G be an affine group scheme defined over an algebraically closed
field k. A G-Hitchin functor is a tensor functor F': Rep(G) — Hitch(X)
satisfying Nori’s axioms, namely F is a strict, exact and faithful tensor
functor (cf. [19, page 77]) such that the following diagram commutes:

(3.1) Hitch(X)

F

Rep(G) LI Vect(X)

where the functor forget : Hitch(X) — Vect(X) forgets the Higgs struc-
ture. If V' is a finite dimensional G-module, we will denote the associated
Hitchin pair by F(V'). Note that the data underlying F/(V) is a locally free
sheaf F’(V') together with a Higgs structure on F’(V).

TOME 61 (2011), FASCICULE 6
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Remark 3.1. — Observe that the forget functor is a tensor functor in
this situation and hence by Nori’s observation, the functor F’ canonically
gives rise to a principal G-bundle on X. The aim in this section is to
represent the functor F' by a suitable “Hitchin scheme” which has as its
underlying principal G-bundle the one given by F”.

Let S(X) be the category of quasi-coherent Ox-modules. We extend F'
to a functor
F: {G —mod} — S(X)
as follows: Let M be an arbitrary G-module. Express M as a direct limit
of finite dimensional G-modules

(3.2) M =lim V;
J

now define,

(3.3) F(M) == lim F(V})
J

which realizes F'(M) as a quasi-coherent Ox-module.

Remark 3.2. — The definition of the quasi-coherent sheaf F(M) is in-
dependent of the particular limit chosen.

3.2. Conjugate Higgs structure

We observe that F(M) has a natural Higgs structure as follows: for each
V; we have the Higgs structure given by

(3.4) dyi B(V)) > F(V) @ 4.
Taking limits we get the Higgs structure on F(M). In this situation, we
equip F(M) with the conjugate Higgs structure as follows:

The Higgs structure (3.4) canonically induces on the dual locally free Ox-
module F'(V}) and a Higgs structure ¢;: F(V}*) — F(V}) @ il. Dualizing
@ we get
(3.5) ()" i= j: F(V;) @ U — F(Vj).

Now taking limits and observing that tensor products commutes with
direct limits, we get a map

(3.6) lim ¢; = @: F(M) ® 4" — F(M)
J

ANNALES DE L’INSTITUT FOURIER
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which we term the conjugate Higgs structure on the quasi-coherent mod-
ule F(M). We observe that the induced A-module structure on F(M)
comes from this conjugate Higgs structure and extending it to an action of
Sym(U*).

Remark 3.3. — We note that in the finite dimensional setting, a “conju-
gate Higgs structure” is in reality the “dual” of the “dual Higgs structure”
as defined in Definition 2.5. Note the importance of the signs. This can be
seen above in (3.5) above, where we take the “dual Higgs structure” w/\] on
F (V) and then once more dualize to get ¢; which is the “conjugate Higgs
structure” on F(V;). Taking “duals” works fine in the finite dimensional
setting but since we need the infinite dimensional setting, we need to be
careful. Finally, the A-module structure on a Hitchin pair comes via the
conjugate Higgs structure in this sense.

3.3. Associated Hitchin scheme

We have a natural extension of the functor F' to the category of affine
G-schemes:

Hp: {affine G-schemes} — {affine X-schemes}.

To see this, let Z = Spec(k[Z]). Then k[Z] is a (possibly) infinite dimen-
sional G-module and also the multiplication map k[Z] ® k[Z] — k[Z] along
with the tensor axiom for F' give the sheaf F(k[Z]) the structure of an
Ox-algebra. This defines a X-scheme j: Hp(Z) — X where

(3.7) Hr(Z) := Spec(F(k[Z))

and further we can identify j.(Oy,(z)) = F(k[Z]) as an Ox-algebra.

Let F be a Hitchin functor and let Z = Spec(k[Z]) be an affine G-scheme.
Then since j,(Oy (7)) = F(k[Z]) we have the canonical conjugate Higgs
structure on the Ox-algebra F'(k[Z]), (i.e., a Ox-module morphism)

(3.8) nz: F(k[Z]) @ & — F(k[Z]).
Again, the multiplication map k[Z] ® k[Z] — k[Z] along with the ten-
sor axiom for F' give the Ox-algebra F(k[Z]) the structure of an Hitchin

Ox-algebra. This therefore gives the structure of a Hitchin X-scheme on
Hp(Z), which we denote by (Hr(Z),nz).

DEFINITION 3.4. — The Hitchin X-scheme (Hp(Z),nz) is called the
associated Hitchin scheme to the Hitchin functor F.

TOME 61 (2011), FASCICULE 6
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3.4. Geometric Higgs section

Recall that a section of the fibration Hr(Z) is a X-morphism s: X —
Hr(Z) which is given by an Ox-algebra morphism s: F(k[Z]) — Ox.

DEFINITION 3.5. — We say that s: X — (Hp(Z),nz) is a geometric
Higgs section of the associated Hitchin scheme (Hp(Z),nz) if further the
composite:

(3.9) son: F(k[Z]) @ & — F(k[Z]) — Ox

Remark 3.6. — Equivalently, s: F(k[Z]) — Ox is a Hitchin Ox-algebra
morphism. In other words, s is a section in the category €.

We will denote by £(V') the image Fr(V) as a locally free Ox-module
and (£(V), 0y ) the associated Hitchin pair. While viewing the G-module V/
as an affine scheme we will use the notation

(3.10) V = Spec(Sym(V™*)).
The associated geometric fibre space is denoted by E(V).

Remark 3.7. — Recall that E(V) is the geometric vector bundle in the
sense of Grothendieck.

PROPOSITION 3.8. — A Higgs section (see Definition 2.4) of the Hitchin
pair (E(V),0y) gives a geometric Higgs section of the associated Hitchin
scheme (E(V),ny) and conversely.

Proof. — By the functorial property of the symmetric algebra, an Ox-
module map Ox — &(V) canonically gives rise to an Ox-algebra map
Sym(E(V*)) — Ox i.e., an Ox-algebra map F(k[V]) — Ox and conversely.

We need only observe that the Higgs section property is also preserved.
But this can be formulated as A-structures and morphisms which pre-
serve this structure. Therefore, by the functorial property of the sym-
metric algebra, a A-module map Ox — &£(V) canonically gives rise to a
Hitchin Ox-algebra map Sym(E(V*)) — Ox i.e., a Hitchin Ox-algebra map
F(k[V]) — Ox and conversely. This takes care of the Higgs property. [

3.5. Principal Hitchin pairs

We now define principal Hitchin pairs and show the representability of a
G-Hitchin functor by a principal Hitchin pair.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 3.9. — A principal G-Hitchin pair j: E — X is a principal
G-bundle together with the structure of an associated Hitchin scheme on
E, i.e., a conjugate Higgs structure on the Ox-algebra j.(Og), viz

(3.11) n: J+(Op) @ U = j.(Op).

Furthermore, j.(Og) gets the structure of a Hitchin Ox-algebra. In other
words, E — X is a principal G-object in the category €.

Denote the principal G-Hitchin pair by the pair (E, 7).

Remark 3.10. — Giving a principal G-Hitchin pair (E,n) gives the
structure sheaf O of the underlying scheme E a structure of j*(A)-module.
This comes by taking j*(n) for the n in (3.11). This firstly gives a Higgs
structure for the locally free sheaf j*(1*) which then extends to a j*(A)
structure on Og.

THEOREM 3.11. — A principal G-Hitchin pair E canonically defines a
Hitchin functor

(3.12) Fg: Rep(G) — Hitch(X).

Conversely, let F' be a Hitchin functor. Then there exists a principal
Hitchin pair E unique up to unique isomorphism such that there is a tensor
equivalence of functors F ~ Fg.

Proof. — In [19, Proposition 2.9], Nori proves this theorem for a tensor
functor F': Rep(G) — Vect(X) i.e., without the Higgs structures. Observe
that we have an equivalence of categories Hitch(X) ~ {A — mod }. The
point to note is that taking direct limits commutes with the A-module
structure. The representing torsor F in the category of principal bundles
(obtained in Nori’s theorem) has the property that the associated locally
free Ox-modules £(V') are A-modules as well. Further, the tensor structure
on Image(Fg) coupled with the Higgs structure gives F g (k[G]) or equiva-
lently j.(Og), the structure of a Hitchin Ox-algebra and we are done.

Conversely, let E be a principal G-Hitchin pair. Let V' € Rep(G) be a
finite dimensional G-module. Then we need to show that the associated
vector bundle £(V) is a Hitchin pair and this association is functorial.

By [19, Lemma 2.6], we have a functorial isomorphism of G-sheaves:

The trivial sheaf Vi gets the obvious structure of a j*(A)-module on Og
(see Remark 3.10). Let 6: j*(E(V)) ® j*(U*) — 7*(£(V)) be the induced
conjugate Higgs structure. Then by the projection formula, this structure

TOME 61 (2011), FASCICULE 6
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descends the structure of a A-module on £(V'). This A-module structure is
clearly functorial and proves the converse. g

Remark 3.12. — Let G be a connected semisimple algebraic group. We
recall that when the ground field is the field of complex numbers, C. Simp-
son has defined a principal Hitchin pair, or a principal Higgs bundle as
a principal G-bundle together with a section § € H°(E(g) ® Q%) with
the integrability conditions. We remark that this definition is equivalent to
giving a G-Hitchin functor and this can be seen as follows.

Let g be a semisimple Lie algebra over C. Then the category of Lie
algebra modules g — gl(V') is a neutral Tannaka category and can be seen
to recover back the group G. This is in a sense the “infinitesimal Tannakian
construction” as done for example in [17, Proposition 6.11].

We carry over this formalism to the setting of Hitchin functors. Given a
Hitchin functor F': Rep(G) — Hitch(X) let p: G — GL(V) be an object
in Rep(G). Then for every V, we have a Hitchin pair

Oy : Ox — F(V)* ®F(V) ® U
or equivalently a section 0y € HY(F(gl(V)) ® 4). These sections have
the naturality with respect to the tensor structure on Rep(G) and by the
“infinitesimal picture” mentioned above, we get the required section 6 €
HO(F(g) @ 4)).

Conversely, given (E, 0) as in Simpson, for every p: G — GL(V) consider
the induced differential dp: g — gl(V'). This induces an Ox-module map:
0: Ox — E(g) @ 4 — (E(gl(V)) @ Y))

which gives 6y € HO(E(gl(V)) ® i) or equivalently a Hitchin functor.

Remark 3.13. — From now on because of the equivalence F' ~ Fg, we
will denote the associated Hitchin scheme by (E(Z),nz) and the sheaf
F(k[Z]) simply by E(k[Z]).

3.6. Associated maps

Let (E,n) be a G-Hitchin pair. A geometric Higgs section s: X —
(E(Z),nz) of the associated Hitchin scheme can therefore be viewed as
a map

t: E(k[Z])) — Ox
of Ox-algebras such that the composite

(3.14) tony: E(k[Z]) @ 4" — E(k[Z])) = Ox

ANNALES DE L’INSTITUT FOURIER
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is zero. Note that we give as always Ox the trivial Higgs structure.

Remark 3.14. — On the algebra k[Z] the conjugate Higgs structure is
nothing but the Higgs structure on the restricted dual of k[Z], viz, taking
the conjugate Higgs structure on the finite dimensional modules and taking
the limit of the duals gives the restricted dual.

We have the following central fact:

PROPOSITION 3.15. — Let (E,n) be a G-Hitchin pair. Let Z and T be
two affine G-schemes and let ¢: Z — T be a G-map. Then ¢-induces a map
of associated Hitchin schemes E(¢): (E(Z),nz) — (E(T),nr). Further, a
geometric Higgs section s: X — (E(Z),n) gets mapped to a geometric
Higgs section E(¢) os: X — (E(T),nr).

Proof. — The map ¢ induces a map of G-modules

(3.15) ¢*: k[T — k[Z].
Now express k[T] as k[T] = lim Vj, where V; are finite dimensional G-

j
modules. Similarly, k[Z] = lim W;. A G-module map ¢* is therefore the

1
data which gives for every j a Wy ;) together with a family of G-module
maps of finite dimensional modules

(3.16) ¢V — W¢(j)

inducing maps of the dual structures on the bundles and associated mor-
phisms of the dual Hitchin pairs

B(V)) @ & —— B(V})
(3.17) l l

E(Wyj)) @ W ——= E(Wy(;))
Now taking limits we get

E(k[T]) ® s — E(k[T))

o

E(k[Z]) @ & — E(k[Z])
The vertical arrow morphism of Ox-algebras

(3.19) E(K[T]) — E(k[Z])
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induces at the scheme level the morphism
(3.20) E(¢): E(Z) — E(T)
and the diagram of sheaves above gives that this is a morphism of associated
Hitchin schemes. This proves the first part of the proposition.

By (3.14) a Higgs section of E(k[Z]) is a map E(k[Z]) — Ox such that
the composite
(3.21) E(k[Z]) @ & — E(k[Z]) — Ox

is zero. Hence by (3.18) we get a diagram

E(k[T)) ® & — E(k[T]) — Ox

w1

E(k[Z]) @ 4" —— E(k[Z]) — Ox

ie., the section F(k[T]) — Ox is induced by the composite E(k[T]) —
E(k[Z]) — Ox.

The commutation of the left half of the diagram immediately implies
that the composite

(3.23) E(K[T)) @ & — B(k[T]) — Ox

is also zero which implies that the E(¢)(s) is also a geometric Higgs section
of the associated Hitchin scheme E(T). O

4. Bogomolov stability of sections

Let k£ be an algebraically closed field of arbitrary characteristic and G a
connected reductive algebraic group.

4.1. Higgs reduction of structure group

Let H C G be a closed subgroup.

DEFINITION 4.1. — A reduction of structure group of a G-Hitchin func-
tor is a factoring of F as follows:

(4.1) Rep(G) —=> Hitch(X)

| A

Rep(H)
where F': Rep(H) — Hitch(X) is a H-Hitchin functor.
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LEMMA 4.2. — Let H C G be a closed subgroup and let (E,0) be a
principal G-Hitchin pair. Let Ey C E be a reduction of structure group of
the underlying G-bundle E to H. Suppose that Ey gets the structure of
a Hitchin X-scheme and the inclusion Fy — FE is a morphism of Hitchin
schemes. Then Eyy is a Higgs reduction of structure group.

Proof. — The proof is formal and follows easily from Theorem 3.11. O

LEMMA 4.3. — Let (E,n) be a principal G-Hitchin pair giving rise to
Fg: Rep(G) — Hitch(X). Let H C G be a closed reductive subgroup.
Giving a Higgs reduction of structure group of Fr to H is equivalent to
giving a Higgs section of the associated Hitchin scheme E(G/H) — X.

Proof. — Let Z be an affine G-scheme. A geometric Higgs section s: X —
(E(Z),nz) of the associated Hitchin scheme can therefore be viewed as a
G-equivariant Higgs X-morphism:

Zx X

(4.2) E

of Hitchin X-schemes F and Z x X where the Hitchin scheme structure on
the product is the one induced from the canonical structure on X. Recall
that X always carries the “trivial Higgs structure”.

From this, it follows that any subset T' C Z x X flat over X is a Hitchin
subscheme. Hence, for any G-equivariant map from the Hitchin G-scheme F
to Z x X, the inverse image will get the structure of a Hitchin X-subscheme
on F which is G-invariant. This follows from Corollary 2.13.

Therefore if z € Z is any point then we can consider the closed Higgs
subscheme {z} x X < Z x X. This is a Hitchin subscheme for any point
z € Z since the Higgs structure on Z x X is the one induced by the
trivial structure on X. Then by Corollary 2.13, the inverse image subscheme
¢~ 1({z} x X) = E, is a Higgs X-subscheme of E.

Specializing to the case when Z = G/H which is assumed affine, we
then see that a geometric Higgs section s: X — F(G/H) is given by a G-
equivariant Higgs X-morphism ¢: E — G/H x X. The inverse image of the
identity coset ¢~ !(e.H x X) then gives By C E as a Hitchin subscheme.
By classical geometry (e.g. Kobayashi & Nomizu), one knows that gy C E
gives the H-reduction associated to s, hence by Lemma 4.2 the induced
H-reduction Fy is in fact a Higgs reduction of structure group of the prin-
cipal Hitchin pair (F,n) to H. The converse is easy to see. Again classical

TOME 61 (2011), FASCICULE 6



2376 V. BALAJI & A.J. PARAMESWARAN

geometry shows that giving Ey gives rise to a G-equivariant X-morphism
E — G/H x X. E gets a Higgs structure and this map is trivially a Higgs
morphism as seen above. O

Remark 4.4. — More generally, suppose that H C G is a subgroup
such that G/H C Z is an arbitrary subscheme of the affine G-scheme Z.
Let K = k(X) be the function field of the base curve X. Suppose further
that over the generic point £ € X(K), the reduction section s(§) lies in
E(G/H) C E(Z).

Now consider the induced morphism

¢x: Fx — G/H x Spec(K) C Z x Spec(K)

we see that ¢ (e.H x Spec(K)) gives a Higgs K-subscheme (Ey)x C Ex,
i.e., a generic Higgs reduction of structure group to H.

Remark 4.5. — We fuss here about the affineness of Z since we have
developed the earlier formalism of associated Hitchin spaces only for affine
G-schemes. Possibly, a graded version of this would allow us projective G-
schemes as well. In any case, when we need to talk of Higgs reductions to
parabolic subgroups, we exercise caution while interpreting the reduction
datum as sections.

We now make a few remarks on the compatibility of the Higgs structure
with the reduction of structure group.

LEMMA 4.6. — Let H C G and let Eg C E be a reduction of structure
group to H. Suppose that for a dense open U C X, the Higgs structure
on E comes from Ey. Then the Higgs structure on E on the whole of X
comes from Ey.

Proof. — By [6, Proposition 2.21], any H-module W as an H-module
is a subquotient of a G-module V. i.e., there is a finite dimensional H-
submodule M — V and a H-module surjection M — W. So we have a
diagram of H-modules:

|

w

Applying the functor Ef, we get the diagram of vector bundles:
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(4.4) Ep(M) —— Egn(V)

|

Eg(W)

where Ex (V) has a Higgs structure since Ef(V) ~ Eg(V) and over a
dense open U C X, the diagram is one of Hitchin pairs. Since Ey (M) C
Ex(V), it follows that the X-Higgs structure on Fy (V) restricts to a X-
Higgs structure on Egy(M) extending the given one on U. Similarly, by
considering the surjection Ey (M) — Ep(W) we get an extension of the
U-Higgs structure on Ex (W) to the whole of X. This implies that Ey
gives a H-Hitchin functor Fy: Rep(H) — Hitch(X). O

4.2. Semistability of principal Hitchin pairs

We now give the definitions of Higgs semistable (resp. polystable, stable)
principal Hitchin pairs.

DEFINITION 4.7. — Let (E,0) be a principal G-Hitchin pair. A reduc-
tion of structure group o: X — E(G/P) of the underlying principal G-
bundle to a parabolic subgroup P C G is said to be a Higgs reduction
if the P-subbundle Ep C FE (induced by o) gives a Higgs reduction of
structure group in the sense of Definition 4.1. In other words, there is a
Higgs structure 0p on Ep, such that the extension of structure groups takes
(Ep, Hp) to (E,@)

Remark 4.8. — Note that the above definition allows us to handle reduc-
tion of structure groups to parabolic subgroups as well. More precisely, the
reduction section o above gives Ep and we impose the condition that this
P-bundle gets the structure of a Hitchin scheme and the induced Hitchin
scheme structure on E is the one coming from the original Hitchin pair
structure (F,0) (see Remark 4.5 and the discussions before the remark).

Example 4.9. — Let (E,0) be a G-Hitchin pair and let G/P ~ P(V) for
a finite dimensional G-module V. Then giving a Higgs reduction s: X —
E(G/P) ~ E(P(V)) is equivalent to giving a Higgs line subbundle L C
E(V) for the locally free Hitchin pair (E(V),6y) in the sense that, there
is a Higgs structure L — L ® il such the inclusion L < E(V') preserves the
Higgs structures.
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DEFINITION 4.10 (Following A. Ramanathan). — We follow the con-
vention that if x is a dominant character on a parabolic subgroup P C G,

then the dual L;, of associated line bundle L, is ample.

(1) The G-Hitchin pair (E,0) is called Higgs semistable (resp. Higgs
stable) if for every parabolic subgroup P of G, and for every Higgs-
reduction of structure group op: X — E(G/P) to P and for any
dominant character x of P, the bundle c},(L,)) has degree < 0
(resp.< 0). Observe that, if Ep is the induced P-Hitchin scheme
coming from op, then we have an isomorphism of line bundles
Ep(x) = op(Ly)) on X.

(2) A Higgs-reduction of structure group of (E, ) to a parabolic sub-
group P is called admissible if for any character x on P which is
trivial on the center of G, the line bundle Ep(x) associated to the
reduced P-bundle Ep has degree zero.

(3) A G-Hitchin pair (E,0) is said to be Higgs polystable if it is semi-
stable and furthermore, for every admissible reduction of structure
group (Ep,0p) to a parabolic subgroup P, there is a Levi subgroup
R C P together with a Higgs-reduction of structure group (Eg, 0g)
to R.

Remark 4.11. — Recall the usual notions of Higgs semistability of lo-
cally free Hitchin pairs (cf. Simpson [26]). This is analogous to the u-
semistability definition, namely, (W,n) is Higgs semistable if for every
Hitchin subpair (W7,n;), we have p(W7) < (W), where p(W) = rii‘ci((vgv)).
It is the usual exercise to show that if (W,n) is a Higgs semistable (resp.
Higgs stable, Higgs polystable) locally free Hitchin pair, then the under-
lying principal GL(r)-Hitchin pair is Higgs semistable (resp. Higgs stable,
Higgs polystable) in the above sense.

Remark 4.12. — If a G-Hitchin pair has no admissible reduction to a
proper parabolic subgroup P then the Hitchin pair is easily seen to be
Higgs stable.

DEFINITION 4.13 (Following Bogomolov). — Let (E, ) be a principal
G-Hitchin pair and let G — GL(V') be a representation of G. Let s be
a Higgs section of the associated Hitchin scheme (E(V),0y). Then we call
the section “s” Bogomolov stable (resp. Bogomolov semistable, Bogomolov
unstable) relative to G if at one point x € X the value of the section s(x)
is stable (resp semistable, unstable) in the GIT sense, i.e., as points on V.
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Remark 4.14. — Recall from GIT the definitions of semistability, sta-
bility and instability of points of V. A point £ € V is semistable if 0 ¢ O();
the point £ is stable if furthermore, O(€) is closed and Stab(€) is finite. The
point £ is unstable if it is not semistable.

Remark 4.15. — It is easy to see the non-dependence of the definition
on the point x € X. Consider the inclusion k[V]% < k[V] and the induced
morphism ¢: V — V/G. This induces a morphism E(q): E(V) — E(V/G).
Observe that V/G = Spec(k[V]%) is a trivial G-space. Thus we have the
following diagram:

(4.5) s: X — E(V)—-EV/G)~X xV/G.

Composing with the second projection we get a morphism X — V/G which
is constant by the projectivity of X. Hence the value of the section is
determined by one point in its G-orbit. (cf. [22, 1.10]). Thus the fibre of ¢
containing the orbit Orb(s(z)) is independent of = € X.

By GIT, one knows that an orbit O consists of points which are unstable
if and only if O C ¢~ 1(¢(0)). Similarly, O consists of stable points if and
only if O = ¢7!(¢(0O)) and furthermore, the stabilizer of a point of O is
finite.

Thus, the property of whether a section is Bogomolov semistable, stable
or unstable is reduced to checking it at any point of the base space X.

LEMMA 4.16. — Let G be a reductive group and let E' be a principal
G-bundle. Let V be a finite dimensional G-module and let s: X — E(V)
be a Bogomolov semistable section of E(V), or equivalently, s(x) is GIT
semistable for some x € X. Then deg(s*(L)) > 0 for the G-linearized
ample bundle L on P(V'). More generally, let Y be a projective variety on
which there is a G-linearized action with respect to an ample line bundle
L. If s: X — E(Y) is a section such that for some point x € X image
s(z) € E(Y), is GIT semistable for the G-action. Then, deg(s*(L)) > 0. If
moreover, deg(s*(L)) = 0, then the section takes it values in the GIT fibre
F CY* —Y/G containing s(x).

Proof. — Since s(z) is GIT semistable for the G-action on V, there ex-
ists a G-homogeneous polynomial of degree n > 0, which is non-zero on
s(x). In other words, we get a non-zero section of s*((L)™), implying that
deg(s*(L)) = 0. The second half is similar and for details see [20, Proposi-
tion 3.10]. O
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5. A summary of results on instability

5.1. Some notations and preliminary definitions

Let k be an algebraically closed field of arbitrary characteristic. Let G be
a connected reductive algebraic group over k. Let T be a maximal torus of G
which we fix throughout and we fix a Borel subgroup B D T Let X(T') :=
Hom(T, G,,) be the character group of T and Y (7T) := Hom(G,,,T) be
the 1-parameter subgroups of T' (defined over k). Let R C X (T') be the
root system of G with respect to T'. Let W be the Weyl group of the root
system R. Let ( , ) denote the W-invariant inner product on X (7) ® R.
This inner product determines an inner product for any other maximal
torus since any two are conjugate.

For o € R, the corresponding co-root o is 2a/(cr, ). Let RVCX(T) @ R
be the set of all co-roots. Let B C G be a Borel subgroup containing 7.
This choice defines a base A" of R called the simple roots. Let A~ = —A™,
A root in R is said to be positive if it is a non-negative linear combination
of simple roots. We take the roots of B to be positive by convention. Let
AV C RY be the basis for the corresponding dual root system. Then we
can define the Bruhat ordering on W. The longest element with respect
to this ordering of W is denoted by wg. A reductive group is classified by
these root-data, namely the character group, 1-parameter subgroups, the
root system, co-roots and the W-invariant pairing.

There is also a mapping from X (T) x Y(T) = Z, (x, A) — {(x, A} which
is a dual pairing over Z. The inner product on X (7) gives one on Y (T'),
say (A, X). For A € Y(T), define x» € X(T) by xa(X) = (A, X). Thus,
(A N) = (xa, xN). Since any two maximal tori are conjugate, for any 1-PS
A of G, we have a well-defined norm ||\|| with |A\||? € Q.

Following Hesselink, define Y (G) = Hom(G,,,, G) and define Y (G, k') to
be the one parameter subgroups of G defined over &’ for any field ¥’ D k.
In particular, Y(G) = Y(G, k).

Define ¢()) := ||A||?> which defines a map ¢: Y(T) ® Q — Q. The map ¢
extends to a G-invariant map from M(G) — Q, where M(G) = (Y(G) x
N)/ ~, where (\,1) ~ (u, m) if A(t™) = u(t)). Note that M(T) = Y (T) Q.

DEFINITION 5.1. — Let A € Y(T'). Define the associated parabolic sub-
group Py as follows:

(5.1) Py = {g €qG| %1_{% A(t)-g-Mt)™! exists in G}
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5.2. The Kempf-Rousseau 1-PS

Let V be a finite dimensional G-module and view it as a T- module. Then
we get a decomposition, V = @V, summed over all characters x € X(T)
such that V), # 0. For elements v € V, we express it as v = ®v,,. Define
the state of v, St(v) = {x | vy # 0}.

For A € Y(T) = Hom(G,,,T), we have V = &V}, where

(5.2) Vi={veV|Aa) -v=ad - vVack*}.

Thus, V; = &V, where the sum is over all characters x such that (x, A) = 1.

Let V4 = @©;34V;. Then. Vatl c V4 and each V¢ is invariant under Py
(see Definition 5.1). Thus, the group Py acts on the quotient V4/V4%! and
the quotient map

(5.3) m: Ve V‘:il
is Pj-invariant. Further, the unipotent radical U(\) acts trivially on
Va/yvatt,

Let v € V. For a 1-PS A whose image is in some maximal torus 7", define
(5.4) m(v, A) == inf{{x,A) | x € ST"(v)}.

Following Hesselink, we call m(v,A) the “measure of instability” (cf. [,
2.2, page 77] and [13, 12.1]). The numerical criterion of stability is that
v € V is semistable if and only if for every A we have m(v - A) < 0. (Note
that the m(v, A) here is different from the p(v,\) in Mumford’s GIT and
unfortunately called g in [20]).

Fix v, € V such that 0 € G - v,, i.e., an unstable point. G. Kempf (cf.
[12]) then showed that the function A — m(v,, A)/||A|| attains a maximum
value on Y (G) (see below the paragraph after Definition 5.4).

We may assume that this A € Y(T'). Then, A is uniquely determined
among the indivisible 1-PS’s of T' and is called the Kempf-Rousseau 1-PS
for v,. Put

(5.5) J = m(ve, A)

then j = max {q | v, € V}.

Observe that the 1-PS A\ determines a character x» on P, which is
determined up to raising to a positive power. Further, if p € Py, then
Py ynp—1 = Py for all n > 0. Moreover the associated characters satisfy the
following relation:

(5.6) Uyt = X3
for some r, s > 0 (similar to the definition of M(QG)).
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PROPOSITION 5.2 ([20], Proposition 1.12). — Let A be the Kempf-
Rousseau 1-PS for v,. Then there exists a positive integer r and a char-
acter 0y of Py determined up to equivalence as in (5.6) by v, such that
7(v,) € P(V7/VIit1) is semistable for the natural action of Py/U(\) with
the linearisation given by O(r) ® (90;1. This gives a non-constant homo-
geneous function f on VI /VIT! such that f(r(v,)) # 0 and f(g-7(v)) =
0x(g)" f(m(v)) for allv € V7 and g € Py.

Remark 5.3. — We may assume that 6, is a dominant character of Py
(see [20, Remark 1.13 ]).

5.3. Instability of points on a projective variety

Let S — P(V) be a projective k-variety with a linear action of G. Let
x € S and let * be a point above x in the cone. The value of m(z*,\)
depends only on the point « € S; therefore we simply write it as m(z, A). We
therefore have the following definition for points of a projective variety S:

DEFINITION 5.4. — A point « € S is unstable if m(x,\) > 0 for some
AeY (D).

For any x € S, z is unstable if and only if g;'(z) < oo, where
45 (x) = inf {g(\) | X € M(G), m(z, \) > 1}

and if
Ag(z) = {X € M(G) | m(z,\) = 1,a(N) = 45" (x)}
then equivalently, « is unstable if and only if Ag(x) # 0.

The T action on the vector space V breaks it up into weight spaces
indexed by characters e, ..., €, say. These ¢; which are a priori in M (T)*
can be identified with elements in M (T) by using || || whose square is gq.
Fixz=(x0:...,: xp) € V and let A be the point closest to 0 for the norm
¢ on the convex hull C(x) of the set {¢; | x; # 0} in M(T'). This closest
point exists by the convexity and compactness of the closure of C(z) in
M(T) ® R and lies in fact in C(x). Thus, the minimal is attained in the
definition of Ag (cf. [8, Lemma 3.2], or [20, Lemma 1.1]).

We recall the following lemma from [13, Lemma 12.6].

LEMMA 5.5. — If A # 0 then Ar(x) = {\/q(N\)}.

Hesselink (cf. [13, 12.9]) defines the notion of “optimality” of subgroups
and one can always assume that the maximal torus 7T is optimal for zx.
Recall the following result from [13].
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THEOREM 5.6 (Kempf-Rousseau). — For each unstable x € S, there
exists a unique parabolic P(x) of G such that P(x) = Py ¥V A € Ag(x).
Further, if T is optimal for x, and Ar(x) = {\/q(\)}, then P(z) = Py.

DEFINITION 5.7. — Consider the convex hull C(F') in M(T) of a finite
subset F' C {ep,...,€en}. An element in C(F) is called a minimal combi-
nation of weights if it is the closest point to 0 in C'(F'). Let B be the set
of all minimal combination of weights in some positive Weyl chamber, for
various F's.

By the work of Kirwan ([13, Theorem 12.26, page 157]), we know that
the variety S has a natural stratification indexed by partially ordered set
B defined above. For each 8 € B, we have a locally closed subvariety Ss
of M. The subvarieties Sg are all G-invariant, i.e., GSg = Sg. Furthermore,

S=|]5s

BEB

expressing S as a disjoint union of the strata Sg. The strata have a more
precise geometric description: Sog = 5% (i.e., the G-semistable points),
while if 8 #£ 0

S5 = GY3®

where Y3 = {z € S | 8/q(B) € Ag(z)}. If the variety S is a nonsingular
projective variety then the strata {Sz | 8 € B} are all nonsingular and
each stratum Sj is in fact:

Sy =G x" Yy

6. The Bogomolov model

In this and the next section we will assume that char (k) = 0. We will
also assume that G is a semisimple connected algebraic group. Notations
are as in Section 5 above. Although the results from the later sections in
this paper proves the theorem on semistability of the tensor product of two
semistable Hitchin pairs over fields of characteristic zero as well as positive
characteristics, we give a different argument in next two sections using the
ideas of Bogomolov; this approach has the distinct advantage of making
the ideas more transparent and in our opinion more geometric.
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6.1. Towards Bogomolov’s theorem

Let x € X(T). Then it is well-known that there is a canonical parabolic
subgroup P(x) associated to x and y acts as a character on P(x). It is the
parabolic subgroup of G generated by the maximal torus T and the root
groups U, for r € R such that (r, x) > 0. In fact, if X is the 1-PS dual to ¥,
then P(x) =~ Py (see Definition 5.1). Let L_, be the associated line bundle
on G/P(x). Let W(x) ~ H°(G/P(x),L_y)*. Then it is well-known that
since we are in char 0, W(x) is an irreducible G-module with a non-zero
vector wy, € W(x) (called a highest weight vector) unique up to constant
multiples, such that for every p € P(x), one has:

p-wy = x(p) - wy.
Moreover, two such irreducible modules W(x) and W (x') are isomorphic

as G-modules if and only if there is a ¢ € W, such that ¢ - x = x’. Let the
notation W(x) be as in (3.10).

DEFINITION 6.1. — For any character x € X(T'), x # 0 we define the
Bogomolov model A, corresponding to x to be the closure G - w,, in W(x).

We now return to the setting of Proposition 5.2. We stick to the notations
n (5.2). V will be a finite dimensional G-module and v, € V such that
0 € G- v,, ie., an unstable point.

Consider the finite dimensional irreducible G-module W (r#,) having
highest weight vector

wrfy = w
with T-weight r6y.

It is known that the stabilizer p) of the line k- w C W(r6)) contains Py
for the action on P(W(rf,)) and in fact {px}rea = P». Since we work in
characteristic 0, we have py = Pj.

Let j be as in (5.5) and V7 be as in Proposition 5.2. We first deduce a
Py-morphism:

(6.1) Fivi Iyt Ly
where Py acts on k by the weight r0).
Now consider the mapping 1;: G x VI — W(rf),) given by

(6.2) Us(9.0) = g (F0) - {Fo) - w}).

This makes sense since f(vo) # 0, by Proposition 5.2.
The group Py acts on G x V7 by h(g,v) = (gh~*, h-v). Let

G xPvi
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be the quotient of G x V7 with respect to this action. Let G act on G x V7
by z(g,v) = (zg,v). Now take

(6.3) X =1-0.

Then one can check without much difficulty that 1 is Py-equivariant and
we have a G-morphism:

(6.4) PYr: GxPVI 5 G xP k= A CcW(r)).

Also, ¥¢(1,v,) = w.

Consider the map G x VJ — V, given by (g,v) — ¢ - v, which is G-
equivariant. Let Z be the image and v, € Z. Then Z is closed and can be
seen as follows (cf. [22, Lemma 2.5)):

Observe that Z = G - V7 and PA.VI C V7. Let a: G xV — G x V be
the map (g,v) — (9,9 - v), and consider the following chain of maps:

(6.5) GxVEHGxVLG/PxVEy

with 7(g,v) = (g Px,v). }

Then G- V7 is the image by the composite pry-n-a of G x V7. The map
« is an isomorphism and hence oG x V7) is closed in G x V. Note that
Py.VJ C VI, Therefore, we have n=1(n-a(G x V7)) = {(g,v) | g~ *v € VI}.
This is closed in G x V and is isomorphic to G x V7 via the isomorphism «.
In other words, a(G'x V7) is saturated for . Since 7 is a quotient morphism,
it follows that n.a(G x V7) is closed in G/Py x V. Therefore, since G/P is
proper, the image G - V7 is closed in V' (cf. [22, Lemma 2.5]).

The theorem of Bogomolov (cf. [22, Theorem 2.7] and [22, page 287])
states that the map 17 (6.2) factors through G - V7 by a G-morphism

q/)fZG-Vj—>AX.

In fact, if Y C Ig(V) is a closed irreducible G-subvariety then there exists
a 0y € Xg such that Y C G- V7, where j and 6 are as in Proposition 5.2.
We now summarize the above discussion in the following key theorem.

THEOREM 6.2 (Bogomolov). — Let I(V) be the subset of V consisting
of the unstable points for the G action. Let Y (Y # 0) be a G-invariant
closed subvariety of I(V'). Then there exists a x # 0, x € X(T) and a
non-trivial G-morphism from Y — A,.

More generally, if Y = I(V'), then there exists a filtration

(6.6) Yo=YDYiD--DY,, ={0}

of Y by closed G-stable subvarieties such that fori < m, Y;1 is the intersec-
tion of the inverse images of 0 by all the G-morphisms of Y; to models A,,.
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Proof. — See [22, Theorem 2.7, page 284] for details. O

7. The main theorem in char 0

The aim of this section as well as the main strategy in the arguments in
the later sections is to use the interplay of Bogomolov instability of certain
Higgs sections of associated bundles coming from a G-Hitchin pair and the
Higgs instability of the G-Hitchin pair. This was indeed the strategy of
Bogomolov and also Ramanan and Ramanathan. Let G be a connected
semisimple algebraic group.

Let V be a finite dimensional G-module and let W = W (x) be as in
(6.1). Let A, be as in Definition 6.1.

7.1. Reduction to the Kempf-Rousseau parabolic

Denote by P(A,) the image in P(W) of A, — (0); it is a closed subset of
the projective space and therefore a projective variety. The group G acts
on P(W) and P(A,) is an orbit for this action.

THEOREM 7.1. — Let (E, ) be a principal G-Hitchin pair. Let o be a
Bogomolov unstable Higgs-section of E(V) for the induced Higgs structure
Oy . Then,

(1) There exists a x € X(T),x # 0 (which we may assume to be dom-
inant), and a non-zero geometric Higgs section s of the associated
Hitchin scheme E(A,).

(2) The projected section s1 of E(P(A,)) on a non-empty open U C X
extends to X.

Proof.

(1): Let Y = Ig(V) C V be the G-subvariety of unstable points of V.
By the main theorem of Bogomolov (see [5] and [22, Corollaire 2.8]), there
exists a filtration (6.6) above. Taking the corresponding associated Hitchin
schemes we have a filtration:

(7.1) B(Y)=E(Yo) D> E(Y1) D -+ D E(Yy) = X x {0}.

Let i be the largest index such that o(X) C E(Y;). Then by the canonical
property of the Bogomolov model and the instability of the section, we
have
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e a G-morphism ¢: Y; - A, C W for a suitable character x = x(4)
and
e furthermore, the induced map E(p): E(Y;) — E(A,) C E(W)
when evaluated on the subset o(X) C E(Y;), has the property that
E(p)(0(X)) 0.
Define

(7.2) s:= E(p)(0).
Since the section o: X — E(V) is a Higgs section, and since the image
of o lies in Y;, the section o: X — E(Y;) is a geometric Higgs section of
the associated Hitchin scheme E(Y;). Further, by Proposition 3.15 the map
E(p) is a map of Hitchin schemes and the induced map s = E(p)(0) is
therefore a non-zero geometric Higgs section of E(A,) C E(W).

This proves (1).

(2): Let U = {z € X | s(z) # 0}. By projecting to P(A, ) we get a section
of E(P(A,)) on the open subset U. Since P(A,) is projective, the section
uniquely extends to a section of E(P(A,)) on X. O

THEOREM 7.2. — The construction of the extension s1: X — E(P(A,))
in Theorem 7.1 gives rise to a Py-reduction of the principal Hitchin pair
(E,0), to say, Ep, C E. Furthermore, the reduction to Py is compatible
with the Higgs structure on (E,0).

Proof. — By the construction of the Bogomolov model and the discus-
sion in (6.1), we have a dominant character y, a 1-PS A and the character x
and A are related by (6.3). Since P(A, ) = G/ Py, the section obtained above
gives a reduction of structure group of F to the parabolic subgroup Py. To
get the Higgs structure on Ep, we proceed as follows (see Remark 4.4 and
Remark 4.5).

Let H = Stabg(v) for the G-action on A,. Observe that H C Py C G.
The scheme G/H C A, is a subscheme. Now the section s: X — E(A,)
has the property that the image s(£) of the generic point £ € X, lies in

If we base change to Spec(K) C X the G-equivariant Higgs morphism
¢: E — A, xX weare in the setting of Lemma 2.12 since inverse images can
be realized as fibre products. We then immediately obtain the consequence
that the K-subscheme ¢~ !(eH x K) C Ef is a Higgs subscheme (see
Remark 4.4). By standard arguments, we see that ¢~ '(eH x K) = (Eg)x
is a H-reduction of Fy.

Thus, the section s provides a Higgs H-reduction over K, and hence a
Higgs Py-reduction over K.
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As observed earlier (proof of Theorem 7.1), the underlying reduction of
structure group Ep, of E' to Py extends as a reduction of structure group
to the whole of X. Hence by Lemma 4.6, it follows that the reduction of
structure group to P, is a Higgs reduction on the whole of X. g

7.2. Higgs semistability and associated bundles

Let M be a finite dimensional G-module such that p: G — SL(M) is a
representation. Let @@ C SL(M) be a maximal parabolic and let L, be an
ample line bundle coming from a dominant character . Let SL(M)/Q C
P(W) be the embedding defined by L. Let s: X — E(SL(M)/Q) be a
section and suppose that s lifts to a section of the associated bundle on
the cone of SL(M)/Q, say E(C). Suppose that s is an unstable section of
E(W). Thus,

s(X)c CNiIg(W)
hence by Theorem 7.1, s(X) C ¥; N C (the index i as defined after (7.1)).

Therefore, the induced G-morphism Y; — A, for some Y, is such that
the image of the general point of £ € X maps to the highest weight vector
wy, in the model A, and the stabilizer of the line kw, in P(A,) is the
Kempf-Rousseau parabolic Py (where x is related to A as in (6.3)).

THEOREM 7.3 (See Theorem 8.14 for the result in positive characteristics
as well). — Let (F,0) be a Higgs principal G-Hitchin pair, with G semisim-
ple. Suppose that p: G — GL(M) be a representation. If (E(M),0,r) is a
Higgs unstable GL(M)-Hitchin pair of degree 0 so is (F, ).

Proof. — We begin with the GL(M)-Hitchin pair (E(M), 0r) which is
Higgs unstable. By Definition 4.10, this implies that there is a maximal
parabolic @ C GL(M) and a dominant character n on ) together with
a Higgs reduction s: X — E(%) such that the pull-back by s of the
associated line bundle L,, has deg(s*(L,,)) > 0.

Choose m > 0 such that
(7.3) deg(s™(Lmy)) > 8
where g = genus(X).

Consider the dual L,. By the convention (cf. Definition 4.10), L, is
ample. Let V = HO(LXW)*. Then we have the Pliicker embedding % -
P(V). Observe that if @ fixes the subspace M; C M, and dim(M;) = r,
then, V' C Sym™(A"(M))).

ANNALES DE L’INSTITUT FOURIER



TENSOR PRODUCT THEOREM 2389

Write P(V) ~ GL(V)/B, and since GL(M)/Q C GL(V)/E and the
subgroup @ fixes the line £ C V. Hence Q C F,. The Higgs section s: X —
E( %) gives a -Hitchin pair structure on Eg. Hence by composing
with the inclusion F (%) — E(P(V)), we get, via extension of structure
group by the inclusion @ C B, a B-Hitchin pair structure on Eg x@ B ~
Ep.

By the discussion in Example 4.9, this section therefore gives a Higgs sub-
bundle I’ C E(V). Furthemore, by (7.3), deg(L’) > g which in particular
implies that L' = Ox (D) for an effective divisor D.

In other words, s induces a section s: Ox (D) — E(V) (we use the same
notation for s) which implies by the definition of Bogomolov instability
that s is a Bogomolov unstable Higgs section of (E(V), 0y ). We may view
the Higgs section s as a section of the geometric Hitchin scheme (E(V), 6y/)
which is such that the zeroes of s coincide with the effective divisor D.

Since s is a Bogomolov unstable Higgs section, we use Theorem 7.1 to
get a Bogomolov model A, together with a Higgs section of the Hitchin
scheme E'(A, ). That is, the geometric section s: X — E(V) factors through
s: X — E(A,). The section s maps X — D to E(A, \ {0}).

By Theorem 7.2, s extends to a section
t: X - E(P(Ay)) = E(G/P,\)

which moreover gives a Higgs reduction of structure group to the Kempf-
Rousseau parabolic Py.

The character x and X\ are related by (6.3). The dominant character x
is a character of Py and gives rise to a line bundle L, on G/Pj such that
L) is ample.

Note that ¢ is obtained by composing E(A, \ {0}) — EP(4,)) =
E(G/Py) with s and the G,, bundle underlying t*(L, ) gets identified with

(7.4) t(BE(Ay ~ {0})).

Hence the induced section ¢ in fact imbeds Ox (D) C t*(Ly). This implies
that deg(t*(Ly)) > 0. By Definition 4.10, this gives the Higgs instability of
(E,0). O

8. Theorems in positive characteristics

Let the ground field k£ be algebraically closed of arbitrary characteris-
tics. The notations are as in Section 5. Let G be a connected semisimple
algebraic group. Let K = k(X)) be the function field of the base curve and
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let £ € X(K) be the generic point of X. Let S < P(V') be a projective k-
variety with a linear action of G and where V' is a low height G-module (see
(8.1)). We observe that inputs from ([20]) and ([11]) (see Theorem 8.6 be-
low) allows one to conclude that the Kempf-Rousseau parabolic is defined
over K. The existence of a reduction of structure group to P is concluded
rather scheme-theoretically in [20] and does not adequately reflect the ge-
ometry. This makes it almost impossible to generalize the strategy to the
setting of Hitchin pairs.

The Kirwan stratification also gives a geometric description of the strata
and we derive a geometric realization of the Kempf reduction in the case
of Hitchin pairs. We remark that even without the Higgs structures, the
proofs that we give here makes the entire theory more transparent. We
have therefore taken the opportunity to briefly expound the central point
in the proof of the main theorem of [11].

The following ideas underlie the proof in positive characteristics.

(a) Let S < P(V) be a projective k-variety with a linear action of G
and where V' is a low height G-module. Let (E,#) be a principal
G-Hitchin pair. Let s be an GIT unstable section of the underlying
associated fibration E(S) (see Definition 8.9 below). For an unsta-
ble K-point s(§) the rationality of the Kempf-Rousseau parabolic
follows from Theorem 8.6 (cf. [11] and [20]).

(b) Once this rationality is achieved, then Hesselink[8, Theorem 5.5,
page 82] shows that the Kirwan strata S containing s(¢) is actually
defined over K; the proof of this uses the data from (a).

(¢) From this and Kirwan’s description of the strata we get the fact
that the morphism Sy — G/Pj is defined over K.

(d) This gives the reduction of structure group to the Kempf-Rousseau
parabolic Py.

e) The Higgs geometry defined earlier then uses this K-morphism to
2gs g
get a geometric description of the Higgs reduction to the Kempf-
Rousseau parabolic Pj.

(f) Degree computation for this “Higgs” reduction to the Kempf-

Rousseau parabolic then follows easily and gives the required semi-
stability results.
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8.1. Low height representations

We recall (cf. [1, page 7]) the definition and some salient properties of
a low height representation p: G — SL(V). Recall the notations from
Section 5.

Observe that V' can be written as direct sum of eigenspaces for 7. On
each eigenspace the torus T" acts by a character. These are called the weights
of the representation. A weight \ is called dominant if (A, ;) > 0 for all
simple roots a; € AT. A weight A is said to be “>” another weight p if
the difference A — p is a non-negative integral linear combination of simple
roots, where the difference is taken with respect to the natural abelian
group structure of X (7). The fundamental weights w; are uniquely defined
by the criterion (w;, a}/) = §ij. The height of a root is defined to be the sum
of the coefficients in the expression o = Xk;«;. We extend this notion
of height linearly to the weight space and denote this function by ht( ).
Note that ht is defined for all weights but need not be an integer even for
dominant weights. We extend this notion of height to representations as
follows:

DEFINITION 8.1 (cf. [11]).

(1) Given a linear representation V' of G, we define the height of the
representation htc(V) (also denoted by ht(V') if G is understood
in the given context) to be the maximum of 2ht()\), where A runs
over dominant weights occurring in V.

(2) A linear representation V' of G is said to be a low height represen-
tation if htq(V) < p, and a weight A is of low height if 2ht(\) < p.

Then we have the following theorem (cf. [11], [23] and [24])

THEOREM 8.2. — Let V be a linear representation of G of low height.
Then V is semisimple.

COROLLARY 8.3. — Let V be a low height representation of G and
v € V an element such that the G-orbit of v in V is closed. Then V is a
semisimple representation for the reduced stabilizer G yea Of v.

Remark 8.4. — 1In Serre ([24] and [23]), the notation for htg(V) is sim-
ply n(V).

8.2. Rationality issues.

Recall the following definitions from Hesselink ([8]) and the book by
Kirwan ([13]). We observe also that the notable difference between the
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treatment in Hesselink ([8]) and Kempf ([12]) is that [8] works over arbitrary
fields while Kempf assumes that K is perfect.

Recall that Y(G) is the set of 1-PS’s A\: G,,, — G of G defined over k
(see Section 5).

DEFINITION 8.5. — Let V' be a G-module. Let A € Y(G). A point v €
V(K) is called A-unstable if A drives v to zero. The point v is called L-
unstable for an extension L/K if it is A-unstable for a A € Y (G, L), where
we denote by Y (G, L) the subset of elements of Y (G) which are defined
over the field L.

A subset S C V(L) is called uniformly L-unstable if there exists a A\ €
Y (G, L) such that all s € S(L) are A-unstable.

We now summarize the main result of [11] in the following theorem:

THEOREM 8.6. — Let p: G — SL(V) be a low height representation
and let Q C SL(V) be a maximal parabolic subgroup and let us denote
the homogeneous space SL(V)/Q by S.

Let x be a dominant character on @ and let L;(/ be the ample line bundle
on S embedding S — P". Let K/k be an extension field. Let m € S(K)
be a K-unstable point for the G-action. Let P(m) be the Kempf-Rousseau
parabolic subgroup of G given by the 1-PS A\ which “optimally drives m to
zero” over K, i.e.,

Then, P(m) is defined over K. In other words, m is a K-unstable point.

Proof. — This theorem is a generalization of a theorem in [20, Theorem
2.3.] where similar rationality questions are addressed. In [20] the crucial
assumption is that the action is strongly separable, which essentially en-
sures that the isotropy subgroups for the action of G at any point are
(absolutely) reduced.

The assumption on the height of the representation allows for this gen-
eralization. Since the proof for the most part follows [20], we will follow
closely the notations and recall the relevant details from there.

The assumption of separability of the action in [20, Theorem 2.3] is
used in [20, page 279, paragraph 1]. Instead, one uses the hypothesis of
Theorem 8.6, namely

(1) the low height property of G — SL(V).
(2) the fact that the variety where the action is being studied is a
Grassmannian and not an arbitrary projective variety.
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We then use this together with [11, Lemma 3.2 and Proposition 3.3]. With
these changes in place, the rest of the proof of [20, Theorem 2.3] goes
through without any difficulty.

The key step in the proof, as in all rationality questions, is to show
that P(m) is defined over the separable closure K. Then the A will lie in
Y (G, K) and the point m will firstly be shown to be K -unstable and then
a Galois descent argument will show that it is actually K-unstable. O

Recall another rationality theorem from [8, Theorem 5.5 (a)]:

LEMMA 8.7. — Let S C V be a closed subset. Then S is uniformly
K-unstable if and only if S is uniformly K-unstable.

From this lemma and the Theorem 8.6 we get the following key corollary.

COROLLARY 8.8. — Let p: G — SL(V) be a low height representation
and let S = SL(V)/Q and m € S(K) be a K-unstable point driven to zero
“optimally” by A\ € Y(G, K). Let Sy C S be the strata containing m. Then
the locally closed subvariety Sy C S is defined over K.

Proof. — Observe that since m € S(K) is K-unstable by the low height
assumption on V and by Theorem 8.6, it follows that m € S(K) is K-
unstable and the Kempf-Rousseau parabolic P(m) and the A are both
defined over K. That is A € Y(G, K).

The strata Sy containing m is a priori uniformly K-unstable and since
m € Sy, it follows by Theorem 8.6 that the 1-PS A actually lies in Y (G, K).
Hence the Kempf-Rousseau parabolic P(m) = Py is also defined over K.
That is, Sy is uniformly K¢-unstable.

Since Py and A are both defined over K itself, by [8, Theorem 5.5] it
follows that the strata Sy is uniformly K-unstable. In other words, S) is
defined over K.

By [8, Proposition 6.1], since m € S(K) is a K-unstable point it implies
that there is a maximal K-unstable subset YJ° C S with m € Y® such
that all its points are driven to zero by A € Y(G, K). By [8] again each Y3*
is invariant under the action of the Kempf-Rousseau parabolic Pj.

As we have seen in our description of Kirwan’s stratification, we know
that G x (V%) = S, is a locally closed subvariety of S defined over K.
In conclusion, we have shown that S, is defined over K and we have a
K-morphism Sy — G /P, with fibres isomorphic to Y3*. a
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8.3. GIT instability and unstable reductions

DEFINITION 8.9. — Let E be a principal G-bundle on X. Let Y be an
affine G-variety. Let s: X — E(Y') be a section of the associated fibration.
We say the section is GIT unstable if the evaluation s(§) of the section
at the generic point { € X(K) is a GIT unstable point in E(Y)(K) for
the Gg-action on E(Y)k. If Y is a projective variety on which there is
a G-linearized action with respect to a very ample line bundle L, and
s: X — E(Y) a section, we call it GIT unstable if s(€) is a GIT unstable
point in the cone over E(Y ).

Remark 8.10. — Observe that this definition makes perfect sense even
if X is not projective.

Remark 8.11. — Let X be projective and Y be an affine G-variety. A
section s is GIT unstable in the sense of Definition 8.9 if and only if for some
point x € X image s(z) € E(Y), is GIT unstable for the G-action. In other
words, the section s is Bogomolov unstable in the sense of Definition 4.13.
Of course, it must be noted that these notions make sense even when we
have a Higgs structure.

LEMMA 8.12. — Let E be a principal G-bundle. Let p: G — SL(W') be
a linear representation. Consider the associated principal SL(W)-bundle
E(SL(W)). Suppose that there exists a maximal parabolic Q C SL(W)
and a dominant character n of (Q together with a reduction of structure
group s: X — E(SL(W)/Q) such that

(8.1) deg(s*(Ly)) >0

Then, the section s is a GIT unstable section in the sense of Definition 8.9
for the ample line L, on SL(W)/Q.

Proof. — This follows immediately from Lemma 4.16. ]

Remark 8.13. — We note that in the Lemma 8.12 the parabolic sub-
group @ gives a destabilizing vector subbundle for the vector bundle E(W).

We now prove the following theorem:

THEOREM 8.14. — Let (F, 0) be a Higgs semistable principal G-Hitchin
pair, G being semisimple. Let p: G — SL(W') be a low height representa-
tion. Then the Hitchin pair (E(W), 8w ) is Higgs semistable.

Proof. — The proof breaks up into two parts.
Higgs compatible Kempf-Rousseau parabolic reduction:
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Let @ C SL(W) be a maximal parabolic and 1 a dominant charac-
ter of Q). Suppose that we are given a Higgs-reduction of structure group
s: X — E(SL(W)/Q). There are two possibilities: either the section is
GIT semistable or it is GIT unstable in the sense of Definition 8.9.

In the first case, by Lemma 4.16, since L)]/ is ample,

(8.2) deg(s*(L,)) < 0.
In the second case it is more subtle and we proceed as follows. Let
S:=SL(W)/Q.

Let £ € X be the generic point and let s(§) € E(S)(K) be GIT unstable
for the action of G. Let us denote the image s(§) by m.

By the assumption of low height the 1-PS A\ and the Kempf-Rousseau
parabolic Py are both defined over K (by Theorem 8.6). Hence, m € S
with Sy defined over K (see the end of Section 5 and Theorem 5.6 for the
notations). Let E¢ be the generic fibre of £ — X. Now view the restriction
of Higgs section s to Spec(K):

(8.3) Sy x K= SxK

\/

Spec(K

as a G-equivariant morphism of Hitchin schemes over Spec(K ). Composing
with the canonical projection Sy — G/Pj, we get the morphism ¢ of Higgs
K-schemes:

(8.4) G/Pyx K .

\/

Spec(K

Taking the inverse image of til(eP)\ x K), we get Epe C E¢ which is a
Py-subscheme of Eg.

Observe further that since X is a curve, the reduction to Py extends as
a usual reduction (i.e., without the Higgs structure). What we have shown
is that E has a Py-reduction which is generically Higgs. By Lemma 4.6, it
follows that this reduction is a global Higgs reduction.

The degree computations:

As in the proof of Theorem 7.3, using the ampleness of the dual LX and
taking sections for a suitable power m of L7\7/ we get the Pliicker embedding
of S C P(V).
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The parabolic subgroup Py being defined over K gives a Higgs reduction
of structure group of (E, ) to a parabolic Py of G. Let V' = @V, be the
weight space decomposition of V' with respect to A. Let VI = &,5,V; (see
the discussion in (5.2)).

Let

j = pu(m, ) = min{i | m has a non-zero component in V; }

= max{q | m e Vq}.

Let m = mg + mq, with mg of weight j > 0 and m; the sum of terms of
higher weights. In other words, in the projective space P(V') we see that
A(t) - m — my. It is not too hard to see that we have an identification of
the Kempf-Rousseau parabolic subgroups associated to the points m and
myg which is therefore simply denoted by Py (cf. [20, Proposition 1.9]).

In the generic fibre E(V')¢ we have the projection

(8.5) Ppvi— v,

i>j

which takes m to mg. This gives a line sub-bundle Ly of E(V}) associated
to the point mg as well as a nonzero map s*(L,) — Lo.

Now by Proposition 5.2, myg is in fact GIT semistable for the action of
P, /U, i.e., for the Levi quotient of Py, for a suitable choice of linearisation
obtained by twisting the action by a dominant character x of Py (see (6.3)).
Let Ep, be the Py-bundle obtained by the Higgs reduction to P,. Let
L, = Ep, (x). Since (E, ) is Higgs semistable by assumption, we have

(8.6) deg(Ly) < 0.

The GIT semistability of the point my for the action of Py/U with respect
to this new linearisation, forces, by Lemma 4.16, the following degree in-
equality (we skip the details which are essentially in the closing parts of
the proof of [20, Proposition 3.13]):

(8.7) deg(Lo ® Ly) < 0.

By (8.6) deg(Ly) > 0. Hence by (8.7), deg(Lo) < 0. This implies
deg(s*(Ly)) < 0. This shows that in either case, we get the inequality
(8.2). This proves the Higgs semistability of (E(SL(W), 0w ). O

Remark 8.15. — We remark that if we follow the proof strategy of Theo-
rem 7.3 in the positive characteristic case, the prime bounds that are forced
are much bigger than those imposed by low height considerations.
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THEOREM 8.16. — Let (V1,01) and (Va,02) be two Higgs semistable
Hitchin pairs with det(V;) ~ Ox,i = 1,2. Suppose that the ground field k
has characteristic p such that

rank (V1) + rank(V2) < p + 2.
Then the tensor product (V1 ® V2,01 ® 1 +1® 6) is also Higgs semistable.

Proof. — This is immediate from height computations for the tensor
product representations and Theorem 8.14 above. See for example [25,
5.2.5]. a

9. Polystability of associated bundles

The ground field k has arbitrary characteristics in this section. Let G
be a connected reductive algebraic group. Let T" be the maximal torus of
G and W be a finite dimensional G-module. Further, let X (T) be the free
abelian group of characters of 7" and S be the set of distinct characters
that occur in W.

For every subset S C S we have the following map:

vs: ZV5 — X(T)

given by e; — xs. Let gg be the g.c.d of the maximal minors of the map
vg written under the fixed basis.

For any vector w € W, consider the subset S,, C S, consisting of char-
acters that occur in w with nonzero coefficients, ie., if w = ) a,(w)ey,
then

Sw={x €S| ay(w)#0}.

Then we recall the following;:

LEMMA 9.1. — (cf. [1, Lemma 6]) The characteristic of the field, p does
not divide ggs,, if and only if the action of T on the vector w is separable.

Define
pr(W) := {largest prime which divides gs | VS C S}.

DEFINITION 9.2. — Let p: G — SL(W) be a finite dimensional repre-
sentation of G. Define the separability index, 1g(W) of the representation
as follows:

Ya(p) = va(W) = max{htq(W w)}

The notion of separability index was first defined in ([1}) The reader is
referred to ([1, Section 4]) for the details.
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DEFINITION 9.3. — The module W is said to be with low separability
index if the characteristic of the ground field k is either zero or p which
satisfies p > e (W).

We recall the results proved in [1, Proposition 5, p 16] along with a key
result from [2].

PRrROPOSITION 9.4.

(1) If W is a G-module with low separability index, then the action
of G on W is strongly separable i.e., the stabilizer at any point is
absolutely reduced.

(2) (A version of Luna’s étale slice theorem in char p). Let W be a
G-module with low separability index. Let F' be a fibre of the good
quotient ¢: W — W//G, and let F°' be the unique closed orbit
contained in F. Then there exists a G-map

F — F°,

(3) (see [2, Proposition 8.5, p.312]). More generally, if F is an affine
G-subvariety of P(W), with W as a G-module with low separability
index, and suppose that F' contains a unique closed orbit F°'. Then
there exists a G-retract

F — F°,

Remark 9.5. — 1In [2], Bardsley and Richardson make the assumption
that the action of G on F is separable and the stabilizer Gy at f € F°!
is linearly reductive. Since the action on W has low separability property,
the stabilizer Gy is a saturated, reduced and reductive subgroup of G. The
assumption of linear reductivity of the stabilizer is handled in our situation
by the low separability assumption on W, since the tangent space T} (F°!) at
f € F° is also a Gy-module of low separability index. This gives complete
reducibility of the action of the stabilizer on the tangent spaces in Luna’s
slice theorem (for details see [1, Proposition 5, p 16]).

DEFINITION 9.6. — Let (V,0) be a semistable Hitchin pair with
deg(V') = 0. The Higgs socle subpair ()(V'),0yv)) is defined as the sum
of all stable subpairs (W, 8y ) C (V,0) of degree 0.

Remark 9.7. — The socle subpair (¢(V), 0,(y)) can be easily seen to be
a direct sum of certain stable subpairs of (V, 6) each of degree 0. Moreover,
if (V,0) is not polystable i.e., it is not direct sum of stable Hitchin pairs,
then (¢(V),0y(v)) is a proper subpair of (V,0) and conversely.
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Recall the notion of admissible reductions and polystability of Hitchin
pairs (see Definition 4.10 (2) and (3)).

Remark 9.8. — Let (V,0) be a semistable Hitchin pair of rank n with
det(V) ~ Ox. Let (E,0) be the underlying principal SL(n)-Hitchin pair.
The Higgs socle ¢(V) C V gives an exact sequence of Hitchin pairs:

(9.1) 0—=-v(V)=V=>V/(V)—=0

i.e., an admissible Higgs reduction of structure group of (E, ) to a maximal
parabolic subgroup P C SL(n). We will call this reduction (Ep,60p) the
“socle” reduction. Note that (E, ) is a polystable Hitchin pair if and only
if the parabolic subgroup P coincides with the structure group SL(n) of E.

LEMMA 9.9. — Let (V,0) be a semistable Hitchin pair of rankn with
deg(V) = 0. Let (E,0) be the underlying principal GL(n)-Hitchin pair.
Let P C GL(n) be the maximal parabolic subgroup coming from the Higgs
socle of (V,0) and let (Ep,0p) be the socle Higgs reduction. Then (V,0)
(or equivalently (E,#)) is not polystable if and only if there is no Levi
reduction of structure group of (Ep, 6p).

Proof. — The proof is trivial since the Higgs socle (1/(V), 0, (v)) is the
maximal subpair which has the defining properties in Definition 9.6. A
reduction of structure group of (Ep,0p) to its Levi would mean a splitting
of (9.1) and this would contradict the maximality of the Higgs socle. [

LEMMA 9.10 (cf. [1], Lemma 10, page 20). — Let (E,f0) be a stable
principal G-Hitchin pair with G semisimple. Suppose that M is a finite
dimensional G-module with low separability index. Let Z = SL(M)/Q
where () C SL(M) is a maximal parabolic subgroup and let L = L, be
a very ample line bundle on Z coming from a dominant character n of Q.
Let (E(Z),0z) be the associated Hitchin pair. Then any non-zero Higgs
section 0: X — FE(Z) such that deg(s*L) = 0 is a GIT semistable Higgs
section in the sense of Definition 8.9.

Proof. — Let @ C SL(W) be a maximal parabolic and 7 a dominant
character of . Suppose that we are given a Higgs-reduction of structure
group s: X — E(SL(W)/Q). Suppose further that it is GIT unstable in
the sense of Definition 8.9. We will get a contradiction to the stability of
(E, ). The proof follows almost verbatim the proof of the Theorem 8.14
till we reach the construction of the line bundle Ly. We pick the thread
there.

Since (F, 0) is stable, by the Theorem 8.14, the associated vector bundle
E(V;) is Higgs semistable of degree 0 implying that deg(Ly) < 0. On the

TOME 61 (2011), FASCICULE 6



2400 V. BALAJI & A.J. PARAMESWARAN

other hand, by (8.5), we get a map s*£ — Ly. Since deg(s*L) = 0, this
implies that deg(Lg) = 0.

Now by Proposition 5.2, mg is in fact GIT semistable for the action of
Py /U, i.e., for the Levi quotient of Py, for a suitable choice of linearisation
obtained by twisting the action by a dominant character x of Py (see (6.3)).
Let Ep, be the Py-bundle obtained by the Higgs reduction to Py. Let
Ly = Ep, (x)-

The GIT semistability of the point myg for the action of Py /U with respect
to this new linearisation, forces, by Lemma 4.16, the degree inequality,
deg(Lo ® Ly) < 0 (see proof of Theorem 8.14). Since deg(Lg) = 0, this
in conjunction with the degree inequality above, gives deg(L;/) < 0. This
implies that for the dual line bundle we have deg(L, ) > 0. This inequality
contradicts the Higgs stability of (E, ) (see Definition 4.10 (i)). O

With these results we now have the following basic theorem on polysta-
bility (cf. [5, Lemma 8.3] and [20, Theorem 3.18]). Note that we need extra
assumptions on characteristic of the ground field for polystability of as-
sociated constructions to hold. Let M be a finite dimensional G-module.
Denote by

92) o) = max {6(N (M)}

THEOREM 9.11. — Let (E,0) be a stable G-Hitchin pair of degree zero
with G semisimple and p: G — SL(M), be a representation such that
p > e (M). Then the associated Hitchin pair (E(M),0)r) is polystable.

Proof. — By Theorem 8.14, since p > htg(M), the extended Hitchin pair
(E(M),0y) is semistable. Let @ € SL(M) be a proper maximal parabolic
subgroup such that (E(SL(M)),0x) has an admissible Higgs reduction to
a parabolic subgroup. In other words, in the language of Higgs bundles, we
have a degree zero Higgs subbundle of the Higgs bundle (E(M), ;).

Let us denote the projective variety SL(M)/Q by Z and let L be a very
ample line bundle with a SL(M)-linearization (and hence a G-linearization)
on Z. We use the same notation for the induced line bundle on E(Z) as
well. Let s: X — E(Z) be a Higgs section which gives a Higgs line sub-
bundle s*(£) with deg(s*(£)) = 0, i.e., the section “s” gives an admissible
reduction of structure group.

By Lemma 9.10, the section s: X — E(Z) is a GIT semistable section
in the sense of Definition 8.9. By the last part of Lemma 4.16, we see that
the section s takes its values in F, where F — Z°% — Z//G is a single
GIT fibre; ie., s: X — E(F) C E(Z). Moreover, F is a G-invariant affine
variety.
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By the assumption of low separability index of the module W =
H°(SL(M)/Q, L), it follows that the G-action on F is separable. Fur-
thermore, being a GIT fibre, it contains a unique closed orbit F°. Let
F = G/I. By the low separability assumptions, it follows that the sta-
bilizer I is reduced and the affineness of F' implies that I is reductive.
Moreover, I C Q.

Again, by virtue of the low separability of the G-module W, we can
apply Proposition 9.4 and we have a G-retract, F — F° which gives by
composition, a section s': X — E(F). The section s': X — E(F) =
E(G/I), being a Higgs section, gives a Higgs reduction of structure group
of the G-Hitchin pair (E,6) to I. Denote this I-Hitchin pair by (Ef, 0r).

The stabilizer is a saturated subgroup and hence by the low height prop-
erty of the representation p: G — SL(M), it follows that the inclusion
I — @Q is completely reducible. That is, I < L for a Levi subgroup of Q.
(See [1, pages 15-16] and [24, page 25] for details on “saturated subgroups”.)

The upshot of the discussion is that the Hitchin pair (E(SL(M)),0)
gets a Higgs reduction of structure group to the Levi subgroup L C Q.
The argument has shown that whenever Q C SL(M) gives an admissible
reduction of structure group of (E(SL(M)),0y), it gets a further Levi
reduction. Coupled with Lemma 9.9, we see immediately that, since the
socle reduction (Ep, 6p) is an admissible reduction, the parabolic subgroup
P C SL(M) corresponding to the Higgs “socle” cannot possibly be a proper
parabolic, i.e., P = SL(M). This implies that (E(M),0)s) is a polystable
SL(M)-Hitchin pair. This completes the proof of the theorem. O

Remark 9.12. — The above theorem gives by far the best effective
bounds on p for polystability of associated bundles to hold, even in the
situation when there are no Higgs structures on the bundles.

Remark 9.13. — In [15, Theorem 3.1] (cf. also [16, Section 4]) it was
claimed that if p is larger than the maximum of the heights of exterior pow-
ers as in (9.2) (and not the separability index) then it gives the polystability
of the associated bundle. The proof of [15, Theorem 3.1}, which was needed
to justify this claim, is incorrect as was pointed out to the authors of [15]
by Professor J.-P. Serre in a private correspondence.

Remark 9.14. — The previous theorem is the precise algebraic counter-
part of the differential geometric fact that a polystable Higgs vector bundle
supports a uniquely defined Einstein-Hermitian connection, a fact proven
by Hitchin over curves and by Simpson for smooth projective varieties.
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Remark 9.15. — We believe that the approach in this paper should
generalize to other natural situations such as “quiver bundles”. Suitable
analogues of Hitchin schemes defined for them along with the GIT devel-
oped in this paper should yield similar theorems.

Remark 9.16 (Rational Principal bundles). — Following (20, page 290]),
we have the corresponding notion of a rational principal G-Hitchin pair on
a higher dimensional smooth projective variety X. It goes without saying
that since we deal with p-semistability and stability, all the results proven
in the previous sections go through without change for u-semistable (resp.
p-stable) rational G-Hitchin pairs.
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