Kiril Datchev & András Vasy

Semiclassical resolvent estimates at trapped sets

<http://aif.cedram.org/item?id=AIF_2012__62_6_2379_0>
SEMICLASSICAL RESOLVENT ESTIMATES
AT TRAPPED SETS

by Kiril DATCHEV & András VASY (*)

Abstract. — We extend our recent results on propagation of semiclassical resolvent estimates through trapped sets when a priori polynomial resolvent bounds hold. Previously we obtained non-trapping estimates in trapping situations when the resolvent was sandwiched between cutoffs χ microlocally supported away from the trapping: $\|\chi R_h(E + i0)\chi\| = O(h^{-1})$, a microlocal version of a result of Burq and Cardoso-Vodev. We now allow one of the two cutoffs, $\tilde{\chi}$, to be supported at the trapped set, giving $\|\chi R_h(E + i0)\tilde{\chi}\| = O(\sqrt{a(h)}h^{-1})$ when the a priori bound is $\|\tilde{\chi} R_h(E + i0)\tilde{\chi}\| = O(a(h)h^{-1})$.

Résumé. — Nous étendons nos résultats récents sur la propagation d’estimations de résolvantes semi-classiques à travers des ensembles captifs sous des bornes a priori de type polynomial. Précédemment, nous obtenions des estimations non-captives dans des situations captives quand la résolvante est contrôlée par au dessus et en dessous par des fonctions cutoff χ dont le support microlocal est situé loin de l’ensemble captif : $\|\chi R_h(E + i0)\chi\| = O(h^{-1})$ (version microlocale d’un résultat de Burq et Cardoso-Vodev). Nous considérons maintenant le cas où l’une des deux fonctions cutoff, $\tilde{\chi}$, est à support dans l’ensemble captif, obtenant $\|\chi R_h(E + i0)\tilde{\chi}\| = O(\sqrt{a(h)}h^{-1})$ lorsque la borne a priori est $\|\tilde{\chi} R_h(E + i0)\tilde{\chi}\| = O(a(h)h^{-1})$.

This short article is an addendum to the previous paper by K. Datchev and A. Vasy.

Let (X, g) be a Riemannian manifold which is asymptotically conic or asymptotically hyperbolic in the sense of [6], let $V \in C_0^\infty(X)$ be real valued, let $P = h^2 \Delta_g + V(x)$, where $\Delta_g \geq 0$, and fix $E > 0$.

Keywords: Resolvent estimates, trapping, propagation of singularities.
Math. classification: 58J47, 35L05.
(*) The first author is partially supported by a National Science Foundation postdoctoral fellowship, and the second author is partially supported by the National Science Foundation under grants DMS-0801226 and DMS-1068742.
Theorem 1. — [6, Theorem 1.2] Suppose that for any $\chi_0 \in C_0^\infty(X)$ there exist $C_0, k, h_0 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_0]$ we have
\[
\|\chi_0 (h^2 \Delta_g + V - E - i\varepsilon)^{-1} \chi_0\|_{L^2(X) \to L^2(X)} \leq C_0 h^{-k}. \tag{1}
\]
Let $K_E \subset T^*X$ be the set of trapped bicharacteristics at energy E, and suppose that $b \in C_0^\infty(T^*X)$ is identically 1 near K_E. Then there exist $C_1, h_1 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_1]$ we have the following nontrapping estimate:
\[
\|\langle r \rangle^{-1/2-\delta} (1 - \text{Op}(b))(h^2 \Delta_g + V - E - i\varepsilon)^{-1} (1 - \text{Op}(b))\langle r \rangle^{-1/2-\delta}\|_{L^2(X) \to L^2(X)} \leq C_1 h^{-1}. \tag{2}
\]
Here by bicharacteristics at energy E we mean integral curves in $p^{-1}(E)$ of the Hamiltonian vector field H_p of the Hamiltonian $p = |\xi|^2 + V(x)$, and the trapped ones are those which remain in a compact set for all time. We use the notation $r = r(z) = d_g(z, z_0)$, where d_g is the distance function on X induced by g and $z_0 \in X$ is fixed but arbitrary.

If $K_E = \emptyset$ then (1) holds with $k = 1$. If $K_E \neq \emptyset$ but the trapping is sufficiently ‘mild’, then (1) holds for some $k > 1$: see [6] for details and examples. The point is that the losses in (1) due to trapping are removed when the resolvent is cutoff away from K_E. Theorem 1 is a more precise and microlocal version of an earlier result of Burq [1] and Cardoso and Vodev [3], but the assumption (1) is not needed in [1, 3]. See [6] for additional background and references for semiclassical resolvent estimates and trapping.

In this paper we prove that an improvement over the a priori estimate (1) holds even when one of the factors of $(1 - \text{Op}(b))$ is removed:

Theorem 2. — Suppose that there exist $k > 0$ and $a(h) \leq h^{-k}$ such that for any $\chi_0 \in C_0^\infty(X)$ there exists $h_0 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_0]$ we have
\[
\|\chi_0 (h^2 \Delta_g + V - E - i\varepsilon)^{-1} \chi_0\|_{L^2(X) \to L^2(X)} \leq a(h)/h. \tag{3}
\]
Suppose that $b \in C_0^\infty(T^*X)$ is identically 1 near K_E. Then there exist $C_1, h_1 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_1]$,
\[
\|\langle r \rangle^{-1/2-\delta} (1 - \text{Op}(b))(h^2 \Delta_g + V - E - i\varepsilon)^{-1} \langle r \rangle^{-1/2-\delta}\|_{L^2(X) \to L^2(X)} \leq C_1 \sqrt{a(h)}/h. \tag{4}
\]
Note that by taking adjoints, analogous estimates follow if $1 - \text{Op}(b)$ is placed to the other side of $(h^2 \Delta_g + V - E - i\varepsilon)^{-1}$.
Such results were proved by Burq and Zworski [2, Theorem A] and Christianson [4, (1.6)] when K_E consists of a single hyperbolic orbit. Theorem 2 implies an optimal semiclassical resolvent estimate for the example operator of [6, §5.3]: it improves [6, (5.5)] to

$$\|\chi_0 (P - \lambda)^{-1} \chi_0\| \leq C \log(1/h)/h.$$

Further, this improved estimate can be used to extend polynomial resolvent estimates from complex absorbing potentials to analogous estimates for damped wave equations; this is a result of Christianson, Schenk, Wunsch and the second author [5].

Theorems 1 and 2 follow from microlocal propagation estimates in a neighborhood of K_E, or more generally in a neighborhood of a suitable compact invariant subset of a bicharacteristic flow.

To state the general results, suppose X is a manifold, $P \in \Psi^m,0(X)$ a self adjoint, order $m > 0$, semiclassical pseudodifferential operator on X, with principal symbol p. For $I \subset \mathbb{R}$ compact and fixed, denote the characteristic set by $\Sigma = p^{-1}(I)$, and suppose that the projection to the base, $\pi: \Sigma \to X$, is proper (it is sufficient, for example, to have p classically elliptic). Suppose that $\Gamma \subset T^* X$ is invariant under the bicharacteristic flow in Σ. Define the forward, resp. backward flowout Γ_+, resp. Γ_-, of Γ as the set of points $\rho \in \Sigma$, from which the backward, resp. forward bicharacteristic segments tend to Γ, i.e. for any neighborhood O of Γ there exists $T > 0$ such that $-t \geq T$, resp. $t \geq T$, implies $\gamma(t) \in O$, where γ is the bicharacteristic with $\gamma(0) = \rho$. Here we think of Γ as the trapped set or as part of the trapped set, hence points in Γ_-, resp. Γ_+ are backward, resp. forward, trapped. Suppose V, W are neighborhoods of Γ with $\overline{V} \subset W$, W compact. Suppose also that

$$\text{If } \rho \in W \setminus \Gamma_+, \text{ resp. } \rho \in W \setminus \Gamma_-, \text{ then the backward, resp. forward bicharacteristic from } \rho \text{ intersects } W \setminus \overline{V}. \tag{5}$$

This means that all bicharacteristics in V which stay in V for all time tend to Γ.

The main result of [6], from which the other results in the paper follow, is the following:

Theorem 3. — [6, Theorem 1.3] Suppose that $\|u\|_{H^{-N}_h} \leq h^{-N}$ for some $N \in \mathbb{N}$ and $(P - \lambda)u = f$, $\text{Re } \lambda \in I$ and $\text{Im } \lambda \geq -O(h^\infty)$. Suppose f is $O(1)$ on W, $WF_h(f) \cap \overline{V} = \emptyset$, and u is $O(h^{-1})$ on $W \cap \Gamma_- \setminus \overline{V}$. Then u is $O(h^{-1})$ on $W \cap \Gamma_+ \setminus \Gamma$.

TOME 62 (2012), FASCICULE 6
Here we say that \(u \) is \(O(a(h)) \) at \(\rho \in T^*X \) if there exists \(B \in \Psi^{0,0}(X) \) elliptic at \(\rho \) with \(\| Bu \|_{L^2} = O(a(h)) \). We say \(u \) is \(O(a(h)) \) on a set \(E \subset T^*X \) if it is \(O(a(h)) \) at each \(\rho \in E \).

Note that there is no conclusion on \(u \) at \(\Gamma \); typically it will be merely \(O(h^{-N}) \) there. However, to obtain \(O(h^{-1}) \) bounds for \(u \) on \(\Gamma_+ \) we only needed to assume \(O(h^{-1}) \) bounds for \(u \) on \(\Gamma_- \) and nowhere else. Note also that by the propagation of singularities, if \(u \) is \(O(h^{-1}) \) at one point on any bicharacteristic, then it is such on the whole forward bicharacteristic. If \(|\Im \lambda| = O(h^\infty) \) then the same is true for backward bicharacteristics.

In this paper we show that a (lesser) improvement on the a priori bound holds even when \(f \) is not assumed to vanish microlocally near \(\Gamma \):

Theorem 4. — Suppose that \(\|u\|_{H^{-N}_h} \leq h^{-N} \) for some \(N \in \mathbb{N} \) and \((P-\lambda)u = f \), \(\Re \lambda \in I \) and \(\Im \lambda \geq -O(h^\infty) \). Suppose \(f \) is \(O(1) \) on \(W \), \(u \) is \(O(a(h)h^{-1}) \) on \(W \), and \(u \) is \(O(h^{-1}) \) on \(W \cap \Gamma_- \setminus \overline{V} \). Then \(u \) is \(O(\sqrt{a(h)}h^{-1}) \) on \(W \cap \Gamma_+ \setminus \Gamma \).

In [6] Theorem 1 is deduced from Theorem 3. Theorem 2 follows from Theorem 4 by the same argument.

Proof of Theorem 4. — The argument is a simple modification of the argument of [6, End of Section 4, Proof of Theorem 1.3]; we follow the notation of this proof. Recall first from [6, Lemma 4.1] that if \(U_- \) is a neighborhood of \((\Gamma_- \setminus \Gamma) \cap (\overline{W} \setminus V) \) then there is a neighborhood \(U \subset V \) of \(\Gamma \) such that if \(\alpha \in U \setminus \Gamma_+ \) then the backward bicharacteristic from \(\alpha \) enters \(U_- \). Thus, if one assumes that \(u \) is \(O(h^{-1}) \) on \(\Gamma_- \) and \(f \) is \(O(1) \) on \(V \), it follows that that \(u \) is \(O(h^{-1}) \) on \(U \setminus \Gamma_+ \), provided \(U_- \) is chosen small enough that \(u \) is \(O(h^{-1}) \) on \(U_- \). Note also that, because \(U \subset V \), \(f \) is \(O(1) \) on \(U \). We will show that \(u \) is \(O(\sqrt{a(h)}h^{-1}) \) on \(U \cap \Gamma_+ \setminus \Gamma \); the conclusion on the larger set \(W \cap \Gamma_+ \setminus \Gamma \) follows by propagation of singularities.

Next, [6, Lemma 4.3] states that if \(U_1 \) and \(U_0 \) are open sets with \(\Gamma \subseteq U_1 \subseteq U_0 \subseteq U \) then there exists a nonnegative function \(q \in C^\infty_0(U) \) such that

\[
q = 1 \text{ near } \Gamma, \quad H_\rho q \leq 0 \text{ near } \Gamma_+, \quad H_\rho q < 0 \text{ on } \Gamma^\infty_+ \setminus U_1.
\]

Moreover, we can take \(q \) such that both \(\sqrt{q} \) and \(\sqrt{-H_\rho q} \) are smooth near \(\Gamma_+ \).

Remark. — The last paragraph in the proof of [6, Lemma 4.3] should be replaced by the following: To make \(\sqrt{-H_\rho q} \) smooth, let \(\psi(s) = 0 \) for \(s \leq 0 \), \(\psi(s) = e^{-1/s} \) for \(s > 0 \), and assume as we may that \(U_\rho \cap S_\rho \) is a ball with respect to a Euclidean metric (in local coordinates near \(\rho \)) of

\[2382\]

Kiril Datchev & András Vasy
radius \(r_\rho > 0 \) around \(\rho \). We then choose \(\varphi_\rho \) to behave like \(\psi(r_\rho^2 - |.|^2) \) with \(r_\rho'<r_\rho \) for \(|.| \) close to \(r_\rho' \), bounded away from 0 for smaller values of \(|.|\), and choose \(-\chi_\rho' \) to vanish like \(\psi \) at the boundary of its support. That sums of products of such functions have smooth square roots follows from [7, Lemma 24.4.8].

The proof of Theorem 4 proceeds by induction: we show that if \(u \) is \(\mathcal{O}(h^k) \) on a sufficiently large compact subset of \(U \cap \Gamma_+ \), then \(u \) is \(\mathcal{O}(h^{k+1/2}) \) on \(\Gamma^u \setminus U_1 \), provided \(\sqrt{a(h)}h^{-1} \leq C h^{k+1/2} \).

Now let \(U_- \) be an open neighborhood of \(\Gamma_+ \cap \text{supp} \ q \) which is sufficiently small that \(H_pq \leq 0 \) on \(U_- \) and that \(\sqrt{-H_pq} \) is smooth on \(U_- \). Let \(U_+ \) be an open neighborhood of \(\text{supp} \ q \setminus U_- \) whose closure is disjoint from \(\Gamma_+ \) and from \(T^*X \setminus U \). Define \(\phi_\pm \in \psi^{-\infty}(U_+ \cup U_-) \) with \(\text{supp} \ \phi_\pm \subset U_\pm \) and with \(\phi_+^2 + \phi_-^2 = 1 \) near \(\text{supp} \ q \).

Put
\[
b \equiv \phi_- \sqrt{-H_pq^2}, \quad e \equiv \phi_+^2 H_pq^2.
\]

Let \(Q, B, E \in \psi^{-\infty,0}(X) \) have principal symbols \(q, b, e \), and microsupports \(\text{supp} \ q, \text{supp} \ b, \text{supp} \ e \), so that
\[
\frac{i}{h}[P, Q^*Q] = -B^*B + E + hF,
\]
with \(F \in \psi^{-\infty,0}(X) \) such that \(\text{WF}_h'F \subset \text{supp} \ dq \subset U \setminus \Gamma \). But
\[
\frac{i}{h} \langle [P, Q^*Q]u, u \rangle = \frac{2}{h} \text{Im} \langle Q^*Q(P - \lambda)u, u \rangle + \frac{2}{h} \langle Q^*Q \text{Im} \lambda u, u \rangle \\
\geq -2h^{-1}\|Q(P - \lambda)u\| \|Qu\| - \mathcal{O}(h^\infty)\|u\|^2 \\
\geq -Ch^{-2}a(h) - \mathcal{O}(h^\infty),
\]
where we used \(\text{Im} \lambda \geq -\mathcal{O}(h^\infty) \) and that on \(\text{supp} \ q, (P - \lambda)u \) is \(\mathcal{O}(1) \). So
\[
\|Bu\|^2 \leq \langle Eu, u \rangle + h\langle Fu, u \rangle + Ch^{-2}a(h) + \mathcal{O}(h^\infty).
\]
But \(\langle Eu, u \rangle \leq Ch^{-2} \) because \(\text{WF}_h'E \cap \Gamma_+ = \emptyset \) gives that \(u \) is \(\mathcal{O}(h^{-1}) \) on \(\text{WF}_h'E \) by the first paragraph of the proof. Meanwhile \(\langle Fu, u \rangle \leq C(h^{-2} + h2^k) \) because all points of \(\text{WF}_h'F \) are either in \(U \setminus \Gamma_+ \), where we know \(u \) is \(\mathcal{O}(h^{-1}) \) from the first paragraph of the proof, or on a single compact subset of \(U \cap \Gamma_+ \setminus \Gamma \), where we know that \(u \) is \(\mathcal{O}(h^k) \) by inductive hypothesis. Since \(b = \sqrt{-H_pq^2} > 0 \) on \(\Gamma^u \setminus U_1 \), we can use microlocal elliptic regularity to conclude that \(u \) is \(\mathcal{O}(h^{k+1/2}) \) on \(\Gamma^u \setminus U_1 \), as desired.
BIBLIOGRAPHY

Manuscrit reçu le 12 juin 2012, accepté le 10 janvier 2013.

Kiril DATCHEV
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4397, U.S.A.
datchev@math.mit.edu

András VASY
Department of Mathematics, Stanford University, Stanford, CA 94305-2125, U.S.A.
andras@math.stanford.edu