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THE WINDING NUMBER ON TWO MANIFOLDS

par Bruce L. REINHART (R.ILAS.) ().

In his thesis [6], Smale has found the regular homotopy
classes of regular closed curves (i. e., immersed circles) on
a Riemannian manifold M. His work leaves unanswered the
question : Which homotopy classes contain embedded circles?
We may assume tha the dimension of M 1s 2, since otherwise
the problem is trivial. Then our question has been answered
for the plane by Whitney [9] by use of the winding number.
For the torus, we have extended the winding number technique
to get necessary conditions for the existence of a simple closed
curve in a given regular homotopy class [3, 4].

In this paper, we shall define the winding number, or more
precisely the winding homomorphism, for compact orientable
two manifolds; it is a homomorphism from the regular homo-
topy group of M into the integers modulo %, where x is the
Euler characteristic of M. We shall compute the value of
w for a regular simple closed curve, assuming its homotopy
class (in the usual sense) is known. As applications, we
get conditions for the nonexistence of periodic solutions of
differential equations, and necessary and sufficient conditions
for regular homotopy of curves on the sphere and the torus.

(1) This work was begun at the University of Michigan with the support of
the Office of Naval Research, and completed at RIAS, partially supported by
the United States Air Force Office of Scientific Research under contract number
49 (638)-382.
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1. — The winding homomorphism. Axioms.

Let M be a compact, connected, oriented, two dimensional
Riemannian manifold of class C* and Euler number x. A
parametrized curve on M will be a mapping of the unit interval
I=§t/0<t<<1} into M; it will be called regular if it is
C' and has everywhere a nonzero derivative, that is, the image
has a nonzero tangent vector at each point. A regular curve
1s an equivalence class of parametrized regular curves under
the relation: two parametrized curves are equivalent if their
parameters are related by a function with everywhere positive
derivative. Corresponding to every regular curve C there
is an induced curve C: [ - T(M) where T(M) is the bundle of
unit vectors tangent to M. C will be called the tangent curve to
C. A homotopy of curves will be called regular if each stage is
a regular curve, and there is induced a homotopy of the
tangent curves. A regular curve is closed if its initial point
and direction coincide with its final point and direction.
The notion of regular homotopy with fixed base and direction
defines an equivalence relation on the set of regular closed
curves beginning at this base. By the theorem of Smale [6],
the regular homotopy classes are in one one correspondence
with the elements of the fundamental group =,(T(M)). This
correspondence is such that the composition of regular curves
on M by joining them end to end corresponds to the multi-
plication in =,(T(M)); hence the set of regular homotopy
classes may be given a natural group structure. We shall
call this the regular homotopy group of M and denote it by
na(M). The zero of wg(M) is the class of a nullhomotopic
curve shaped like a figure 8, traced out as in ordinary writing.
For a fuller discussion of the concept of regular curves, see [6].

Let M be of genus g, and {A;} i =1, ..., 2 g be a genera-
ting set for =,(M), satisfying the relation

AAATA L A =1
Let H be a fibre of T(M). " Then it is proved by Seifert [5]

that =,(T(M)) is generated by {A;,, H{ with the relations:
H commutes with each other generator, and

AAAT . A HY - = 1
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(see also § 2 below). In the case of the torus, the methods
of [4] show that there is defined a homomorphism

w: (M) > Z

such that the value of w on any regular curve with a finite
number of selfintersections is equal to the number of nullhomo-
topic loops which it contains. Here Z is the ring of integers.
For general M, we might seek a similar homomorphism.
Such cannot be found, however, since it would depend only
upon the abelianized form of =z(M), and in this form H is
of order |x|. This suggests using instead a homomorphism
into Z,, the integers modulo x.

It will be convenient to introduce the notion of a regular
generating system for =;(M) at the point Q; this will be a
set of regular simple closed curves (A} ¢=1, ..., 2g,
on M tangent to a fixed direction at Q. Let D, c D, be two
discs about Q of small diameter. We shall assume that
the curves A; do not meet outside D,; then from the structure
of the 4 g sided polygon we see that their crossings of its
boundary are arranged in the order.

1o, 2[i, 1[i, 2o, ..., (2g—1)/0, (2g)/1, (2g—1)/i, (2g)/o

where 1/o is the point where A, leaves D,, 2/i the point where A,
enters, etc. Moreover, we shall assume that the A; meet
within D, only at Q, and that their crossings of its boundary
are arranged in the order 1/o, 3/o, ..., (2g — 1)/o, 2/[i, 1]i,
4li, ..., (2g)i, 2g —1)/t, 2o, 4[o, ..., (2g)/o. Finally,
we shall assume that in D, — D,, only those crossings occur
which are necessitated by the relative order of the points
on the two boundary curves; for this purpose, the ordering
will be understood to be linear, not circular. The properties
of a regular generating system will be examined more closely
in § 3.

We may now define precisely the object of our study,
the winding homomorphism.

DerFinNiTiION. — The winding homomorphism w is a homomor-
phism of ww(M) into Zx (the integers modulo x) such that.
(t) w has the value O on the regular homotopy class of each
of the curves of a regular generating system for =,(M).
18
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(1t) w has the value 1 on any positively oriented contractible
regular simple closed curve passing through the base direction

at Q.

DeriniTION. — The winding number of a regular closed
curve C is the value of w on the regular homotopy class of C;
by abuse of language, we shall denote this value by w (C).

2. — Existence and uniqueness of the winding homomorphism.

In order to show the existence and uniqueness of w, we
use the techniques of obstruction theory, as exposed in
Steenrod [7]. It is known that there exists a cross section F
of the unit tangent bundle T(M) defined on M minus one
point P. Given any two such sections with the same singular
point, hence the same primary obstruction, there is defined
a difference cocycle, which is a coboundary if and only if
the two sections are homotopic. Hence, the homotopy
classes of such sections correspond one one to the elements

of H'(M, P; Z), which is isomorphic to H!(M; Z).

Derinition. — If C is a closed curve on M and F and F’
are vector fields defined along C, we shall denote by d(C; F, F’)
the value of the difference cohomology class of F and F' on the
homology class determined by C. d(C; F, F’') will be called the
difference number of C with respect to F and F’.

At any point of M — P, there is a signed angle from F’
to F defined by the Riemannian metric; denote this angle
by F — F'.

Prorosition 1. — If F and F’ are of class Q1

d(C; F, F') =%: f d(F — F').

Proof. The function F — F’ is a map from C onto the
unit circle, considered as the set of angles. As shown in
[4, Proposition 1], the degree of this mapping 1s given by the
indicated integral. On the other hand, from obstruction
theory it 1s clear that this degree i1s equal to the difference
number.
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DeriniTION. — The winding number of a regular closed

curve C with respect to a vector field F which has no singularity
on C s

w(C; F) = d(C; C, F)

where C is the tangent vector field to C.
If C 1s of class C?, then by Proposition 1

w(C; F) =2—1nf;d((':—— F).

It follows from Smale’s theorem that any regular curve
of class C* with tangent vectors close to those of a given
curve C is regularly homotopic to C. On the other hand,
the winding number is clearly unchanged by a small defor-
mation. Hence, we shall allow ourselves approximations by C?
regular curves whenever it is convenient.

Let A, be a regular generating system for =,(M), so that
the homology classes of these curves form a basis for H,(M; Z).
Let H be a regular simple closed curve through the base direc-
tion at Q, contained in D, and positively oriented. Let F’
be a vector field with one singularity, located at a point P
not lying on any of the curves in question. Finally, let
w(A;; F') = @ Define a vector field F by the requirement
that d(A;; F, F') = «. F is unique up to homotopy, and

w(Ai F) = w(Ag F') + d(A; F, F) = o, — @, = 0,

Let »(z) for z € Z denote the class modulo x to which z belongs.

DeriniTioN. — If C is any regular closed curve,
w(C) = x,w(C; F).

Lemma 1. — Let D be a closed disk about P and let
N=M—D. Then w(C; F) depends only upon the regular
homotopy class of C in N, so defines a homomorphism w':
nn(N) = Z such that

(t) w' vanishes on the classes determined by A,i =1, ...,2g.

(1t) w' = 1 on the class of any nullhomotopic positively orien-
ted regular simple closed curve through the base direction.

Proof. Consider a regular homotopy C(t, t) on N, where ¢ is
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the parameter along the regular curves. Expressing the integral
for w(C; F) in terms of ¢ and =, it is clearly a continuous
function of <. Since it is integer valued, it must be constant.
Thus we may define for §eng(N), Cef, w'(§) = w(C; F).
w’ 1s a homomorphism; this follows easily from the integral
formula. (i) follows from the choice of F. To show (i) let
C be a curve of the kind required. Lifting this curve up
into the universal covering space of N, we again get a closed
curve, which is regularly homotopic to a small simple closed
curve by the Whitney-Graustein theorem [9]. This homo-
topy projects into a regular homotopy in N; we may suppose
that the final curve is small enough to lie on a given disc
about the base point. Since any two nonsingular vector
fields on a disc are homotopic, the winding number of the
curve is the same as it would be in the plane, that is, + 1.

It will be of interest later to note that the winding number
of a regular « figure 8 » curve enclosing D, but nullhomo-
topic on M, 1s 2 g — 2. This follows by lifting the situation
onto the universal covering space of M, then computing
w(C; F) = d(C; C, F) by comparing each field with the field
of constant direction.

In order to relate the results of lemma 1 to regular homotopy
on M, we consider the injection map of N into M, and the
induced injection of T(N) into T(M). The latter is consistent
with the representation of regular homotopy classes by the
homotopy of the tangent bundle. Using this fact, we may
compute explicitly the map t4: ®a(N) - 7r(M) induced by
the injection: i: N — M. For this purpose, we use the notion
of C W complexes, an exposition of which may be found in [8].
Our proof is simply a modernization of the work of Seifert [5].
We may give a C W decomposition of T(N) as follows :

Let Q be the base point on N, Ajt =1, ..., 2 g) simple
closed curves bounding a 4 g sided polygon, and E a simple
closed curve through Q, otherwise interior to the polygon,
and enclosing D. T(N) has a product structure, given expli-
citly by the fact that F and its orthogonal field define a paralle-
lization. Let H be the fibre through Q (this makes sense
since N may be embedded as a cross section in T(N)). There
is a deformation retract of N onto a manifold bounded by E,
which gives rise to a deformation retract of T(N) onto a
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manifold bounded by H X E. Thus, we get the following
decomposition of space or the homotopy type of T(N):
I. Zero cell: Q.
II. One cells: A, H, and E.
III. Two cells: the 4 g sided polygon minus a disc, and
the products of H with of each the other one cells.

IV. One three cell.

In order to get a decomposition of T(M), we need to add
a one cell E' on E X H, such that E’ is contractible as a curve
on the surface of the solid torus filling E X H; the homology
class of this in terms of E and H may be computed by using
the known index of the singularity at P. We need also to
add a two cell spanning E’; and a three cell which is the
rest of the solid torus. Then =,;(T(N)) has generators Aj,
H, and E and relations:

AAATIAY L A E =1

H commutes with all other generators

while =,(T(M)) has generators A;, H, E, and E’ and all the
same relations, plus EH?2 = E’=1. This may be rewritten
so that we use the same generators as =,(T(N)), but one
additional relation;

EH?-2 =1.

Hence, the map on the fundamental group induced by the
injection map becomes simply the quotient map by the least
normal subgroup generated by EH*—*.

Prorosition 2. — There exists a unique homomorphism w
of =a(M) into z, such that.
(1) w vanishes on the classes determined by A, i =1, ..., 2¢g

(where these are the A; of lemma 1).
(it) w = 1 on the class of any nullhomotopic positively oriented
regular simple closed curve through the base direction.
Proof. Let £ewz(M) and Ce%. Define

w(€) = w(C) = »xw'(C; F).

It is clear from the definitions of w and w’ that w = »x w'iZ},
when evaluated on a particular regular curve C. We need
to show that w depends only upon the regular homotopy
class of C in M. Let us represent the generating elements
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of =,(T(M)) and =, (T(N)) by regular curves on M. Since
w'(A;) = 0, we may take A; to represent the class of Al
Represent H by a posmvely oriented contractible regular
simple closed curve on N. Finally, since E winds about
the fibre over P 2g— 2 times, we represent it by a contractible
« figure 8» curve enclosing P. The kernel of iy consists
of products of conjugates of EH?—2; since

w'(EH20-2) = 0,

it follows that w is a homomorphism on =g(M). Properties (i)
and (it) follow from lemma 1. These properties define w
on a generating system for mx(M); hence they determine it
uniquely.

3 — The winding number of a regular simple closed curve.

Heretofore, we have defined the winding homomorphism
and proved its exsitence and uniqueness. There remains
the crucial question of computing the winding number for
simple curves C. To do this, we represent the homotopy
class of C in terms of a regular generating system for =,(M),
then use a covering space argument to show that the winding

number depends only upon the way the curves of the regular
generatmg system used to represent C cross in D,. Finally,
we give an algorithm for computing the w1nd1ng number.

We begin by extending the regular generating system to
include curves representing A;7*. Each such curve will agree
with the corresponding A; outside D,, except for the direction
of motion. The curves A;', must cross the A, ,, t<j,
in order to approach Q in the correct direction. The curves
A3 must cross A,;, 1 <j, and A,,_,, all k, in order to approach Q
in the correct direction. In leaving Q, A;' must cross A,;_,
and A;' must cross A, provided there exists a k such that
t << 2k <j. Only those intersections mentioned above will
be permitted to occur. It is easily seen that A; A7' is a
nullhomotopic « figure 8 » curve; this justifies the notation
A;' and shows that w(A;') = 0.

Let the homotopy class of C be given by X, ... X,, where X,
is one of the classes A7'.  We shall assume that no subsequence
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XiXiot « - - Xi,r 1s nullhomotopic; the total sequence can
reduce to the empty sequence only in case C i1s nullhomotopic.
In that case, the winding number is 41 if C is positively
oriented and — 1 if C is negatively oriented, by arguments
used before.

LemMa 2. — On any orientable 2 manifold covered by the
plane, every element of the fundamental group is of infinite
order.

Proof. The fundamental group acts on the plane as covering
transformations. Thus, any element of finite order would
generate a finite cyclic subgroup acting on the plane, such
that only the identity has fixed points. But this is impossible,
since by a theorem of Brouwer [1] and Kérékjarto [2], every
such transformation is topologically équivalent to an orienta-
tion preserving linear map.

Lemma 3. — If C s a simple closed curve homolopic to
X; ... X,, the winding number of C is the sum of ¢ mtegers
each associated to one of the ordered pairs X,X,, ..., X
XXy

Proof. Let (M, p) be the universal covering space of ),
that is, p: M — M and M is either the sphere or the plane.
In the first case, C must be nullhomotopic, so we may assume M
i1s the plane.

Let C be a component of p~!(C); it is infinite in both directions
because C 1s of infinite order, and it separates the plane.
Let Q, be a point of p~*(Q) not lying on €. Let X, be a
connected subset of p~!(X,) beginning at Q, and covering
every point of X, except Q exactly once, and let Q, be its
endpoint.

By induction, define curves X; and points Q,, i =2, ..., q.
The result is a curve X* joining Q, to Q,, whose projection
1s homotopic to C.

By proper choice of Q,, we may assume that X* does not
meet C; then the same is true of the curve X (infinite in
both directions) made by duplicating X* by the operatlon
of the covering transformation C correspondmo' to C. X is

not necessarily a simple curve, since Q; has a connected

.y ‘I“’l
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neighborhood in p~'(D,) which may contain some points of
intersection associated to the sequence X,X;,,; we may
assume that the neighborhoods are also disjoint from C.
Let P; be a point on Xep"(Dz) R, a point on C, and P,
and R, their transforms by C. Let Y be a regular simple
closed curve tangent to C at P, and X at R,, not otherwise
meeting them, and not passing througt any singular point
in p~3(P). By translating half of ¥ to a curve P,R,, we may
construct a regular closed curve B(= P,P,R,R,) which, without
loss of generality, may be assumed positively oriented. Then
we have the following equations, in which K is the vector
field of constant direction in the plane:

%de—F = [d(B—K)+2—fTﬁd(K—F)

E%f d(B — K)
1+

algebraic number of crossings in B (mod z).

(11)

21;\/3 d(B —h= iﬂ(ﬁ.?, + ﬁ,n, +ﬁ,n, + n,P,>d(B—F)

=14+ d(€C—F)=1+ w(C) (mod z),

2uopp
since the second and fourth integrals add up to 1, while the
third integral is w(X, ...X,) =0, and the first integral is
along the portion of B which covers C.

We conclude that w(C) is equal to the algebraic number
of crossings in B, which may be found by adding up the
number of loops associated to each sequence X; X;, ,. This
proves the lemma.

Tueorem. — Let C be a regular stmple closed curve homotopic
in the usual sense to X, ... X,, where X; = A;' and no subse-
quence X, X;., ... Xy., ts nullhomotopic. Then w(C) is the
sum of the integers assoctated to the sequences

Xy Xgy ooy Xy Xy X, X,
by the following algorithm:
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Consider the schema

1/o, 2[i, 1ft, 2[o, 3lo, 4&[i, 3[i, 4/o,
2g — 1o, 2g[i, 2g—1[i, 2gfo
1/o, 3o, ...,
2g — 1o, 2[i, [, 4fi, 3[i, ...,
2glt, 2g—1/i, 2/o, 4fo, ..., 2g]o.
Then to any sequence AjAf(e, f==1) we associate the

two by two subschema formed by choosing the terms j|x and kly;
here

x=g if e=3_i
y=x if f=3_1

Convert this schema into an integer two by two matriz by
the substitution of 0 for jlx and 1 for kly; let s denote the deter-

minant of this matriz. If e = —f, define another integer t
by the rule:
A;}’—lAﬂk—( ] <k
t =1 for the sequences { A,A,, ] <k
z_jiA‘ik-—i A
_ y—1 Dy
t=—1 for the sequences?AjAk k<2l <] for some

t =0 otherwise.

Ther. the integer assoctated to A§ Af is the sum s + t.

Proof. By lemma 3, we have reduced the problem to
computing the number of loops produced by the crossings
of As and A/ in the region D,. Examination of the cons-
truction of the regular generating system for =;(M) reveals
that these crossings give rise to loops of positive orientation
in the cases indicated by + 1, to loops of negative orientation
in the cases indicated by — 1, and to no loops in the cases
indicated by 0 above. (The integer s expresses the number
of loops necessitated by crossings in D, — D,, and the integer ¢
the number of loops necessitated by crossing in D).

CoroLLary 1. — On the sphere and torus, the winding
number of a regular simple closed curve i1s == 1 if nullhomotopic,
and O otherwise. Moreoever, two regular closed curves which
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are homotopic are regularly homotopic if and only if they have
the same winding number. Both these results are false for
surfaces of higher genus.

Proof. On the sphere, all curves are nullhomotopic. Delete
the singular point of the standard vector field F; then we
have the plane situation, in which a simple closed curve
has winding == 1. Hence, its winding number on the sphere
1s 1(modulo 2). On the torus, we deal with nullhomotopic
curves easily by referring to the covering by the plane, since
the standard vector field may be chosen to be that one covered
by the field of constant direction. Curves which are not
contractible we represent in the form A{A} (using the abelian
character of the fundamental group); thus we need only
know that for each of the four pairs of sequences

A¢A/ and AJAY,

with e, f= =1, the sumn of the associated integers is zero.
This proves the first statement.

Consider the presentation of =x(M) given in §2. For the
sphere or torus, the powers of H form a direct summand
of an abelian group, and  is an isomorphism on this subgroup;
this proves the second statement. On a surface of genus
greater than 1, there is a simple closed curve in the homo-
topy class A,A7'. By the algorithm, 0 is associated to A A"
and 1 to A7'A,. Hence, the winding number is 1, showing
that the first statement 1s false for such a surface. The second
1s disproved by the fact that the powers of H form an infinite
cyclic subgroup of =g(M), hence cannot be distinguished by
a homomorphism into a finite cyclic group.

Cororrary 2. — Let Fy be a vector field on M having unique
trajectories through nonsingular points and let S be its locus
of singular points. Let C be a noncontractible closed curve
and w, the winding number of any simple closed curve homotopic
to C. Suppose

e de(Fl — F)s£w, mod 7.

Then C is not homotoptc on M — S to any integral curve of F,
Proof. If C’ is any closed integral curve homotopic to C
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on M — S, then C’ is a regular simple closed curve. Hence
we have

1 1
ﬂﬁal(Fl—F):z—ﬁfcd(m—F)

| A _
9 C'd(C —F)=w, (mody)-

Il
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