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THE THIRD BETTI NUMBER
OF A POSITIVELY PINCHED RIEMANNIAN

SIX MANIFOLD

by Walter SEAMAN

Introduction.

The Sphere theorem, together with the classification of symmetric
spaces, provides a complete classification for compact simply connected
Riemannian manifolds whose sectional curvature, K, satisfies

1 ^ K ^ . • Namely, each such space is topologically a sphere, or a

projective space over the complex, quatemionic or Cayley numbers. These
spaces are sometimes called the « model» spaces. Recently, Berger [3] has

shown that there is a number, e(n) € (0,j) such that any In-dimensional

compact simply connected manifold with 1 ̂  K ^ e(n) is still
topologically a model space. Unfortunately, e(n) is « purement ideal»,
and one would like to have some quantitative information about it. We
hasten to add that there are known examples of compact simply connected
positively curved manifold topologically distinct from the model spaces,
and in fact the even dimensional homogeneous ones have been classified.
These include, besides the model spaces, examples in dimensions 6, 7,12,13
and 24 c.f. [9]. There are also known examples, in dimension 7, of infinitely
many simply connected, homotopically distinct, positively curved compact
manifolds [1].

One indirect way to get a feeling for Berger's e(n) would be to exhibit
actual numbers 8, with the property that any « 8-pinched » compact
manifold (i.e. 1^K^8) is at least cohomologically similar to a model
space. The procedure here is to use the Weitzenboch—Bochner method,
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which states that the positive definiteness of an operator 9t^ on k-forms
guarantees that there are no nonzero harmonic fc-forms, together with the
Hodge-DeRham theorem, which then implies that the k111 real Betti
number must be zero. This method has an extensive history [5,2,6], and we
use it to prove our:

THEOREM. — If a compact six manifold has sectional curvature K,
4 /10 — 4

satisfying 1 ̂  K > —>/———— ^ .2426, then b^(M;R) = 0.
4^10 -h 23

The proof amounts to showing that the cited restriction on K guarantees
that ^3 is positive definite. Our result is motivated by the fact that all the
model spaces have zero odd dimensional cohomology, so it is natural to try
to show that this property is preserved when the curvature goes slightly

below . • Furthermore, the only known (at least to us) positively curved

compact six manifolds, S6, CP3, and Wallaces SU(3)/T2, all have
&3 = 0.

We would like to thafik the referee for suggestions simplifying the form
of ^3, and Professor Richard Randell for many helpful topological
discussions. Finally, we add that we believe that our current lower bound

0

for K can be improved to _j j

1. Preliminaries.

Let M be an n-dimensional Riemannian manifold, and (o a k-form on
M. Define a k-tensor field on M, as follows, at each p e M :

n k
(1) ^o)p0;i,...,i;k) = ^ ^ (R(^,^)(o)p(i;i,...,^._ 1,^,^+1,..., Vk)

i = l j = l

where Vj e TpM, {^} are an orthonormal basis for TpM, and R is the
Riemannian curvature tensor, extended to act on k forms as usual. Then
we have the Weitzenbock formula ([8], chapter 4):

(2) <A(O,CO> = .A|(o|2 + |Vco|2 -h <^G),G)>.
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By the well-known Bochner argument, if M is compact, boundariless and
orientable, and A® = 0, while ^ is positive definite everywhere
(actually just positive semidefinite everywhere and positive definite at one
point suffices), then (2) implies that CD must be zero. The Hodge-DeRham
theorem then implies that fc^(M;R) = 0. Since finite coverings of compact
manifolds only decreases fcfc(M;R), this result is also true for M
nonorientable. Therefore, to prove our result about &3(M;R), we examine
^?3. Throughout the remainder of this paper we will be working at a fixed
p e M. Let co e A^TpM*) and let X e A^TpM) be the metric dual to
©: X1' = ©. The right hand side of (1) can be written as :

(3) - Z E <Rte,^iA...Ay,),X>,
1=1 j= i

since the extension of R acts as a derivation. Now examine (3) in the case
k = 3. A straight forward, tedious argument using the Bianchi identity,
shows that (3) equals

(4) <^3(^A^At;3),X>

where
^3 = Ric - 2ft,

with

Ric ( f lAfcAc) = Ric (a) A b A c -+- a A Ric (b) A c + a A b A Ric (c)
fe ( f lAfcAc) = aAR(fcAc) + R(aAfc) A c + b A R(cAa)

a, b, c e TpM, Ric = Ricci tensor and R = the curvature operator. In
particular, ^3 is symmetric, since both Ric and ft are. We should add
that this formula for ^3 is most easy to derive by first considering
X = Xi A X2 A X3 and then using linearity.

From the previous discussions we know that, for a compact manifold, if
^3 is positive definite, then (since p e M was arbitrary) &3(M;R) = 0.
Let X e A^pM be an eigenvector for ^3 with minimum (real) eigenvalue
r : ̂ X = rX. Let M now be six dimensional. To proceed we need to
have a nice form for X. This is provided in the following.

THEOREM [4,7]. — Let X e A^6. Then there is an orthonormal basis
e^ .. .,^ of R6 such that

X = X^i23 + ^145 -»- ^246 + ^356 -I- ^5^456
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where
Cijk = Ci A Cj A Ck.

This theorem is proved by maximizing the function <X,.—. , . , ) , and
j f l A o A c ]

^i is the maximum, attained at ^123 • This procedure is then iterated. By
changing the signs of various ^, we can assume:

(5) |^| > ̂  > ^3 > ^4 > 0 and |^| > ^5 > °-
There are examples where ^i is positive and examples where ^ is
negative. In our proof that ^3 is positive definite, we will need various
inequalities among the ^ 's. These inequalities are all derived from:

(6) |X,| > <X ^^^^^ A (^2-^5) A (03^+0404)
^(flf+aj)(flj+a|)(aj+ai)

which is valid since |^J is maximal. Taking a; = 1, i = 1, ..., 6 in (6),
we obtain:

(7) 2^2 |XJ ^ ̂  + ^2 + ^3 + ^-4 + ^5 •

If Xi > 0, (7) yields ^

(8) (2^/2- 1)X, ^ ?l2 + ^3 + ^4 + ^5 •

Taking a^ = a^ = ^5 = ̂  = 1 > °3 = ^i + ^4» ^ = ^2 + ^3 + ^5.
(6) yields:

(9) 2\^\ > ̂ i+?l4)2 + (?l2+^3+^5)2.

This last together with (5), the following:

(10) 2|^J > ^2 + ^-3 + ^5 ^ ^-2 + ^4 + ^5 > ^3 + ^4 + ^-5 •

Adding these last three inequalities we obtain:

(11) 3|XJ ^ 2 + ^ 3 + ^ 4 + | ^ 5 .

2. Theorem and Conclusion.

In this section we prove our:

THEOREM. — Let M be a compact six manifold with section curvature
A f\r\ _ 4

K, satisfying 1 > K > -^==——— ^ .2426. TT^n fc3(M;R) = 0.
4^/10 + 23
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Proof. — From § 1, we need only show that ^3 is positive definite.
We assume that 1 ̂  K ^ 8, where 1 > 8. As in § 1, let ^X = rX,
where r is the minimum eigenvalue for ^3. We shall show : r > 0 if

4 /TO — 4
8 > v———— - We may assume that X has the form indicated in the

4^10 + 23
theorem of§l. Now use (4) to examine the components of ^X, i.e., write
out <^3X,^i23>» <^3X,^i45>, etc. The results are:

(12) A^r = A,iKi23 — 2^2^4532 — 2^3R4^3 — 2^^5621.

(This follows from ^r=(rX,e^3> = ̂ X,^).)

(13) A^ = ^2^145 ~ 2^-^4532 — 2^^6215 — l^^R^^

-+- ^5{^2162+K.3163—^5615—^4614}

(14) A,3r = A,3K246 — 2A.iR3i64 ~ ^2^5126 ~ 2^^3542

+ ^5{R6526+R4524~R3523—K.152l}

(15) r̂ = A-4K356 — 2^,iRi265 ~ 2^.2^1436 ~ 2^3R2453

+ ^5{^1341+K.2342~R5435—R6436}

(16) A,5r = A,5K^23 + ^2 {^2162 + ̂ 3163 ~~ ^-5165 ~ ^4164}

+ A(3{^6256+^4254~^3253~^125l}

+ ^'4{^1341+K.2342~^5345—^6346}•

Here Ry^ = <R(^.,^.)^,^> and

^.3= Z (^+K,^K,^)
^'p^.'s

where {e^e^e^ej} c {^i,...,^}, and Ky is the sectional curvature of
the plane {e^ej}.

The proof of our theorem involves interpolating (12)-(16) along with

(5),(8)-(11). We shall be freely using that IR^I^ 2^-^) and
1

\R^\ ^.(1-8), cf.[5]. We may assume that ^ = + 1 or - 1.

Case 1. ^-i = + 1. In this case (12) yields:

r^98-^(l-8)(?i2+^+^4).

From (8), we get r > 98 - , (1 -8)(2^/2-1). The right hand side here is
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8 / 2 — 4
positive as soon as 6 > v — ^.213, so our theorem is proved in
.. %J2 + 23this case. v

We may now assume that ^ = — 1, so (12) becomes:

(17) r = K^ + 2^4532 + 2^R46i3 + 2^5621 .

Case 2. ^ + ^.3 + ^4 ^ 2. In this case, (17) yields
0

r ^ 95 — - (1—8) . The right hand side here is positive as soon as
0

8 > — ^ .229, so our theorem is proved in this case. Note in particular

that if ^5 ^ ^4, then (10) yields 2 ^ ̂  + ^3 + ^4- Thus we "^Y now

assume both that ^ + ^3 + ^4 > 2 and that ,̂4 > ^,5. In general,
3 ^ ^2 + ^-3 + ^4 > 2, so we need more inequalities to work with. This
is achieved by adding (17), to (13) through (15). The result is:

(18) (l+^+^3+^4)y = K^3 + ^Kl45 + ?46 + ̂ 56

fl) + 2[(1+^)K4532 - R3542(^3+^4)]

fc) + 2[(l+)l3)R4613 - R4163(^2+^4)]

C) + 2[(1+?.4)R5621 - R265l02+M + ^[Sl+S^+S^

where S^ = R2i62 + R3i63 — ^5515 — ^4614 an(^ so on- Note that
S, ^ - 2(1 -8), i = 1, 2, 3 . We now estimate from below 18a), b) and c).

(19) 18a)^(l-8)(l+)i2).

This is clearly true if R3542 ^ 0- It R3542 > 0» ^en since
1 + X.2 > ^3 + ^4» - R3542(^3+^-4) ^ - R35420+^)- Using this
lower bound and the Bianchi identity we get: ISd) ^ 2(1+^-2)R4352
which again yields (19).

(20) 18b)^ -^(l-8)(l+?i3).

This is proved just like (19), since 1 + ^-3 ^ ^-2 + ^4 •

(21) Case A: If 1+^4 ̂  +^-3 then 18c)^ - 4(l-5)(l+?l4).

4
CaseB: If 1+^4<^2+^3 then 18c)> --(1-8)(X.2+^3).
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Again these are proved as in (19), using the Bianchi identity. Note that
either of the two cases could occur. We now use (19)-(21) in (18). Let
^ = \2 + ^3 + ^4» and, since K^ ^ 98, (18) yields

(22) Case A: (1 + ̂ 4 > ̂  + ̂ -3)

(l+^)r > (1+^)98 - ̂ (l-S^^) + ^(Si+S2+S3)

CaseB: (l+^^^+^a)

(l+^)r $. (1+^)98 - j(l-8)(l+^+?i3) + MSi+S^+Sa).

Case 3. One S, ^ 0. In this case S^ + $2 4- 83 > - 4(1-8).

From (11), ,(3-^) ̂ 5. Using these facts, (22) Case A yields:

(1-h^r ^ (1+^)98 - ̂ (1-8)(3+^) - 8(l-8)(3--3l), i.e.

(23) (l-h^)r ^ 218 - 12 + ^98+4(1-8)V

4
Now (17) yields r ^ 98 - ,(1-8)^. Multiply this last inequality by

(1+^-) and we obtain

(24) (l-h^)r ̂  (1+^)^98-4(1-8)^V

Now set the right hand side of (24) equal to that of (23) and solve for 'k.
This yields \ = ,/K) - 1 (3S^>2). Now at ^ = ̂ 10 - 1,
inequalities (23) and (24) agree. If K ^ 1̂0 - 1 then (23) yields

(l+^)r ^ 218 - 12 + (yio-l)('98+4(l-8)V

while if K ^ yi0 - 1, (24) yields r ^ 98 - ̂ (l-8)(yio-l), so the

lower bound on r with ^ = ,/K) - 1 is always valid. With this value of

^, the right hand side of (24) is positive as soon as 8 > ^ ~—, so
our theorem is proved in this case. v +
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In caseB, using (10),

2 ^ X,2 + ^-3 + X.5 => 3 ^ 1 + ̂  + ^3 + ^-5

=> -(1+^2+^3)^ -(3-^),

(22) case B yields, since Si + 82 + 83 ^ - 4(1-8),

(25) (l+^)r ^ (1+^)98 - 8(1-8) -^(l^)?^.

Again from (10) and case B, 2 ^ ̂  + ^3 -t- ^s ̂  1 + ̂  + ^-5, so
adding, we obtain 4 ^ 1 -h X, + 2 .̂5 => - ^,5 ^ - .(3-^). Using this
in (25), we obtain after some simplification,

(26) (l+^)r ^ 198 - 10 + ^98+2(l-8)y

Now repeat the argument of case A, setting the right hand side of (26) equal

to that of (24), and solving for X,. This yields X- = v——~—. and the
4

right hand side of (24) is positive as soon as 8 > v ~— ^ .236 so
/129 + 24our theorem is proved in this case. v

Case 4 (The last case). All S. < 0.

To handle this case, consider the sum:

(17)+(13)+(14)+(15)-(16).
This is :

(27) (l+^-^)r = (1-^)K^3 + ^Ki45 + ^K246 + ^356

+ 18a + 18fc + 18c + (^5-^2)81 + (^5-^)S2 + (^5-314)83.

From case 2 and (5), ^ - K, < 0 for i = 2, 3, 4. Thus, if each S, < 0,
we can eliminate the last three terms of (27) to obtain

(28) Case A: (l+^-^)r ^ (1+^-^)98 - ̂ (l^^^l)

= (1-^)98 - 4(1-8) + ̂ -^(l^V

CaseB: (l+^-^)r ^ (1+^-^)98 - j(l-8)(l+^+^).
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Consider case B first. From (10),

2 ̂ 2 + ^3 + ^5 => 3 - ̂  ^ 1 + ^2 + ^3 .

while from case 2, 1 •+- ^ > 3, so case B yields:

(29) (l^-^)r ^ (3-^/98-j(l-8) )r^(3-^)(98-j(l-8)V

0

The right hand side of (29) is positive as soon as 8 > _» so our
4

theorem is proved in this case. To handle case A, assume that 8 > — . » so

the coefficient of ^ is positive. We also have from (17),

(30) (l+^-^)r ^ (l^-^)^-^!^)^).

Set the right hand side of (30) equal to that of (28) case A. This yields
3l + A2 4- 12

^ = 5 ~ v 5———• Now repeat the argument of case 3. For

K = ^ ~ V^ + 12 , (30) y i e ld s , s ince 1 ^ ^5 ,

r ^ 98 + .(1—8)(^/12—1) and this last quantity is positive for
4

8 > - .22, so in this case r > 0 for 8 > - ^ .13 and we're done. If

3l -I- A2 _i_ 19 9
^ = —5——v—5———» use the estimate - > .̂5 (which comes from (11)

and X>2) in (30) to get r ^ 98 - JO^^2^112^ This last is

positive for 8 > ———^-= ̂  .237, so our theorem is proved in this last
85 + 8./7case. v

Q.E.D.
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