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INTERPOLATING SEQUENCES
OF COMPLEX HYPERPLANES
IN THE UNIT BALL OF C*

by
PASCAL J. THOMAS

This paper gives a sufficient condition for the existence of a
solution to the following problem :

Given a sequence of complex hyperplanes, {L}icz 49 all
intersecting B"” (the unit ball of C"), and given a sequence of
holomorphic functions {f}icz, CH” (B"') is there a function
fEH”(B") such that f| =fio¢; ,j€Z,, where ¢ is a
complex-linear map from B" ! onto LN B" ? If there is such an
f, we shall say that {L},c, isinterpolating.

Notations. = If z=(z,,...,2,)EC",w=(w,,...,w,)EC",
n
then z+ W= 2 zw, and |z| = (z-2)"* (modulus of 2),
j=1
z
z¥=—€9B" = {z:|z|=1}.
|z |

For all jEZ, ,a; = point of smallest modulus in L, (g; is the center
of the ball L, N B"). Equivalently,

L,={:€C":(z—a).G =0} (q+0).
For all jEZ,,
<50§.

Key-words: Interpolating sequences — Bounded holomorphic functions —
Carleson measures — Extension of functions.

U= lzep: | %" @4"2
] lg| (1 =z -a)
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THEOREM 1. — Given a sequence {Lj} as above, it is interpolating
if the following sufficient conditions are met:

(B) Z (l_lajlz)(l_laklz)

€zy Il—ai'a_kP

SM<oo

and
(U) forall j,k€Z,,j#Fk, then UNU, =0.

Remarks. — 1) By applying an element of the unitary group,
we can send any g; to a point of the form (a,0),a €B'. Then

zZ,—a

U/= (21,22):

<s,].

1—z,a

Since the definition of U,- is rotation-invariant, we see that for all
i, Uf is a tube surrounding the hyperplane Lj, of radius
commensurate to 1 — |al. |-

In particular, for € > 0 small enough, U; contains any set of
the form {zEB-":BwEL/:dH(z,w)<e}, where

_(a-lzPa —lw|2)>1/2

[1—z-w|?

dyiz,w) = <1

is the “hyperbolic” distance, invariant under automorphism of B”".
The regions U; are not automorphism-invariant, but condition (U)
implies in particular that the lines are separated in the metric dy,
so that if j# k, we can find fEH™ (B") such that flLiE 1 and
f |1. e = 0 (explicit computation omitted).

2) Trivially, if {L};cz, is interpolating, then the sequence
{aj};c 2z, associated to it is.

In [3], Berndtsson gives a sufficient condition for a sequence
{g}jcz, to be interpolating :

I |¢ai(ak)| =>e>0,
Jii#k

where ¢, (z) is the automorphism of B" defined in([7], 2.2.1, p. 25):
a— P, (z) —5,Q,(2)

1—z-.a

$,(2) =
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P,z)=(z.a/ la lz)a is the projection of z onto the complex line
through @ and 0, Q,(z) =z—P,(z) is the projection of :z
onto the complex hyperplane through 0 orthogonal to a4, and
s, = (1 — la|?)V2.

|<baj(ak)|2 = dy (a;,4;)* , so that the convergence of the above
product is equivalent to (B) together with the requirement that the
points a; are separated, ie. dy(g,a,)=6>0 for j#k. (U)
implies, of course, that a; are separated. We are now ready for the
following

DEFINI’EON. — Given a function f.:L,—> C, define an
extension f,:B" —> C by

~

Jx =fk°¢ak°Qak°¢ak'
This definition makes sense, since
$a (L) = 6,/ (L) = {2: 6,,(2) + T, = |, '}
1 —|a |

1—z.aq

={z:1— = |a,|?

= {z:z - @ = 0} = Range (Q,,),

and consequently ¢ak'(R(Qak)) =L, so f: is indeed defined on
B". Furthermore,

fk 'Lk = fk ° ¢ak ° QaklR(Qak) ° alek
=fio° ¢“k ° ¢ak lLk , since Q-is a projection,
=f,, since ¢ =¢ !.

In other words, ﬁ;o ¢ak = (fi o ¢ak) ° Qak, i.e. first we pull back
the situation to the case where f; is defined on a complex hyperplane
through 0, and extend it trivially to be independent of the last
coordinate.

Clearly, | f; ”H’”(Bn) = || fi ”H_’(Lk) ; (fi is what was denoted
in the introduction f; o ¢;1).

3) Suppose that for all jEZ,, a;= (®;,0), oy €B'. Then all
the L; are parallel, L,. = {z, =}, and {L} is an interpolating
sequence if and only if {%}ez, is an interpolating sequence in
B'.
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Conditions (U) reduces to

ST % <<l for j#EK,
1 — o0

and condition (B) reduces to:

y Gleha—fel)
jr itk |1 — oo [

In the case n = 1, it is well known (see Carleson [4] or Garnett
[5]) that if the points are separated (i.e. (U)), then (B) « {og}
is interpolating, so from that point of view the result is sharp.

4) Of course the points a; cannot cluster at any interior point

of B". We will, without loss of generality, remove a finite number
of hyperplanes from our sequence and henceforth assume
|a]-| =1/2, j€2,, for technical reasons. ’

The main step in the proof of the theorem is the following :

PROPOSITION 1. — Under the assumptions (U) and (B), there
exist two positive constants C, and C,, and analytic functions
{Fi}kez, such that

() VzE€B, 2 |F@)|<c,
k

(i) VEEZ, |F, |> ¢

(ili)) Vj#k, |Fk|Lj|<c?2

(the F, are ‘pseudo P. Beurling functions”).

Proof of the Theorem (assuming Proposition 1). — We will show
that one can construct from the F, true P. Beurling functions, i.e.
E,(z) verifying:

(i) Vz€B, Y |E(2)|<c<e
k

(i) B |y, =1
(iii)’ Ey |1, =0, j # k.
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Then our interpolating function will be f = }_: E‘ (2) E, (2).
k

Flue=Felue = fio and 7Nl S e(sup | Felle) = ¢ sup || fi o <o

To construct the E, :

F
K . . .
~ where ~ is the extension discussed above.

Firstlet G, = (?—l——)—'
k| Lg

Then 37“ |Ge@)| <cyfey, Gilo, =1, 'Gk’L’-|<%, j# k.

Let H =G, O (1—G).

jij#k
Since every factor is bounded below by 1/2,

—2c/c —
I (1-G)|>e ™ on L, and [He|y|=e 2
jiisk

b

while Hl, =0, j#k.

' \ c
VZEB, L IHk(Z)Igecllc2 l IGk(Z)I <_1e01/c‘2‘
k k c,y

Finally, let B, = H,/(H, |,,)”;

' c
Ee|y, =0, %k, B, =1, and Y |E ()| <™, qed
k )
Proof of Proposition 1. — Let
Foz)=(—|a.|*/1—z - @ P W(a,2) n 9,(2) - G
jii#¥ k

|1—ak -3j|< Co(1—|ak|?)

where p =>4 and C,= Cy(8,) > 1 will be specified, and following [3],

[~

W(a,,z) =exp— Y

b

]

(l+z-€- l+ak.a_i)

1—z.

~
—
I
Q
=

]
(1= g )01 = Iam]

1= |4 - &
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Convergence of the infinite product will be proved below.
Note that |¢aj(z) . 5,|< |¢ai(z) ” a,.| <1, so
|Fe@) | <2274 = |a /|1 — 2 - G P)* |W(a,2) |
The main step in the proof of [3] is that

Vz€B, Y (1 — |a /|1 =z -3 |)* |W(a,2) | <M,
p _
so 2, |Fe(@)| <2P~*M, = ¢, , which proves (i).
k

Proof of (iii). — Case 1 : j is such that
[1—a;-3 | < Co(l —|a[»).
Then ¢,(z) -a; = (g — z) - &;/1 —z.3;=0 for z€EL; is a factor
in the intlinite product, so |F,(z)| = 0<¢,/2.
Case 2: j issuch that |1 —g;. g, | = Co(1 — g [?).
LemMma 1. —If {L,‘},cez+ satisfy (U), and z€L;, j#k, then

G|l —z.a|=|1 —a;-a,|, where C; isa constant depending
onlyon §,.

Thus for all z € L,

1—|a? <C3(l—la,:|2)<& 1
|1 —z.a| [1—a-aq| C, 2

if we pick C, = 2C,.
So for z€L;, |F,(2)| < (1/2) |W(a;,z)|. But
1 -_— « 712 1 — 2 1 _ 2
IW(a,,2)| = <exp—2 |z g|* A —|g4)( |ak|)>

R N A

a—=lqgPHa-|al)
[1—a -3

X (exp 2 ) < eM(see [3)).
Jj

So it will be enough to take

2eM
p=log, | — to get (iii).
C,
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Proof of (ii). — First note that

Fely =W, 2) I ¢.,(2) - g
Jii#*k
|1—aj - 3 |< Co(1—|ak|?)

z€L, CU,, hence z ¢U;, so

— _ @ —2).a 5y
|¢ai(z)'ajl— —iT.EIL >5oldi|>’2-,

each term in the infinite product is bounded below, so we only have
to consider

> 11— ¢, - 5|
jt|1—aj. ag|< Co(1—|ak|2)
j#k 2
_ ¥ B ]

jt|1—g.a|< Co—|a > |1 2 - 4
j#k
By Lemma 1, exchanging k¥ and j,
Thus our sum is
1 —a?
<C, X 1%

jt|1=aj . T |< Co(1— |ag|2) |1~ a g

C,(1 —1la.|>» (A —|al?
i V=g a1 —a-q

<C,Co M,

so the infinite product in F, converges and is bounded below by
e~(2/50)coc3M

On the other hand,

1—|z.a@]* (1 — 2 — 2
|W(a,,z)| = exp — 2 |2 a,] ( |ai| ) (1 — & ®)
j

Tz -af

1= g

?exp—s‘ ]-lz-&}]’ C, (l_la/|2)(1—'ak|2)
T 129 |[1-a-5 1-|g-Gf

by lemma 1.
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LEMMA 2. — Given any two points a;,a, €B" ,z €L, , then

el LA P el L
ll—Z'aiJ ‘]_ak'aj’

Thus

=g —al) _ o 18CsM
I 1 - a, . Ek l2 ’
—2M (cq/80+9)C3

|W(ag,2)| = exp — ; 18C,

So we may take ¢, = e
of (ii).

, which concludes the proof

Proof of the Lemmas

Proof of Lemma 1. — Choose coordinates so that a4 = (a,0).
Let a, = (b,,b'), b'€C""'. q, ¢ U, means

|b,—a|>8,|1—b,7|,
so it will be enough to show
Cl|1—ab,—z .b'|>|b, —a,
for z=(a,z’)EL;NB, ie.
[z’?<1—[al*.
|1 —ab, =2 .B'|>|1—ab, | —/1—al? /1 —|b,
_ |b, —al?
|1 —ab,| +/1—lal* /1 —|b, >

However,
2
1—lal* <20 —lal) <201 —b,3|< 7|6, —a
and °

1= |b,* <201 = [b,) <2(1 = la| + |b, —a|)

1
<2<1 +—)|b1—a[.
80
b, —al?

=
60 60. 60 l 1 al

So the last expression is




INTERPOLATING HYPERPLANES 175

and C, =(2/(1 + 2/ TF8,)"" will do.
Proof of Lemma 2. — Note first that

—_ 2
1—|z. all a+ Z-E;I) —|z. -4

'1—2 a| [1—z. al

So thatif 1 — A akoa—,|/1/9, we have
l—lz - @) <2 () — |4 - @] qed.
|1 =23 |1~ a - g

If on the contrary

2y 1 _
(1 —|a - @ )<§|1—ak-a,|,

then
1— 2 <l 1— a;
( |ak|)\9| a - | .
So
[1=z-3|"*> |1 —a - -g|"* = |1 —2.G|"

_ 1
= |1 —a, -ajll/2 —(1 - laklz)m = (l —g) |[1—a - ’/2

and ([3], lemma 5)
1—|z-g*<2(0 = |z.GH) <40 = |z G| + 1 —|a -G
<41 =g P + 1= |a, - a@]».
Hence
1= |z-q[* 40 —|af +1—|a - &[*

1=z 4l (’i_fll—ak'ﬁll

@A~ |a - gl
41— a3

, q.e.d.

More Remarks. — 5) The interpolation problem is invariant under
automorphisms of the ball. Condition (U) is not. An optimal (but
not very practical) statement of the theorem would be: if there exists
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Y € Aut(B) such that {tl/(Li)}ieB+ satisfies (B) and (U), then
{L,} jezy is an interpolating sequence.

It is natural to ask whether the theorem can be proved if one
substitutes for - (U) the weaker, invariant requirement that the
hyperplanes Lj be separated in the metric dy; . Unfortunately,
it seems to require some new idea, since U; is precisely the region
where lq&al_(z) - @| is small.

6) Amar [1] has put to use (essentially) the same infinite

product P(z) = 1I ¢a](z) - a; to prove similar results; specifically,
€z 7

if f;€H”,f€BMOA is obtained, and if f; verify:
@) T a=|gfy [ | dhg, <o
jez, j

where p =1, and d\,,_, is 2n — 2-dimensional Lebesgue measure
on L;, then f€HP(B") is obtained.

This is done by solving a certain 0 problem, namely, if g is a
C” solution to the interpolation problem, let f =g + uP with
ou = — (1/P) dg. One then needs:
(US)3 6,,86, >0 suchthat vz€U,(5y), II |¢ai(z) . E,] =39,.

Jij#k
Clearly, (US)== (B), and by Remark 5, (US)= (U) (cf.

[1], lemma 2.1). Applying (US) to z =g, , one see that it implies
in fact

. —la, -a* ) — |a?
(P) VkEZ+, }_‘ (1 'ak a] I)£12 Iall )<C
jiitk |1~ a - g

With the help of lemmas 1 and 2, one can show that (U) and
(P) « (US).

Under those assumptions, one can use Berndtsson’s L™ solution
to the @ equation [2] to obtain an interpolating f€ H™, but one has
to require a further condition involving ‘‘Cl measures” (see [2]),
which is also more restrictive than (B), and not equivalent to (P).
It gives rise to unwieldy computation, even for n = 2.

But we are now in a position to strengthen Amar’s results;
Theorem 1 implies that under (US), bounded data can be interpolated
by a bounded function, and we have :



INTERPOLATING HYPERPLANES 177

THEOREM 2. — If {Lglez, verifies (U) and (B), and {f}}
verifies (HP), then there exists f€ HP (B) such that

fly =f, VEEZ (1<p<e).

Note that, since Y, (1 — |a.|?) fl* - d\,,_, is a Carleson
k
measure in B", condition (H?) must be verified if there is an

interpolating function f.

Theorem 2 is a consequence of :

LEMMA 4. — If there are P. Beurling functions for a sequence
of hyperplanes {L,}, thenit is HP -interpolating.

This implies in particular that any H~ -interpolating sequence
will be HP-interpolating, since one can show it will necessarily have
P. Beurling functions (follow Varopoulos’ proof [9] or [5], p. 298).

Proof of lemmad.—Let f(z)= 2 fk(z) E, (z), where

kEZ 4
E, are the P. Beurling functions and f;lLk = fi-

Let S=0B", do = 2n — l-dimensionnal Lebesgue measure
on S

frpde = [ Z B do
<L CZ1pP)(2 180 ao

<c X _/;lf;c|pd0, (where 1/p + 1/q = 1).
k

It is enough to show that, for an appropriate choice of fk, the last
series is convergent (which will retroactively prove that the integrals
we wrote down were making sense).

Let f,(2) = (1 = |a[*/1 = 2 - B Fy @) fielr, = Fe|ue»
fk drops off more rapidly away from L,.

L1A@P doe) = f( '“"'_2 )" 1fP o 60 Qe 6()doz)

X
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where ¢ =¢, , Q=Q,, . Since ¢(S) =S, we make the change
of variable w = ¢(z), to get

LAl do = [ [1=w .2 [£,P o 60 Quw) T,(w) do(w)
where J,(w) is the real Jacobianof ¢ |, at w.

The Jacobian matrix of ¢ as a map from B” to B” can be
computed with no difficulty (e.g. in the case a, = (0,a)) and the
real Jacobian of ¢ asa map from B” to B" is

A= a1 —w.q >,
_(0lem Nt A =g !
| Jo(w) | ( 3|W|) T AGE

=( 1_|ak|2 )—l (l_lak|2)n+l
l l

1—w.q/? 1 —w.g |0
(1 — |a )
[1—w.g [
So
jslfklpda =(1-— Iak|2)"_/; [1—w . @, [ D | filPo®oQw)da(w)
<21 (] — |ak|2)"/; |filP © ¢ ° Q(w) do(w)
=22 (1 — I“klz)n‘/;(o) |ficl? o 6W') ANy y W),

where dA,,—; is 2n — 2-dimensional Lebesgue measure on
R(Q), because |fy |Po¢eoQ is a function depending on n — 1
variables only. Notice that

g  R(Q,) =B""'(0,1) — L, =B"'(0,(1 —[q[)"?)

is given by ¢ak(z) =a, — sakz(z - a, = 0!) sothat ¢ simply induces
a dilation with ratio (1 — |a,[*)? and

jl;(Qk)Ifk o o) dhyyy W)
= A= [a e [ IGO0 dhoy ),

hence f; |felP do <C(n,p) (1 — |a,|?*) ka [fi P dX\y(u—y), which
by (HP) is a term in a convergent series, q.e.d.
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7)In the other direction (finding necessary conditions), the
“trivial” result cannot be improved.

Namely, if {Lj} is an interpolating sequences of hyperplanes,
then {a;} is an interpolating sequence of points, so they must satisfy
Varopoulos’s necessary condition (cf. [10]):

— 2 — 2\ \n

j€Z 4 |1—a -3

where C is a constant (independent of k).
On the other hand, using the fact that U L, must be a zero-set
j€EZ 4+
for an H™ function, and Skoda’s Blaschke condition for the
Nevanlinna class [8] (which cannot be quantitatively improved for
H™ , cf. Hakim & Sibony [6], or again [3]), we find:
S X (a—|g)»<c.
JEZ +
(S) is a consequence of (V) (which is the invariant version of (S)).
No stronger condition of the same type can be substituted for (S)

without some geometrical requirement (e.g all L; are parallel!),
as shown by :

ProPOSITION 2. — For all n=1, for all €e> 0, there is an
interpolating sequence of C-hyperplanes, {Lj}jEZ . in B" such that

©) X (—|g) =+,

JEZ 4

Proof. —We shall use as “centers” of the hyperplanes L; the
points a; given by Berndtsson ([3], Theorem 4) which satisfy (6)
(refer to [3] for the precise details of the construction).

Berndtsson shows that there are ‘‘pseudo P. Beurling functions”,
F,€H" (B") satisfying (i) and:

(ii)" Fya) = 1
Gi)" [Fya)| < 1/2, j # k.

Since in fact

we have (ii) since Ff"-i =1,
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LEMMA 5. — With Berndtsson’s choice of a;, we also have:
1
(i) |F,(2)] S5 2€L, j#k.
Proposition 2 then follows in the same way as Theorem 1 (with
c, = 1.

Proof of Lemma 5.—Recall that 1 — R, <r, are two
sequences of positive numbers, and that Berndtsson’s sequence is
indexed 4" ,m€Z,,1<j<C,.

|1 —ar @ |> 1001 —R,), j#k,

and
|1 —d* “d;| > 50 max(,, ,r,), m #n.
If zELaz‘,
1=z agg=1—|a¢|*=1—-R}.
For j# k,
21—z |+ 12w > |1~ |
)

1
|1 —z.ap|> (10001 —R,) = (1 =R >2001 ~ R,

so that
1 1
<—K—
|[Fip @< <7
For Fag’" # m, things are even easier:

[1—z. 4| > %[l—a}".&zl—(l—an)

50
= ? max(r

noTm) — (1 = R3)

> 10(1 — R%), q.ed.
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