## Annales de l'institut Fourier

# Pascal J. Thomas <br> Interpolating sequences of complex hyperplanes in the unit ball of $\mathbb{C}^{n}$ 

Annales de l'institut Fourier, tome 36, no 3 (1986), p. 167-181
[http://www.numdam.org/item?id=AIF_1986__36_3_167_0](http://www.numdam.org/item?id=AIF_1986__36_3_167_0)
© Annales de l'institut Fourier, 1986, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

# INTERPOLATING SEQUENCES OF COMPLEX HYPERPLANES IN THE UNIT BALL OF $\mathbf{C}^{\text {n }}$ 

## by

PASCAL J. THOMAS

This paper gives a sufficient condition for the existence of a solution to the following problem :

Given a sequence of complex hyperplanes, $\left\{L_{j}\right\}_{j \in \mathbf{z}_{+}}$, all intersecting $\mathbf{B}^{n}$ (the unit ball of $\mathbf{C}^{n}$ ), and given a sequence of holomorphic functions $\left\{f_{j}\right\}_{j \in \mathbf{Z}_{+}} \subseteq \mathrm{H}^{\infty}\left(\mathbf{B}^{n-1}\right)$ is there a function $f \in \mathrm{H}^{\infty}\left(\mathbf{B}^{n}\right)$ such that $\left.f\right|_{\mathrm{L}_{j}} \equiv f_{j} \circ \phi_{j}^{-1}, j \in \mathbf{Z}_{+}$, where $\phi_{j}$ is a complex-linear map from $\mathbf{B}^{n-1}$ onto $\mathrm{L}_{j} \cap \mathbf{B}^{n}$ ? If there is such an $f$, we shall say that $\left\{\mathbf{L}_{j}\right\}_{j \in \mathbf{Z}_{+}}$is interpolating.

$$
\text { Notations. - If } z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}, w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{C}^{n},
$$ then $z \cdot \bar{w}=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and $|z|=(z \cdot \bar{z})^{1 / 2} \quad($ modulus of $z)$,

$$
z^{*}=\frac{z}{|z|} \in \partial \mathbf{B}^{n}=\{z:|z|=1\} .
$$

For all $j \in \mathbf{Z}_{+}, a_{j}=$ point of smallest modulus in $\mathbf{L}_{j}\left(a_{j}\right.$ is the center of the ball $\mathrm{L}_{j} \cap \mathbf{B}^{n}$ ). Equivalently,

$$
\mathrm{L}_{j}=\left\{\dot{z} \in \mathbf{C}^{n}:\left(z-a_{j}\right) \cdot \bar{a}_{j}=0\right\} \quad\left(a_{j} \neq 0\right) .
$$

For all $j \in \mathbf{Z}_{+}$,

$$
\mathrm{U}_{j}=\left\{z \in \mathrm{~B}^{n}:\left|\frac{\bar{a}_{j} \cdot\left(a_{j}-z\right)}{\left|a_{j}\right|\left(1-z \cdot \bar{a}_{j}\right)}\right|<\delta_{0}\right\} .
$$

Key-words: Interpolating sequences - Bounded holomorphic functions Carleson measures - Extension of functions.

Theorem 1.-Given a sequence $\left\{\mathrm{L}_{j}\right\}$ as above, it is interpolating if the following sufficient conditions are met:

$$
\text { (B) } \sum_{j \in \mathbf{z}_{+}} \frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{\left|1-a_{j} \cdot \overline{a_{k}}\right|^{2}} \leqslant \mathrm{M}<\infty
$$

and
(U) for all $j, k \in \mathbf{Z}_{+}, j \neq k$, then $\mathrm{U}_{j} \cap \mathrm{U}_{\boldsymbol{k}}=\varnothing$.

Remarks. - 1) By applying an element of the unitary group, we can send any $a_{j}$ to a point of the form $(a, 0), a \in \mathbf{B}^{1}$. Then

$$
\mathrm{U}_{j}=\left\{\left(z_{1}, z_{2}\right):\left|\frac{z_{1}-a}{1-z_{1} \bar{a}}\right|<\delta_{0}\right\} .
$$

Since the definition of $U_{j}$ is rotation-invariant, we see that for all $j, \mathrm{U}_{j}$ is a tube surrounding the hyperplane $\mathrm{L}_{j}$, of radius commensurate to $1-\left|a_{j}\right|$.

In particular, for $\epsilon>0$ small enough, $U_{j}$ contains any set of the form $\left\{z \in \mathrm{~B}^{n}: \exists w \in \mathrm{~L}_{j}: d_{\mathrm{H}}(z, w)<\epsilon\right\}$, where

$$
d_{\mathrm{H}}(z, w)=\left(1-\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-z \cdot \bar{w}|^{2}}\right)^{1 / 2}
$$

is the "hyperbolic" distance, invariant under automorphism of $\mathrm{B}^{n}$. The regions $U_{j}$ are not automorphism-invariant, but condition (U) implies in particular that the lines are separated in the metric $d_{\mathrm{H}}$, so that if $j \neq k$, we can find $f \in \mathrm{H}^{\infty}\left(\mathrm{B}^{n}\right)$ such that $\left.f\right|_{\mathrm{L}_{j}} \equiv 1$ and $\left.f\right|_{\mathbf{L}_{k}} \equiv 0$ (explicit computation omitted).
2) Trivially, if $\left\{L_{j}\right\}_{j \in \mathbf{z}_{+}}$is interpolating, then the sequence $\left\{a_{j}\right\}_{j \in \mathbf{Z}_{+}}$associated to it is.

In [3], Berndtsson gives a sufficient condition for a sequence $\left\{a_{j}\right\}_{j \in Z_{+}}$to be interpolating:

$$
\prod_{j: j \neq k}\left|\phi_{a_{j}}\left(a_{k}\right)\right| \geqslant \epsilon>0
$$

where $\phi_{a}(z)$ is the automorphism of $B^{n}$ defined in ([7], 2.2.1, p. 25):

$$
\phi_{a}(z)=\frac{a-\mathrm{P}_{a}(z)-s_{a} \mathrm{Q}_{a}(z)}{1-z \cdot \bar{a}}
$$

$\mathrm{P}_{a}(z)=\left(z \cdot \bar{a} /|a|^{2}\right) a$ is the projection of $z$ onto the complex line through $a$ and $0, \mathrm{Q}_{a}(z)=z-\mathrm{P}_{a}(z)$ is the projection of $z$ onto the complex hyperplane through 0 orthogonal to $a$, and $s_{a}=\left(1-|a|^{2}\right)^{1 / 2}$.
$\left|\phi_{a_{j}}\left(a_{k}\right)\right|^{2}=d_{\mathrm{H}}\left(a_{j}, a_{k}\right)^{2}$, so that the convergence of the above product is equivalent to (B) together with the requirement that the points $a_{j}$ are separated, i.e. $d_{\mathrm{H}}\left(a_{j}, a_{k}\right) \geqslant \delta>0$ for $j \neq k$. (U) implies, of course, that $a_{j}$ are separated. We are now ready for the following

Definition. - Given a function $f_{k}: \mathrm{L}_{\boldsymbol{k}} \longrightarrow \mathbf{C}$, define an extension $\widetilde{f_{k}}: \mathbf{B}^{n} \longrightarrow \mathbf{C}$ by

$$
\widetilde{f_{k}}=f_{k} \circ \phi_{a_{k}} \circ \mathrm{Q}_{a_{k}} \circ \phi_{a_{k}}
$$

This definition makes sense, since

$$
\begin{aligned}
\phi_{a_{k}}\left(\mathrm{~L}_{k}\right) & =\phi_{a_{k}}^{-1}\left(\mathrm{~L}_{k}\right)=\left\{z: \phi_{a_{k}}(z) \cdot \bar{a}_{k}=\left|a_{k}\right|^{2}\right\} \\
& =\left\{z: 1-\frac{1-\left|a_{k}\right|^{2}}{1-z \cdot \overline{a_{k}}}=\left|a_{k}\right|^{2}\right\} \\
& =\left\{z: z \cdot \bar{a}_{k}=0\right\}=\operatorname{Range}\left(\mathrm{Q}_{a_{k}}\right)
\end{aligned}
$$

and consequently $\phi_{a_{k}}\left(\mathrm{R}\left(\mathrm{Q}_{a_{k}}\right)\right)=\mathrm{L}_{k}$, so $\widetilde{f_{k}}$ is indeed defined on $\mathrm{B}^{n}$. Furthermore,

$$
\begin{aligned}
\left.\widetilde{f}_{k}\right|_{\mathrm{L}_{k}} & =\left.f_{k} \circ \phi_{a_{k}} \circ \mathrm{Q}_{a_{k}}\right|_{\mathrm{R}\left(\mathrm{Q} a_{k}\right)} \circ \phi_{a_{k}} \mid \mathrm{L}_{k} \\
& =\left.f_{k} \circ \phi_{a_{k}} \circ \phi_{a_{k}}\right|_{\mathrm{L}_{k}}, \text { since } \mathrm{Q} \cdot \mathrm{is} \mathrm{a} \mathrm{projection,} \\
& =f_{k}, \text { since } \phi=\phi^{-1}
\end{aligned}
$$

In other words, $\widetilde{f_{k}} \circ \phi_{a_{k}}=\left(f_{k} \circ \phi_{a_{k}}\right) \circ \mathrm{Q}_{a_{k}}$, i.e. first we pull back the situation to the case where $f_{k}$ is defined on a complex hyperplane through 0 , and extend it trivially to be independent of the last coordinate.

Clearly, $\left\|\widetilde{f_{k}}\right\|_{\mathrm{H}^{\infty}\left(\mathrm{B}^{n}\right)}=\left\|f_{k}\right\|_{\mathrm{H}^{\infty}\left(\mathrm{L}_{k}\right)} ;\left(f_{k} \quad\right.$ is what was denoted in the introduction $f_{k} \circ \phi_{k}^{-1}$ ).
3) Suppose that for all $j \in \mathbf{Z}_{+}, a_{j}=\left(\alpha_{j}, 0\right), \alpha_{j} \in \mathbf{B}^{1}$. Then all the $\mathrm{L}_{j}$ are parallel, $\mathrm{L}_{j}=\left\{z_{1}=\alpha_{j}\right\}$, and $\left\{\mathrm{L}_{j}\right\}$ is an interpolating sequence if and only if $\left\{\alpha_{j}\right\}_{j \in Z_{+}}$is an interpolating sequence in $B^{1}$.

Conditions (U) reduces to

$$
\left|\frac{\alpha_{j}-\alpha_{k}}{1-\alpha_{j} \bar{\alpha}_{k}}\right| \leqslant c<1 \quad \text { for } \quad j \neq k
$$

and condition (B) reduces to:

$$
\sum_{j: j \neq k} \frac{\left(1-\left|\alpha_{j}\right|^{2}\right)\left(1-\left|\alpha_{k}\right|^{2}\right)}{\left|1-\alpha_{j} \bar{\alpha}_{k}\right|^{2}} \leqslant c .
$$

In the case $n=1$, it is well known (see Carleson [4] or Garnett [5]) that if the points are separated (i.e. (U)), then (B) $\Leftrightarrow\left\{\alpha_{j}\right\}$ is interpolating, so from that point of view the result is sharp.
4) Of course the points $a_{j}$ cannot cluster at any interior point of $\mathrm{B}^{n}$. We will, without loss of generality, remove a finite number of hyperplanes from our sequence and henceforth assume $\left|a_{j}\right| \geqslant 1 / 2, j \in \mathbf{Z}_{+}$, for technical reasons.

The main step in the proof of the theorem is the following :

Proposition 1.-Under the assumptions (U) and (B), there exist two positive constants $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$, and analytic functions $\left\{\mathrm{F}_{\boldsymbol{k}}\right\}_{k \in \mathbf{Z}_{+}}$such that
(i) $\forall z \in \mathrm{~B}, \sum_{k}\left|\mathrm{~F}_{k}(z)\right| \leqslant c_{1}$
(ii) $\forall k \in \mathbf{Z},\left|\mathrm{~F}_{k}\right|_{\mathrm{L}_{k}} \mid \geqslant c_{2}$
(iii) $\forall j \neq k,\left|\mathrm{~F}_{k}\right|_{\mathrm{L}_{j}} \left\lvert\, \leqslant \frac{c_{2}}{2}\right.$
(the $\mathrm{F}_{k}$ are 'pseudo P. Beurling functions").
Proof of the Theorem (assuming Proposition 1). - We will show that one can construct from the $\mathrm{F}_{k}$ true P . Beurling functions, i.e. $\mathrm{E}_{k}(z)$ verifying:
(i) $\forall z \in \mathrm{~B}, \quad \sum_{k}\left|\mathrm{E}_{k}(z)\right| \leqslant c<\infty$
(ii) $\left.{ }^{\prime} \mathrm{E}_{\boldsymbol{k}}\right|_{L_{k}} \equiv 1$
(iii) $\left.\mathrm{E}_{k}\right|_{\mathrm{L}_{j}} \equiv 0, j \neq k$.

Then our interpolating function will be $f=\sum_{k} \widetilde{f}_{k}(z) \mathrm{E}_{k} \quad(z)$. $\left.f\right|_{L_{k}}=\left.\widetilde{f_{k}}\right|_{\mathrm{L}_{k}}=f_{k}$, and $\|f\|_{\infty} \leqslant c\left(\sup _{k}\left\|\widetilde{f_{k}}\right\|_{\infty}\right)=c \sup _{k}\left\|f_{k}\right\|_{\infty}<\infty$.

To construct the $\mathrm{E}_{k}$ :
First let $\mathrm{G}_{k}=\frac{\mathrm{F}_{k}}{\left(\left.\mathrm{~F}_{k}\right|_{\mathrm{L}_{k}}\right)^{\sim}} \quad$ where $\sim$ is the extension discussed above.
Then $\sum_{k}\left|\mathrm{G}_{k}(z)\right| \leqslant c_{1} / c_{2},\left.\quad \mathrm{G}_{k}\right|_{\mathrm{L}_{k}} \equiv 1,\left|\mathrm{G}_{k}\right|_{\mathrm{L}_{j}} \left\lvert\, \leqslant \frac{1}{2}\right., j \neq k$.
Let $H_{k}=G_{k} \prod_{j: j \neq k}\left(1-G_{j}\right)$.
Since every factor is bounded below by $1 / 2$,

$$
\left|\prod_{j: j \neq k}\left(1-\mathrm{G}_{j}\right)\right| \geqslant e^{-2 c_{1} / c_{2}} \quad \text { on } \quad \mathrm{L}_{k} \quad \text { and } \quad\left|\mathrm{H}_{k}\right|_{\mathrm{L}_{k}} \mid \geqslant e^{-2 c_{1} / c_{2}}
$$

while $\left.\quad \mathrm{H}_{k}\right|_{\mathrm{L}_{j}} \equiv 0, j \neq k$.

$$
\forall z \in \mathrm{~B}, \sum_{k}\left|\mathrm{H}_{k}(z)\right| \leqslant e^{c_{1} / c_{2}} \sum_{k}\left|\mathrm{G}_{k}(z)\right| \leqslant \frac{c_{1}}{c_{2}} e^{c_{1} / c_{2}}
$$

Finally, let $\mathrm{E}_{k}=\mathrm{H}_{k} /\left(\mathrm{H}_{k} \mid \mathrm{L}_{k}\right)^{\sim}$;
$\left.\mathrm{E}_{k}\right|_{\mathrm{L}_{j}} \equiv 0, j \neq k,\left.\mathrm{E}_{k}\right|_{\mathrm{L}_{k}} \equiv 1$, and $\sum_{k}\left|\mathrm{E}_{k}(z)\right| \leqslant \frac{c_{1}}{c_{2}} e^{3 c_{1} / c_{2}}$, q.e.d.

## Proof of Proposition 1. - Let

$$
\mathrm{F}_{k}(z)=\left(1-\left|a_{k}\right|^{2} / 1-z \cdot \bar{a}_{k}\right)^{p} \mathrm{~W}\left(a_{k}, z\right) \prod_{\substack{j: j \neq k \\\left|1-a_{k} \cdot \bar{a}_{j}\right|<\mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right)}} \phi_{a_{j}}(z) \cdot \bar{a}_{j}
$$

where $p \geqslant 4$ and $\mathrm{C}_{0}=\mathrm{C}_{0}\left(\delta_{0}\right)>1$ will be specified, and following [3],

$$
\begin{aligned}
& \mathrm{W}\left(a_{k}, z\right)=\exp -\sum_{j}\left[\left(\frac{1+z \cdot \bar{a}_{j}}{1-z \cdot \bar{a}_{j}}-\frac{1+a_{k} \cdot \bar{a}_{j}}{1-a_{k} \cdot \bar{a}_{j}}\right)\right. \\
&\left.\frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{1-\left|a_{j} \cdot \bar{a}_{k}\right|^{2}}\right]
\end{aligned}
$$

Convergence of the infinite product will be proved below. Note that $\left|\phi_{a_{j}}(z) \cdot \bar{a}_{j}\right| \leqslant\left|\phi_{a_{j}}(z) \| a_{j}\right| \leqslant 1$, so

$$
\left|\mathrm{F}_{k}(z)\right| \leqslant 2^{p-4}\left(1-\left|a_{k}\right|^{2} /\left|1-z \cdot \bar{a}_{k}\right|\right)^{4}\left|\mathrm{~W}\left(a_{k}, z\right)\right| .
$$

The main step in the proof of [3] is that

$$
\forall z \in \mathrm{~B}, \sum_{k}\left(1-\left|a_{k}\right|^{2} /\left|1-z \cdot \bar{a}_{k}\right|\right)^{4}\left|\mathrm{~W}\left(a_{k}, z\right)\right| \leqslant \mathrm{M}_{1}
$$

so $\sum_{k}\left|\mathrm{~F}_{k}(z)\right| \leqslant 2^{p-4} \mathrm{M}_{1}=c_{1}$, which proves (i).
Proof of (iii). - Case 1: $j$ is such that

$$
\left|1-a_{j} \cdot \bar{a}_{k}\right| \leqslant \mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right)
$$

Then $\phi_{a_{j}}(z) \cdot \bar{a}_{j}=\left(a_{j}-z\right) \cdot \bar{a}_{j} / 1-z \cdot \bar{a}_{j}=0$ for $z \in \mathrm{~L}_{j}$ is a factor in the infinite product, so $\left|\mathrm{F}_{k}(z)\right|=0 \leqslant c_{2} / 2$.

Case 2: $j$ is such that $\left|1-a_{j} \cdot \bar{a}_{k}\right| \geqslant \mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right)$.
Lemma 1. - If $\left\{\mathrm{L}_{k}\right\}_{k \in \mathbf{z}_{+}}$satisfy ( U ), and $z \in \mathrm{~L}_{j}, j \neq k$, then $\mathrm{C}_{3}\left|1-z \cdot \bar{a}_{k}\right| \geqslant\left|1-a_{j} \cdot \overline{a_{k}}\right|$, where $\mathrm{C}_{3}$ is a constant depending only on $\delta_{0}$.

Thus for all $z \in L_{j}$,

$$
\frac{1-\left|a_{k}\right|^{2}}{\left|1-z \cdot \bar{a}_{k}\right|} \leqslant \frac{\mathrm{C}_{3}\left(1-\left|a_{k}\right|^{2}\right)}{\left|1-a_{j} \cdot \bar{a}_{k}\right|} \leqslant \frac{\mathrm{C}_{3}}{\mathrm{C}_{0}}=\frac{1}{2}
$$

if we pick $\mathrm{C}_{0}=2 \mathrm{C}_{3}$.
So for $z \in \mathrm{~L}_{j},\left|\mathrm{~F}_{k}(z)\right| \leqslant(1 / 2)^{p}\left|\mathrm{~W}\left(a_{k}, z\right)\right|$. But

$$
\begin{aligned}
\left|\mathrm{W}\left(a_{k}, z\right)\right| & =\left(\exp -\sum_{j} \frac{1-\left|z \cdot \bar{a}_{j}\right|^{2}}{\left|1-z \cdot \bar{a}_{j}\right|^{2}} \frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{\left|1-a_{j} \cdot \bar{a}_{k}\right|^{2}}\right) \\
& \times\left(\exp \sum_{j} \frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{\left|1-a_{j} \cdot \bar{a}_{k}\right|^{2}}\right) \leqslant e^{\mathrm{M}}(\text { see }[3]) .
\end{aligned}
$$

So it will be enough to take

$$
p \geqslant \log _{2}\left(\frac{2 e^{\mathrm{M}}}{\mathrm{C}_{2}}\right) \quad \text { to get (iii). }
$$

Proofof(ii). - First note that

$$
\left.\mathrm{F}_{k}\right|_{\mathrm{L}_{k}} \equiv \mathrm{~W}\left(a_{k}, z\right) \prod_{\substack{j: j \neq k \\\left|1-a_{j} \cdot \overline{a_{k}}\right|<\mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right)}} \phi_{a_{j}}(z) \cdot \bar{a}_{j}
$$

$z \in \mathrm{~L}_{k} \subset \mathrm{U}_{k}$, hence $z \notin \mathrm{U}_{j}$, so

$$
\left|\phi_{a_{j}}(z) \cdot \bar{a}_{j}\right|=\left|\frac{\left(a_{j}-z\right) \cdot \bar{a}_{j}}{1-z \cdot \bar{a}_{j}}\right| \geqslant \delta_{0}\left|a_{j}\right| \geqslant \frac{\delta_{0}}{2}
$$

each term in the infinite product is bounded below, so we only have to consider

$$
\begin{aligned}
& \sum_{\substack{j:\left|1-a_{j} \cdot a_{k}\right|<\mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right) \\
j \neq k}}\left|1-\phi_{a_{j}}(z) \cdot \bar{a}_{j}\right| \\
&=\sum_{\substack{j:\left|1-a_{j} \cdot \bar{a}_{k}\right|<\mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right) \\
j \neq k}} \frac{1-\left|a_{j}\right|^{2}}{\left|1-z \cdot \bar{a}_{j}\right|}
\end{aligned}
$$

By Lemma 1 , exchanging $k$ and $j$,

$$
\mathrm{C}_{3}\left|1-z \cdot \bar{a}_{j}\right| \geqslant\left|1-a_{k} \cdot \bar{a}_{j}\right|
$$

Thus our sum is

$$
\begin{aligned}
& \leqslant \mathrm{C}_{3} \sum_{j:\left|1-a_{j} \cdot \bar{a}_{k}\right|<\mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right)} \frac{1-\left|a_{j}\right|^{2}}{\left|1-a_{k} \cdot \bar{a}_{j}\right|} \\
& \leqslant \mathrm{C}_{3} \sum_{j} \frac{\mathrm{C}_{0}\left(1-\left|a_{k}\right|^{2}\right)}{\left|1-a_{j} \cdot \bar{a}_{k}\right|} \frac{\left(1-\left|a_{j}\right|^{2}\right)}{\left|1-a_{k} \cdot \bar{a}_{j}\right|} \\
& \leqslant \mathrm{C}_{3} \mathrm{C}_{0} \mathrm{M}
\end{aligned}
$$

so the infinite product in $\mathrm{F}_{\boldsymbol{k}}$ converges and is bounded below by $e^{-\left(2 / \delta_{0}\right) C_{0} C_{3} M}$.

On the other hand,

$$
\begin{aligned}
& \left|\mathrm{W}\left(a_{k}, z\right)\right| \geqslant \exp -\sum_{j} \frac{1-\left|z \cdot \bar{a}_{j}\right|^{2}}{\left|1-z \cdot \bar{a}_{i}\right|^{2}} \frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{1-\left|a_{j} \cdot \bar{a}_{k}\right|^{2}} \\
& \geqslant \exp -\sum_{j} \frac{1-\left|z \cdot \bar{a}_{j}\right|^{2}}{\left|1-z \cdot \bar{a}_{j}\right|} \frac{\mathrm{C}_{3}}{\left|1-a_{k} \cdot \bar{a}_{j}\right|} \frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{1-\left|a_{j} \cdot \bar{a}_{k}\right|^{2}}
\end{aligned}
$$

by lemma 1 .

Lemma 2. - Given any two points $a_{j}, a_{k} \in \mathbf{B}^{n}, z \in \mathrm{~L}_{k}$, then

$$
\frac{1-\left|z \cdot \bar{a}_{j}\right|^{2}}{\left|1-z \cdot \bar{a}_{j}\right|} \leqslant 18 \frac{1-\left|a_{k} \cdot \bar{a}_{j}\right|^{2}}{\left|1-a_{k} \cdot \bar{a}_{j}\right|}
$$

Thus

$$
\left|\mathrm{W}\left(a_{k}, z\right)\right| \geqslant \exp -\sum_{j} 18 \mathrm{C}_{3} \frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{\left|1-a_{j} \cdot \bar{a}_{k}\right|^{2}}=e^{-18 \mathrm{C}_{3} \mathrm{M}}
$$

So we may take $c_{2}=e^{-2 M\left(c_{0} / \delta_{0}+9\right) C_{3}}$, which concludes the proof of (ii).

## Proof of the Lemmas

Proof of Lemma 1. - Choose coordinates so that $a_{j}=(a, 0)$.
Let $a_{k}=\left(b_{1}, b^{\prime}\right), b^{\prime} \in \mathbf{C}^{n-1} . a_{k} \notin \mathrm{U}_{j}$ means

$$
\left|b_{1}-a\right| \geqslant \delta_{0}\left|1-b_{1} \bar{a}\right|
$$

so it will be enough to show

$$
\mathrm{C}\left|1-a \bar{b}_{1}-z^{\prime} \cdot \bar{b}^{\prime}\right| \geqslant\left|b_{1}-a\right|
$$

for $z=\left(a, z^{\prime}\right) \in \mathrm{L}_{j} \cap \mathrm{~B}$, i.e.

$$
\begin{array}{r}
\left|z^{\prime}\right|^{2} \leqslant 1-|a|^{2} \\
\left|1-a \bar{b}_{1}-z^{\prime} \cdot \bar{b}^{\prime}\right| \geqslant\left|1-a \bar{b}_{1}\right|-\sqrt{1-|a|^{2}} \sqrt{1-\left|b_{1}\right|^{2}} \\
\\
=\frac{\left|b_{1}-a\right|^{2}}{\left|1-a \bar{b}_{1}\right|+\sqrt{1-|a|^{2}} \sqrt{1-\left|b_{1}\right|^{2}}}
\end{array}
$$

However,

$$
1-|a|^{2} \leqslant 2(1-|a|) \leqslant 2\left|1-b_{1} \bar{a}\right| \leqslant \frac{2}{\delta_{0}}\left|b_{1}-a\right|
$$

and

$$
\begin{aligned}
1-\left|b_{1}\right|^{2} \leqslant 2\left(1-\left|b_{1}\right|\right) \leqslant 2\left(1-|a|+\mid b_{1}\right. & -a \mid) \\
& \leqslant 2\left(1+\frac{1}{\delta_{0}}\right)\left|b_{1}-a\right|
\end{aligned}
$$

So the last expression is

$$
\geqslant \frac{\left|b_{1}-a\right|^{2}}{\left.\left(\frac{1}{\delta_{0}}+\sqrt{\frac{2}{\delta_{0}} \cdot 2\left(1+\frac{1}{\delta_{0}}\right.}\right)\right)\left|b_{1}-a\right|}
$$

and $\mathrm{C}_{3}=\left(\delta_{0}^{2} /\left(1+2 \sqrt{1+\delta_{0}}\right)\right)^{-1}$ will do.
Proof of Lemma 2. - Note first that

$$
\frac{1-\left|z \cdot \bar{a}_{j}\right|^{2}}{\left|1-z \cdot \bar{a}_{j}\right|} \leqslant\left(1+\left|z \cdot \bar{a}_{j}\right|\right) \frac{1-\left|z \cdot \bar{a}_{j}\right|}{\left|1-z \cdot \bar{a}_{j}\right|} \leqslant 2 .
$$

So that if $1-\left|a_{k} \cdot \bar{a}_{j}\right|^{2} /\left|1-a_{k} \cdot \bar{a}_{j}\right| \geqslant 1 / 9$, we have

$$
\frac{1-\left|z \cdot \bar{a}_{j}\right|^{2}}{\left|1-z \cdot \bar{a}_{j}\right|} \leqslant 2(9) \frac{1-\left|a_{k} \cdot \bar{a}_{j}\right|^{2}}{\left|1-a_{k} \cdot \bar{a}_{j}\right|}, \text { q.e.d. }
$$

If on the contrary

$$
\left(1-\left|a_{k} \cdot \bar{a}_{j}\right|^{2}\right) \leqslant \frac{1}{9}\left|1-a_{k} \cdot \bar{a}_{j}\right|
$$

then

$$
\left(1-\left|a_{k}\right|^{2}\right) \leqslant \frac{1}{9}\left|1-a_{k} \cdot \overline{a_{j}}\right|
$$

So

$$
\begin{aligned}
& \left|1-z \cdot \bar{a}_{j}\right|^{1 / 2} \geqslant\left|1-a_{k} \cdot \overline{a_{j}}\right|^{1 / 2}-\left|1-z \cdot \bar{a}_{k}\right|^{1 / 2} \\
& \quad=\left|1-a_{k} \cdot \bar{a}_{j}\right|^{1 / 2}-\left(1-\left|a_{k}\right|^{2}\right)^{1 / 2} \geqslant\left(1-\frac{1}{3}\right)\left|1-a_{k} \cdot \bar{a}_{j}\right|^{1 / 2}
\end{aligned}
$$

and ([3], lemma 5)

$$
\begin{aligned}
1-\left|z \cdot \bar{a}_{j}\right|^{2} \leqslant 2\left(1-\left|z \cdot \bar{a}_{j}\right|\right) \leqslant 4(1 & \left.-\left|z \cdot \bar{a}_{k}\right|+1-\left|a_{k} \cdot \bar{a}_{j}\right|\right) \\
& \leqslant 4\left(1-\left|a_{k}\right|^{2}+1-\left|a_{k} \cdot \bar{a}_{j}\right|^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{1-\left|z \cdot \bar{a}_{j}\right|^{2}}{\left|1-z \cdot a_{j}\right|} \leqslant \frac{4\left(1-\left|a_{k}\right|^{2}+1-\left|a_{k} \cdot \overline{a_{j}}\right|^{2}\right)}{\left(\frac{2}{3}\right)^{2}\left|1-a_{k} \cdot \bar{a}_{j}\right|} \\
& \leqslant \frac{(9)(4)(2)\left(1-\left|a_{k} \cdot \bar{a}_{j}\right|^{2}\right)}{4\left|1-a_{k} \cdot \bar{a}_{j}\right|}, \text { q.e.d. }
\end{aligned}
$$

More Remarks. -5) The interpolation problem is invariant under automorphisms of the ball. Condition (U) is not. An optimal (but not very practical) statement of the theorem would be : if there exists
$\psi \in \operatorname{Aut}(\mathrm{B})$ such that $\left\{\psi\left(\mathrm{L}_{j}\right)\right\}_{j \in \mathbf{B}_{+}}$satisfies (B) and (U), then $\left\{\mathrm{L}_{j}\right\}_{j \in \mathbf{Z}_{+}}$is an interpolating sequence.

It is natural to ask whether the theorem can be proved if one substitutes for ( U ) the weaker, invariant requirement that the hyperplanes $L_{j}$ be separated in the metric $d_{\mathrm{H}}$. Unfortunately, it seems to require some new idea, since $U_{j}$ is precisely the region where $\left|\phi_{a_{j}}(z) \cdot \bar{a}_{j}\right|$ is small.
6) Amar [1] has put to use (essentially) the same infinite product $\mathrm{P}(z)=\prod_{j \in \mathbf{Z}_{+}} \phi_{a_{j}}(z) \cdot \bar{a}_{j}$ to prove similar results; specifically, if $f_{j} \in \mathrm{H}^{\infty}, f \in \mathrm{BMOA}$ is obtained, and if $f_{j}$ verify :

$$
\left(\mathrm{H}^{p}\right) \sum_{j \in \mathbf{Z}_{+}}\left(1-\left|a_{j}\right|^{2}\right) \quad \int_{L_{j}}\left|f_{j}\right|^{p} d \lambda_{2 n-2}<\infty
$$

where $p \geqslant 1$, and $d \lambda_{2 n-2}$ is $2 n-2$-dimensional Lebesgue measure on $\mathrm{L}_{j}$, then $f \in \mathrm{H}^{p}\left(\mathrm{~B}^{n}\right)$ is obtained.

This is done by solving a certain $\bar{\partial}$ problem, namely, if $g$ is a $\mathrm{C}^{\infty}$ solution to the interpolation problem, let $f=g+u \mathrm{P}$ with $\bar{\partial} u=-(1 / \mathrm{P}) \bar{\partial} g$. One then needs :
(US) $\exists \delta_{0}, \delta_{1}>0$ such that $\forall z \in \mathrm{U}_{k}\left(\delta_{0}\right), \prod_{j: j \neq k}\left|\phi_{a_{j}}(z) \cdot \bar{a}_{j}\right| \geqslant \delta_{1}$.
Clearly, (US) $\Longrightarrow(B)$, and by Remark $5,(U S) \Longrightarrow(U)$ (cf. [1], lemma 2.1). Applying (US) to $z=a_{k}$, one see that it implies in fact
(P) $\forall k \in \mathbf{Z}_{+}, \sum_{j: j \neq k} \frac{\left(1-\left|a_{k} \cdot \bar{a}_{j}^{*}\right|^{2}\right)\left(1-\left|a_{j}\right|^{2}\right)}{\left|1-a_{k} \cdot \bar{a}_{j}\right|^{2}} \leqslant c$.

With the help of lemmas 1 and 2 , one can show that $(U)$ and (P) $\Leftrightarrow$ (US) .

Under those assumptions, one can use Berndtsson's $L^{\infty}$ solution to the $\bar{\partial}$ equation [2] to obtain an interpolating $f \in \mathrm{H}^{\infty}$, but one has to require a further condition involving "Cl measures" (see [2]), which is also more restrictive than (B), and not equivalent to (P). It gives rise to unwieldy computation, even for $n=2$.

But we are now in a position to strengthen Amar's results; Theorem 1 implies that under (US), bounded data can be interpolated by a bounded function, and we have :

Theorem 2. - If $\left\{\mathrm{L}_{k}\right\}_{k \in \mathbf{Z}_{+}}$verifies (U) and (B), and $\left\{f_{k}\right\}$ verifies $\left(\mathrm{H}^{p}\right)$, then there exists $f \in \mathrm{H}^{p}(\mathrm{~B})$ such that

$$
\left.f\right|_{\mathbf{L}_{k}}=f_{k}, \forall k \in \mathbf{Z}_{+} \quad(1 \leqslant p<\infty) .
$$

Note that, since $\sum_{k}\left(1-\left|a_{k}\right|^{2}\right) \int_{L_{k}} \cdot d \lambda_{2 n-2}$ is a Carleson measure in $\mathbf{B}^{n}$, condition $\left(\mathrm{H}^{p}\right)$ must be verified if there is an interpolating function $f$.

Theorem 2 is a consequence of :
Lemma 4. - If there are P. Beurling functions for a sequence of hyperplanes $\left\{\mathrm{L}_{k}\right\}$, then it is $\mathrm{H}^{p}$-interpolating.

This implies in particular that any $\mathrm{H}^{\infty}$-interpolating sequence will be $\mathrm{H}^{p}$-interpolating, since one can show it will necessarily have P. Beurling functions (follow Varopoulos' proof [9] or [5], p. 298).

Proof of lemma 4. - Let $f(z)=\sum_{k \in \mathbf{Z}_{+}} \hat{f}_{k}(z) \mathrm{E}_{k}(z), \quad$ where $\mathrm{E}_{k}$ are the P . Beurling functions and $\left.\hat{f_{k}}\right|_{L_{k}}=f_{k}$.

Let $\mathrm{S}=\partial \mathrm{B}^{n}, \quad d \sigma=2 n-1$-dimensionnal Lebesgue measure on $S$

$$
\begin{aligned}
\int_{\mathrm{S}}|f|^{p} d \sigma & =\int_{\mathrm{S}}\left|\sum_{k} \hat{f_{k}} \mathrm{E}_{k}\right|^{p} d \sigma \\
& \leqslant \int_{\mathrm{S}}\left(\sum_{k}\left|\hat{f_{k}}\right|^{p}\right)\left(\sum_{k}\left|\mathrm{E}_{k}\right|^{q}\right)^{p / q} d \sigma \\
& \left.\leqslant c \sum_{k} \int_{\mathrm{S}}\left|\hat{f_{k}}\right|^{p} d \sigma, \quad \text { where } \quad 1 / p+1 / q=1\right) .
\end{aligned}
$$

It is enough to show that, for an appropriate choice of $\hat{f}_{k}$, the last series is convergent (which will retroactively prove that the integrals we wrote down were making sense).

Let $\quad \hat{f}_{k}(z)=\left(1-\left|a_{k}\right|^{2} / 1-z \cdot \bar{a}_{k}\right)^{2 n} \widetilde{f}_{k}(z) ;\left.\hat{f}_{k}\right|_{\Sigma_{k}}=\left.\widetilde{f}_{k}\right|_{L_{k}}, \quad$ but $\hat{f}_{k}$ drops off more rapidly away from $\mathrm{L}_{k}$.

$$
\int_{\mathrm{S}}\left|\hat{f}_{k}(z)\right|^{p} d \sigma(z)=\int_{\mathrm{S}}\left(\frac{1-\left|a_{k}\right|^{2}}{\left|1-z \cdot \bar{a}_{k}\right|}\right)^{2 p n}\left|f_{k}\right|^{p} \circ \phi \circ \mathrm{Q} \circ \phi(z) d \sigma(z)
$$

where $\phi=\phi_{a_{k}}, \mathrm{Q}=\mathrm{Q}_{a_{k}}$. Since $\phi(\mathrm{S})=\mathrm{S}$, we make the change of variable $w=\phi(z)$, to get

$$
\int_{\mathrm{S}}\left|\hat{f_{k}}\right|^{p} d \sigma=\int_{\mathrm{S}}\left|1-w \cdot \bar{a}_{k}\right|^{2 p n}\left|f_{k}\right|^{p} \circ \phi \circ \mathrm{Q}(w) \mathrm{J}_{\phi}(w) d \sigma(w)
$$

where $\mathrm{J}_{\phi}(w)$ is the real Jacobian of $\left.\phi\right|_{s}$ at $w$.
The Jacobian matrix of $\phi$ as a map from $\mathrm{B}^{n}$ to $\mathrm{B}^{n}$ can be computed with no difficulty (e.g. in the case $a_{k}=(0, a)$ ) and the real Jacobian of $\phi$ as a map from $\mathrm{B}^{n}$ to $\mathrm{B}^{n}$ is

$$
\begin{aligned}
(1 & \left.-\left|a_{k}\right|^{2}\right)^{n+1} /\left|1-w \cdot \bar{a}_{k}\right|^{2(n+1)} \\
\left|\mathrm{J}_{\phi}(w)\right| & =\left(\frac{\partial|\phi(w)|}{\partial|w|}\right)^{-1} \frac{\left(1-\left|a_{k}\right|^{2}\right)^{n+1}}{\left|1-w \cdot \bar{a}_{k}\right|^{2(n+1)}} \\
& =\left(\frac{1-\left|a_{k}\right|^{2}}{\left|1-w \cdot \bar{a}_{k}\right|^{2}}\right)^{-1} \frac{\left(1-\left|a_{k}\right|^{2}\right)^{n+1}}{\left|1-w \cdot \bar{a}_{k}\right|^{2(n+1)}} \\
& =\frac{\left(1-\left|a_{k}\right|^{2}\right)^{n}}{\left|1-w \cdot \bar{a}_{k}\right|^{2 n}} .
\end{aligned}
$$

So

$$
\begin{aligned}
\int_{\mathrm{S}}\left|\hat{f}_{k}\right|^{p} d \sigma & =\left(1-\left|a_{k}\right|^{2}\right)^{n} \int_{\mathrm{S}}\left|1-w \cdot \overline{a_{k}}\right|^{2 n(p-1)}\left|f_{k}\right|^{p} \circ \phi \circ \mathrm{Q}(w) d \sigma(w) \\
& \leqslant 2^{2 n(p-1)}\left(1-\left|a_{k}\right|^{2}\right)^{n} \int_{\mathrm{S}}\left|f_{k}\right|^{p} \circ \phi \circ \mathrm{Q}(w) d \sigma(w) \\
& =2^{2 n(p-1)}\left(1-\left|a_{k}\right|^{2}\right)^{n} \int_{\mathrm{R}(\mathrm{Q})}\left|f_{k}\right|^{p} \circ \phi\left(w^{\prime}\right) d \lambda_{2(n-1)}\left(w^{\prime}\right)
\end{aligned}
$$

where $d \lambda_{2(n-1)}$ is $2 n-2$-dimensional Lebesgue measure on $\mathrm{R}(\mathrm{Q})$, because $\left|f_{k}\right|^{p} \circ \phi \circ \mathrm{Q}$ is a function depending on $n-1$ variables only. Notice that

$$
\phi_{a_{k}}: \mathrm{R}\left(\mathrm{Q}_{a_{k}}\right) \cong \mathrm{B}^{n-1}(0,1) \longrightarrow \mathrm{L}_{k} \cong \mathrm{~B}^{n-1}\left(0,\left(1-\left|a_{k}\right|^{2}\right)^{1 / 2}\right)
$$

is given by $\phi_{a_{k}}(z)=a_{k}-s_{a_{k}} z\left(z \cdot \bar{a}_{k}=0\right.$ !) so that $\phi$ simply induces a dilation with ratio $\left(1-\left|a_{k}\right|^{2}\right)^{1 / 2}$ and

$$
\begin{aligned}
& \int_{\mathrm{R}\left(\mathrm{Q}_{k}\right)}\left|f_{k}\right|^{p} \circ \phi\left(w^{\prime}\right) d \lambda_{2(n-1)}\left(w^{\prime}\right) \\
& \quad=\left(1-\left|a_{k}\right|^{2}\right)^{-(n-1)} \int_{\mathrm{L}_{k}}\left|f_{k}\right|^{p}\left(w^{\prime \prime}\right) d \lambda_{2(n-1)}\left(w^{\prime \prime}\right)
\end{aligned}
$$

hence $\int_{s}\left|\hat{f_{k}}\right|^{p} d \sigma \leqslant \mathrm{C}(n, p)\left(1-\left|a_{k}\right|^{2}\right) \int_{L_{k}}\left|f_{k}\right|^{p} d \lambda_{2(n-1)}$, which by $\left(H^{p}\right)$ is a term in a convergent series, q.e.d.
7) In the other direction (finding necessary conditions), the "trivial" result cannot be improved.

Namely, if $\left\{L_{j}\right\}$ is an interpolating sequences of hyperplanes, then $\left\{a_{j}\right\}$ is an interpolating sequence of points, so they must satisfy Varopoulos's necessary condition (cf. [10]) :

$$
\text { (V) } \sum_{j \in \mathbf{Z}_{+}}\left(\frac{\left(1-\left|a_{j}\right|^{2}\right)\left(1-\left|a_{k}\right|^{2}\right)}{\left|1-a_{j} \cdot \bar{a}_{k}\right|^{2}}\right)^{n} \leqslant \mathrm{C}
$$

where C is a constant (independent of $k$ ).
On the other hand, using the fact that $\underset{j \in \mathbf{Z}_{+}}{\mathrm{U}} \mathrm{L}_{j}$ must be a zero-set for an $H^{\infty}$ function, and Skoda's Blaschke condition for the Nevanlinna class [8] (which cannot be quantitatively improved for $\mathrm{H}^{\infty}$, cf. Hakim \& Sibony [6], or again [3]), we find:

$$
\text { (S) } \sum_{j \in \mathbf{Z}_{+}}\left(1-\left|a_{j}\right|^{2}\right)^{n} \leqslant \mathrm{C}
$$

$(S)$ is a consequence of $(V)$ (which is the invariant version of $(S)$ ). No stronger condition of the same type can be substituted for (S) without some geometrical requirement (e.g. all $L_{j}$ are parallel!), as shown by :

Proposition 2. - For all $n \geqslant 1$, for all $\epsilon>0$, there is an interpolating sequence of C -hyperplanes, $\left\{\mathrm{L}_{j}\right\}_{j \in \mathbf{Z}_{+}}$in $\mathrm{B}^{\boldsymbol{n}}$ such that

$$
\text { (6) } \sum_{j \in \mathbf{Z}_{+}}\left(1-\left|a_{j}\right|\right)^{n-\epsilon}=+\infty
$$

Proof. - We shall use as "centers" of the hyperplanes $\mathrm{L}_{j}$ the points $a_{j}$ given by Berndtsson ([3], Theorem 4) which satisfy (6) (refer to [3] for the precise details of the construction).

Berndtsson shows that there are "pseudo P. Beurling functions", $\mathrm{F}_{j} \in \mathrm{H}^{\infty}\left(\mathrm{B}^{n}\right)$ satisfying (i) and:
(ii)" $\mathrm{F}_{j}\left(a_{j}\right)=1$
(iii) ${ }^{\prime \prime}\left|\mathrm{F}_{j}\left(a_{k}\right)\right| \leqslant 1 / 2, j \neq k$.

Since in fact

$$
\mathrm{F}_{j}(z)=\left(\frac{1-\left|a_{j}\right|^{2}}{1-z \cdot \bar{a}_{j}}\right)^{n+1}
$$

we have (ii) since $\left.\mathrm{F}_{j}\right|_{L_{j}} \equiv 1$,

Lemma 5. - With Berndtsson's choice of $a_{j}$, we also have :

$$
\text { (iii) }\left|\mathrm{F}_{j}(z)\right| \leqslant \frac{1}{2}, z \in \mathrm{~L}_{k}, j \neq k .
$$

Proposition 2 then follows in the same way as Theorem 1 (with $c_{2}=1$ )

Proof of Lemma 5. - Recall that $1-\mathrm{R}_{m} \ll r_{m}$ are two sequences of positive numbers, and that Berndtsson's sequence is indexed $a_{j}^{m}, m \in \mathbf{Z}_{+}, 1 \leqslant j \leqslant \mathbf{C}_{m}$.

$$
\left|1-a_{j}^{m} \cdot \bar{a}_{k}^{m}\right| \geqslant 100\left(1-\mathrm{R}_{m}\right), j \neq k
$$

and

$$
\left|1-a_{j}^{m} \cdot \bar{a}_{k}^{n}\right| \geqslant 50 \max \left(r_{m}, r_{n}\right), m \neq n
$$

If $z \in \mathrm{~L}_{a_{k}^{m}}$,

$$
1-z \cdot \bar{a}_{k}^{m}=1-\left|a_{k}^{m}\right|^{2}=1-\mathrm{R}_{m}^{2}
$$

For $j \neq k$,

$$
2\left(\left|1-z \cdot \bar{a}_{j}^{m}\right|+\left|1-z \cdot \bar{a}_{k}^{m}\right|\right) \geqslant\left|1-a_{j}^{m} \cdot \bar{a}_{k}^{m}\right|
$$

so

$$
\left|1-z \cdot \bar{a}_{j}^{m}\right| \geqslant \frac{1}{2}(100)\left(1-\mathrm{R}_{m}\right)-\left(1-\mathrm{R}_{m}^{2}\right) \geqslant 20\left(1-\mathrm{R}_{m}^{2}\right)
$$

so that

$$
\left|\mathrm{F}_{a_{j}^{m}}(z)\right| \leqslant \frac{1}{20^{n+1}} \leqslant \frac{1}{2} .
$$

For $\mathrm{F}_{a \underset{k}{n}}, n \neq m$, things are even easier:

$$
\begin{aligned}
\left|1-z \cdot \bar{a}_{k}^{n}\right| & \geqslant \frac{1}{2}\left|1-a_{j}^{m} \cdot \bar{a}_{k}^{n}\right|-\left(1-\mathrm{R}_{m}^{2}\right) \\
& \geqslant \frac{50}{2} \max \left(r_{n}, r_{m}\right)-\left(1-\mathrm{R}_{m}^{2}\right) \\
& \geqslant 10\left(1-\mathrm{R}_{m}^{2}\right), \text { q.e.d. }
\end{aligned}
$$

## BIBLIOGRAPHY

[1] E. Amar, Extension de fonctions analytiques avec estimation, Ark. Mat., 17, no. 1 (1979).
[2] B. Berndtsson, An $L^{\infty}$-estimate for the $\bar{\partial}$-equation in the unit ball of $\mathrm{C}^{n}$, preprint, Göteborg, 1983.
[3] B. Berndtsson, Interpolating sequences for $H^{\infty}$ in the ball, Nederl. Akad.Wetensch. Indag. Math., 88 (1985).
[4] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921-930.
[5] J. Garnett, Bounded Analytic Functions, Academic Press, 1981.
[6] M. Hakim \& N. Sibony, Ensembles des zéros d'une fonction holomorphe bornée dans la boule unité, Math. Ann., 260, no. 4 (1982), 469-474.
[7] W. Rudin, Function Theory in the Unit Ball of $\mathbf{C}^{n}$, SpringerVerlag, 1980.
[8] H. Skoda, Valeurs au bord pour les solutions de l'opérateur $d^{\prime \prime}$ et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104, no. 3 (1976), 225-299.
[9] N. Th. Varopoulos, Ensembles pics et ensembles d'interpolation pour les algèbres uniformes, C.R.A.S., Paris, Sér. A, 272 (1970), 866-867.
[10] N. Th. Varopoulos, Sur un problème d'interpolation, C.R.A.S., Paris, Sér. A 274 (1972), 1539-1542.

Manuscrit reçu le 21 mai 1985 révisé le 3 juillet 1985.

Pascal J. Thomas, University of California - Los Angeles<br>Dept. of Mathematics<br>405 Hilgard Avenue<br>Los Angeles, CA 90024 (USA).

