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VANISHING THEOREMS
FOR COMPACT HESSIAN MANIFOLDS

by Hirohiko SfflMA

Let M be a flat afflne manifold with a locally flat affine
connection D. Among the Riemannian metrics on M there is an
important class of Riemannian metrics which are compatible with
the flat affine structure on M. A Riemannian metric g on M is
said to be Hessian if g has an expression g = D^u where u is a
local C°°-function. A flat affine manifold provided with a Hessian
metric is called a Hessian manifold. A certain geometry of Hessian
manifolds has been studied in Shima [10]-[14]. See also Cheng and
Yau[2]andYagi[15].

Hessian manifolds have in a certain sense some analogy with
Kahlerian manifolds. In this paper, being motivated by the theory
of cohomology for Kahlerian manifolds we study cohomology groups
for Hessian manifolds.

Let F be a locally constant vector bundle over M. We denote
by n^(F) the space of all sections of (^ T*) ® ( ^T*) ® F,
where T* is the cotangent bundle over M. Since the vector bundle

4
( A T * ) ® P is locally constant, we can naturally define a complex

. . . -^ ^"^(F) -^ ^^(F) —^ ^^(F) -^ . . . .

We denote by H^9 (F) the p-th cohomology group of the complex.
Then we have the following duality theorem analogous to that of
Serre [9].

THEOREM. — Let M be a compact oriented flat affine manifold
of dimension n. Then we have
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H^(F) S'Fr'^^aK ® F)*),

^here K f^ rt^ canonical line bundle over M a^d (K ® F)* is
the dual bundle of K ® F .

Let F be a locally constant line bundle over M. Choose an
open covering {U^} of M such that the local triviality holds on
each U^ . Denote by {/^J the constant transition functions with
respect to {U^}. A fiber metric a = {a^} on F is a collection of
positive C°°-functions a^ on U^ such that

^ = f^ ̂  •

Using this we can define a globally defined closed 1-form A and
a symmetric bilinear form B by

A = — D log a^ ,

B = - D2 log ̂  ,

and we call them the first Koszul form and the second Koszul form
of F with respect ot the fiber metric a = {a^ respectively.

A locally constant line bundle F is said to be positive (resp.
negative) if the second Koszul form is positive (resp. negative)
definite with respect to a certain fiber metric. It should be remarked
that if a compact connected flat affine manifold M admits a locally
constant positive (resp. negative) line bundle, then by a theorem of
Koszul [6] M is a hyperbolic affine manifold, that is, the universal
covering of M is an open convex cone not containing any full
straight line.

Kodaira-Nakano's vanishing theorem for compact Kahlerian
manifolds plays an essential role in the theory of compact Kahlerian
manifolds. In this paper we prove the following vanishing theorem
for a compact Hessian manifold analogous to that of Kodaira-Nakano.

THEOREM. —Let M be a compact connected oriented Hessian
manifold. Denote by K the canonical line bundle over M. Let F
be a locally constant line bundle over M.

(i) // 2F + K is positive, then

H^(F)=0 for p + q > n .
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(ii) // 2F 4- K is negative, then

H^(F) = 0 for p + q<n.

As to vanishing theorem for compact hyperbolic affine manifolds
we should mention the following theorem due to Koszul [7].

THEOREM . — Let M be a compact oriented hyperbolic affine
manifold. Then we have

Vptq(\)=0 for p , q > 0 ,

where 1 is the trivial line bundle over M.

In § 1 and § 2 a Riemannian metric g is not assumed to be
Hessian. We define in § 1 fundamental operators e(g), i(g), n, *, 3, §
and D. In § 2 we define the Laplacian q on ^^(F), and
prove the duality theorem H^ (F) s H""^ n--<7 ((K ® F)*) and
the cohomology isomorphisms 3€ p f q (F) s }f1 q (F) s H^ (P7 (F)).
In § 3 we give the local expressions for geometric concepts on
Hessian manifolds. In § 4 and § 5 the formulae of Weitzenbock
type for D and D^ are obtained. In § 6 we prove a vanishing
theorem analogous to that of Kodaira-Nakano. In § 7 we mention
a vanishing theorem of Koszul type.

The author would like to thank Professor J.L. Koszul for his
kind suggestions.

1. The Laplacian D on n^ q .

Let M be a flat affine manifold with a locally flat affine
connection D. Then there exist local coordinate systems
[x1, . . . , x"} such that Ddx1 = 0, which will be called affine local
coordinate systems. Throughout this paper the local expressions for
geometric concepts on M will be given in terms of affine local
coordinate system. From now on we assume further that M is
compact, connected and oriented.

Choose an arbitrary Riemannian metric g on M. Let ^'^
P Q

be the space of all sections of (.AT*) ® (AT*) . We denote the local
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expression of 0^^'^ by

<t>=——T^(t>il...ipn..^(dxil A ' 1 ' AACIP)^ (^A.. . A dx^).

For simplicity let us fix some notation. We denote as follows :

Ip = 0 ' ^ , . . . , ip), ^ < ^ < . . . < ip , i < ^ < n ,

L-p = Op+1 » • • • > ^ ) » ^+ i < • • • < in ' 1 < ^ ^ " '
and (z\ , . . ., ip , ̂ + 1 , . . . , ^) is a permutation of (1 , . . . , n).
Then with this notation we write

0 = S_ 0i y ^xp ® dy^,
T T P Q^p^q

where dx p = dx11 A . . . A A:̂  .
For 0, V/ESy^ we set

A ( 0^ ) =p^0 I l•••^••^^' '>^ l ' '^ (L1)

^T.^.C**)

DEFINITION 1.1. — TTie inner product of 0, ^/ G ̂ p' ̂  ^

(0 ,^ )= /^ ^(0,V^,
w/z^r^ u f5 rt^ volume element determined by g.

DEFINITION 1.2. — Pi^d^/!^ ^-operation
^ ^P'Q —> n"-"p•"-q

^ (*^_pj^-^ - (- D^ ^dp ^-p) sgnd^J^G^ , w/z^
sgn(lpl^_p) Z5 the signature of the permutation (Ip !„_?) of
( 1 , . . . , ^ ) and G = = det(^.).

(*) Throughout this paper we use Einstein's convention on indices.

<**) \J, ̂ q means 2; \T, ^plq-
Ip.lq
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DEFINITION 1.3. - Let 0 = 2 0^ dx1" ® dx3" and

^=2;^!^^® dx^.

We set 0 A ^ = 2 0^ ,̂  (̂ P ^ ̂  ̂  ̂ 7, ^ ̂

A straightforward calculation shows

PROPOSITION 1.1. - Let <f>, ^ £ ftP-1, Then

(i) ^ 0 = ( - I)"+P+< ^

0}) 0 A * V/ =(- 1)^/2(0,^)1;® „.

DEFINITION 1.4. - Considering the Riemannian metric g as
an element in i21 '1 we define

e(g)-Mf-'' —> n^ 1 ' " ' 1 ' 1 ,

Kg):^'" —> ftP-i^-i ^

by e(g) 0 = g A 0 /or 0 e n"-9 a^ f(^) = (- I)"+P+-?+I ^ ̂ ^ ^

Then i(g) is the adjoint operator of e(g) with respect to the
mner product given in Definition 1.1:

0(^)0, V/) = (.<f>,e(g) y/) for 0enp•<', ̂ en''"1-9-1.

DEFINITION 1.5. - H^e/

n= S (n-p-q) ̂
P><I

where v^ ^ is the projection from S ^lr'!t onto ^ltl•<l.
r,s

PROPOSITION 1.2. - We have

[n, ̂ (^] = - 2^(^), [n, i(g)} = 2f(g), [i(g) ,e(g)]=n.
The proof is carried out by a direct calculation and so it is

omitted.
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DEFINITION 1.6.— Define

9 : ^ p l q —> n^1'^

by 3 = ^ (e^dx^ ® id) D^, where e^dx^ is a linear map from
k

A T* to A T* gn^n ^ e(dxk) oj = dx1^ A cj, id is the identity
p

map on A T* and D^ is the covariant derivation with respect to
S/^^ for the locally flat affine connection D .

Then we have
3 3 = 0 . (1.2)

DEFINITION 1 .7 .— Define

5 : ̂ plq —> n^""1^

by 5=( - ir^y^* 3 (-_*).

PROPOSITION 1.3. — 6 is the adjoint operator of B with respect
to the inner product given in Definition 1.1;

(80,V/) = (0,5i//) for 00^^, V/en^ 1^ .

In Proposition 2.1 we prove the above fact in more general
situation and so we omit the proof.

DEFINITION 1.8. - We define

D; ̂ plq —> ^plq

by D = 3 § + 5 8 , and call it the Laplacian. 0^ ̂ '^ is said to be
D- harmonic if Q 0 = 0.

2. The Laplacian q on ^^(F).

Let F be a locally constant vector bundle over M. Choose
an open covering {U^} of M such that the local triviality holds
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on each U^. Let { ^ , . . ., ̂ } be fiber coordinate systems such
that the transition functions {/^} defined by

fc' = V f i fc/^\ -L ./^ / ̂
/

are constants. A fiber metric a = {aj- on F is a collection of
m x m positive definite symmetric matrices a =(a^-.) such that
each a^. is a C°°-function on U^ and

^ == r^ a^ f^\

holds.
Let ^^q (F) denote the space of all sections of ( ^T*) ® (^T*) ® F .

Using fiber coordinate systems {^} we express an element
^E^^F) as 0 = {0^}.

DEFINITION 2 .1 .— Define

a^'^F) —^ ^^^^(F)

^ a {0/}= {a01}. (*)
We have then

3 3 = 0 . (2.1)

DEFINITION 2.2. - The inner product of 0, V/ e sy'^ (F) f5

( 0 , V / ) = f 2^(0^)1;.
^M

DEFINITION 2.3 —Define

6^ : ̂ ^(F) —^ ^""^(F)

^ 8^ {01} = (- l)^ 1 ^ /̂G"^ * a (aj—^ 0̂ ) , where a" is
( / ,^ V0 )

rt^ 0',/)-component of (^.)~1 .

(*) For brevity the subscripts X , ^ t , . . . are droped where no confusion
will arise.
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PROPOSITION 2.1. — 6^ is the adjoint operator of 3 with respect
to the inner product given in Definition 2.2;

00,V/)=(0,6,V/) for ^^-^(F), V/Ety^(F).

Proof - Since ^ f l ^ ^ A * ^ 7 is globally defined on M,
',/

there exists (n — l)-form a? on M such that a? ® v = 2 a^01 A * ^7 .
Then

3 (a? ® i;) = (a A a? + d<^) ® v ,

where a = dlog^/?}, and

8(2^.0^ * V/7)

= (- 1)^ 2 a,, h(b<f>\ V/7) i; ® i; + (- 1)"-^ 2 01 A ** 3(^. * ^/).

Since
S,^^-^ l)"^ *(a A * ^ +(- l)"^ Z ^ ^ a ^ * ^ ^ ,

we have

(a A co 4- do?) ® i;

= (- O^Sfl^/^1,^)^!; + ( ~ 1)"-^ S^.^ 'A^^^A*^)

+ ( - D^S^A^y/ 7

= (- 1)^ 2 ̂ (801, V/7) i; ® i; 4- (a A CD) ® v

+ (- l)^-1 2 ̂ W,5, V/7) i; ®t; ,
and so

d^ = (- 1)^(2 a,,ft001, V/7) - 2 ̂ W,6, V/7))!;.

Therefore

0 = ^ ^=(-1)^(00,V/)-(0,6^)).

Q.E.D.

DEFINITION 2.4. — H^ define

q: ̂ ^(F) —^ ^^(F)
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by D^ = 36^ 4- 6^3, a^rf ca// zr the Laplacian. 00^'^) ^ ^rf
to be D ̂ -harmonic if D^ 0 = 0.

DEFINITION 2.5. - H/6?^

^^(F)^ {0en^(F) iq0=o} .

THEOREM 2.2. - H/6?Afli^ the following duality :

^^(F)^ ^"^'"-^((K^F)*),

wA^^ K ^ the canonical line bundle over M and (K ® F) * ^
rt6? dual bundle of K ® F.

Proo/ -For ^ = {V/7} en^^(F) we set

^ = S -fl- * V/7. (2.2)
/ V^

Then we have ^* == {^^-^^((K ® F)*) . It follows from
Proposition 1.1 (i)

^=(-1)"^^ S^G^*^*. (2.3)

Thus the map V/ —?- ^* is a linear isomorphism from ^^(F)
onto n""^ "-<? ((K 0 F) *).

Let 00^^ (F) and i//* G n"-^"-^ ((K ® F)*). Then

^./G^AV/,* is globally defined on M. Hence there exists a

C°°-function ^(0 ,V/*) on M such that
^ V^'A^* = A:(0,^*)t;® i;.
/

We set

< 0 , ^ * > = ( - 1)̂  f A-(0,^*)i;.
^M

Since

^ ( 0 , ^ * ) i ; ® t ; = S ^A^^-l)^ 2:fl,^(01,^)t;®^
f '7 i,/

we have

< 0 , ^ / * > = ( 0 , ^ ) for 0, V/G^^CF) .
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Define the inner product of y/*, 0* G n""^ n-q ((K ® F) *) by

(v/* ,0*)= r zG^/z(v/,*,0pt;.
^M /

Since

S G^'/z(V/*,0*)i;®i; = Z fl../^(*V/ l,*0 /)l;®l;
<,/ i,/

= (- 1)^ S ^^ A * V/1 = ̂  a,,A(07, ̂ ) v ® i;,
» , / <J

we obtain
( ^ * , 0 * ) = ( 0 , V Q tor ^^E^'^F).

Let ^^"^(F) and V/* G n"-^"-^ ((K 0 F)* ). Then

^ ^/T3 01 A ̂  is globally defined on M and hence there exists
i

(n — l)-form a? on M such that

S V^^'A ,̂* = CD ® i;.
/

Since

^(I^G0 lA ^)
v / '

=S {aA^0 I A V/,* +^30^ ^* +(- I^-'^/G^A 30,*}
/

= ( O A CO)®1 ; + S {W,^) +(-l)p- lA:(0 l,^V/*)}t;<g)I;,
/

and
8(0; ® t;) = (a A a? + dcj) ® u,

we obtain

d^ = S TO01^*) + (^ I)""1 W\9^*)} ̂

Therefore

0 = /M ̂

=(- 1)^ 00,V/*>+(- 1)P - 1 +<P - 1 ) < ^<<A,^V/*>.
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This implies
< a 0 , V / * > = (- 1)^(0,a^*>.

Using these facts we obtain

(0*,ay/*) = < 0 , a ^ * > = ( - D^O^*)^- 1)^00,^)
==(- D^^S^)^- 1)^(0*,(5^)*),

hence
3^* = (- 1)^(6^)* for V/e^'^F). (2.4)

By the same way we have

(V/*,5^0*) = (3V/*,0*) == < 0 , a y / * > = (- 1)^^00,^*>

= (- 1)^^ (30, ^) = (- 1)^^ (00)* , ̂ *),
hence

5,0* =(-1)^^00)*.
Thus

§^* == (- D^^^ay/)* for ^e^^(F). (2.5)

(2.4) and (2.5) imply that ^/* is harmonic if and only if ^ is
harmonic.

Q.E.D.

DEFINITION 2.6. - We set

H^(F) = { 0 E n p ' q ( F ) | a 0 = = o} /{av / | l / / e sy~ l ' < ^ (F )} .
A ^-form a? on M is said to be D-parallel if Do? = 0. Let

us denote by P^F) the sheaf over M of germs of F-valued
D-parallel ^-forms.

DEFINITION 2.7. - We denote by H^P^F)) the p-th coho-
mology group of M with coefficients on P^ (F).

THEOREM 2.3. — We have the following isomorphisms:

ge^^F) ^ H^^F) ^ ^(^(F)).
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Proof. — By the theory of harmonic integral we have

gep^(F) ^ H^^F).

Let A^'^F) denote the sheaf over M of germs of sections of

( J^T*)® ( ^ T * ) ® F. Then

0—> P^(F) -^ A^^F) -^ A^CF)-^ A^CF)-^ . . .

is a fine resolution of P^F). Thus we have H^'^F) ^ H^P^F)).

Q.E.D.

3. Hessian metrics on affine local coordinate systems.

Let M be a Hessian manifold with a locally flat affine'
connection D and a Hessian metric g . We denote by V the
Riemannian connection for g . In this section we shall express
various geometric concepts on the Hessian manifold M in terms of
affine local coordinate systems. Let us denote by D^ and V^ the
covariant derivations with respect to ^/^Jcfc for D and V
respectively. Since the Christoffel symbol F- for g is the difference
between the components of affine connections V and D, we may
consider that F^ is a tensor field. We have then

r^=^D^., (3.1)

D^=2F^, D^=-2P^,

r = r = r1 ijk 1 jik A ikf •

DEFINITION 3.1. — We define a \-form a and a symmetric
bilinear form j3 by

a = D logy^G,

P = D2 log^/G,

where G = det(^), and call them the first Koszul form and the
second Koszul form of M respectively.
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Then we have a,=r,^ (3.2)
^=D/IV

DEFINITION 3.2. - Let 7^ be the derivation of the algebra of
tensor fields defined by

7 ^ = V ^ ~ D ^ .

Let T^ be the space of tensor fields of type ( p , q) defined
on M.

DEFINITION 3.3. — We define certain covariant derivations
V , , V ^ onT^T; by

V;,==(27^ id +D^

V ^ = i d ® (27xr) +D,,,
where id ar^ rt^ identity transformations.

Notice that

Vfc == ~(V^ + V^), where / ; = f e .

LEMMA 3 .1 .— For ̂  Hessian metric g we have
^ k S f f = 0 , ^gf=0,

V^'-O, ^ / = 0 .

Proof — By (3.1) we obtain

V ^ g,= D, ̂ - 2^w^^7= 2r^ - 21^, = 0.

Similarly we can prove the other equalities.

Q.E.D.

DEFINITION 3.4. — Considering 7^ as tensor fields of type (1.1)
we define tensor fields 7 and S by

7= ^ 7,®^,
i

S = D7.
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The component of S is given by
s^=i\iv.

LEMMA 3.2. — S ;̂ = S^ = S^ = S^.

Proof. - Let ^ = D,D/M . By (3.1) we have

S ,̂ = ̂  D* r^ = ̂  D^ ̂ M r^) = ̂  (O^^) r^ + Sip ̂  D, F,,,
= - 2r,^ r,,, + D, ̂  = - 2g^ r,^ r,,, + D, ̂
= ^ D,D,D,D,« - ̂ ^'•(D,D,D,u) (D,D,D,y).

This proves the Lemma.
Q.E.D.

LEMMA 3.3. - ̂ . = S . ^ = Sy\.

Proof. - Py = D^.a, = D,a^ = D,^/^ S^.. By Lemma 3.2 we
^v m ^q 1̂ 1 ^^ n vhave S^=g^S^=^S^=S/,.

Q.E.D.

4. The local expression for D.

From now on we always assume that M is a compact connected
oriented Hessian manifold.

PROPOSITION 4.1. - Let 0 G sy'q . 77?^ w^ Aai^

<^4..^ ., = X (~ I)0-1 V;, 0/,..?,...^, 7,,
0

v^here iy means "omit i y " .

Proof. — By Definition 1.6 we have

(<Wi,,,T, = ̂  (- I)0-1 D^ 0,,../,...̂ ,r, • (4.1)

Using this and (3.1) we obtain the proposition.
Q.E.D.



VANISHING THEOREMS FOR HESSIAN MANIFOLDS 197

PROPOSITION 4.2. - Let <t> € SV' 1 . Then we have

^\-^ = -^V;-^_.r, + <^_,T, .

Aw/-Let V.esy-^. By (4.1) and Green's theorem we
have

W,W--X D.(^-^)^^_^^.

Thus we obtain

(S^-1'" = - D, ̂ -'^ - ̂  ̂ ^-i^

= - V, 0''IP-1J» + ̂  0'•IP-1J<?.

This completes the proof.

Q.E.D.

THEOREM 4.1. - Let 0 € n"-" . Then we have
m^=-8!r^^+^^^ - ŝ ,,,,.,̂

4- ^ y ots __ . _
^r iair 1' • •(J)(J • • • 'P ̂ - • • ̂ r.. .7g 5

wA^^ (^)^ means "substitute s for o-th place19.

Proof. -Using Proposition 4.1, Proposition 4.2 and V'a7^
we obtain • • l

WV. » -f £ v. v-̂ ,,.,,....,,. + 2; "U,...,.,,,..,,.

+S•»•V(,0„...(„^,^,

^U'-^^^.-S <»,,,„...,,,.)

^("^w,- Sv;. *„...<„,...^.),
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and so

WipT, = "^F^ \J, + ̂  v; \\

•^StV^V^^...^...^

+ Z ̂  ̂ i... (,)„...,pT,-

Let us calculate the third term on the right-hand of the above formula.
Since [VpVy-] is a derivation of the algebra of tensor fields which
maps every function to 0 and since

[V;,V7-]^=2S^^,

[Vp^Hj,=-2Sy^,
we have

[V^V^.,,.^...^ = I 28^^,^.,^,^

+2S"^ ^-i... (».)„... ̂ ,

- - '̂"ria/r ̂ r ••(*)<'• ••'p/r..(»')T • • • / , •

Thus, by Lemma 3.2 and 3.3 we obtain

^ Z [V^,^] 0,,...(^...,^ = 2 S ̂ ...(.),...̂
or a

- 2 ^ SWJ^^... (J)o ... ip/,... (m)i... Jq -
a » T

This completes the proof.

Q.E.D.

Example. — For the Hessian metric g we have

(D^=-^.
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Thus the Hessian metric g is D-harmonic if and only if the second
Koszul form (S = 0. Therefore, by [12] the following conditions
are equivalent :

(i) g is D-harmonic.

(ii) The first Koszul form a = 0.

(iii) The second Koszul form (3 = 0.

(iv) g is locally flat.

5. The local expression for D^,.

Let F be a locally constant line bundle over a compact connected
oriented Hessian manifold M, and let a be a fiber metric on F.

PROPOSITION 5.1. — We have

5,= 5 +,(A),

where A = — D log a and (z(A) 0)ip_^ = A'' <t>rip_^q f01"

^en^^F).

Proof. - By Definition 1.2, 1.7 and 2.3 we have

f, _ . ivi+i V^ ^( a \
8a~( -D -T-*8^^

== (- 1)" « ^(A) * + (- I)"4-1 v^T* 3 (——*)

= i (A )+8 ,

where

(^A)0)/,...<^,T, = S (- D^1 A/, ̂ ,../,...,̂ J,
0

for ^G^ '^CF) .
Q.E.D.
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DEFINITION 5.1, - For 0 G sy •q (F) H^ ̂

V^^V^).
a

THEOREM 5.1.-Z,e/ ^e^'^CF). TTicw we /lave

("^T, = -^'V^ V; ̂ 7, + "* V; 0^

+ Z(-^+B^<A(,...(^..,.^

+ 2 L S"^<A^...(^...^...(7^...7^ .

Proof. — By Proposition 5.1 we have

D\, = D + f (A)3 + 3!(A).

A straightforward calculation shows

(i(A) 30)^^ + (3 i(A) 0)^
p

' ^P ̂  „" i B''̂  ̂ 1- • • ('•)<' • • • 'P ̂
-^^-V;^!^ IB- ,̂̂ ...̂

Thus our assertion follows from the above facts and Theorem 4.1.

Q.E.D.

6. A vanishing theorem of Kodaira-Nakano type.

Let 0 be a symmetric covariant tensor field of degree 2.
Considering 6 as an element in Sl1 f l we define

^(0):^'^ —> n^1 '^1,

((0):^^ —> n^1^"1,

by <? (0 )0= 0 A 0 for 0^^^ and ;(0) = (- l)"^^1 ̂ (0) *.
Then f(0) is the adjoint operator of e(6) with respect to the

inner product in Definition 1.1 and 2.2.
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In this section we always assume that F is a locally constant
line bundle over M.

PROPOSITION 6.1. — We have

(i) [Q,,e(g)] =e(B +/3) ,

(ii) [q,^)]=~z(B +^) .

The proof follows from a straightforward calculation and so it
is omitted.

PROPOSITION 6.2. —Suppose 0,0 = 0. Then we have

(i) (e(B +^)^)0 ,0 )<0 .

(ii) 0(^(B +^ 0 ,0 )>0 .

(iii) ([W,^(B + < 3 ) ] 0 , 0 ) > 0 .

F^oo/. - By Proposition 6.1 (i) we have D^(g) 0 = e(B + (3) 0.
Thus we have
0<(D^)0,e(g)0) = (e(B +(?)0,e(g)0) = 0(g)^(B +(!)0,0),

which implies (ii). By the same way, since D^ i (^) 0 = — ^'(B + (S) 0
we obtain

0 < P, i(g)(t>,i(s) 0) = (- ^(B + ^) 0,^) 0)

=(0,-e(B +/3)^)0),

which shows (i). (iii) follows from (i) and (ii).
Q.E.D.

THEOREM 6.1. — Let M be a compact connected oriented Hessian
manifold. Denote by K the canonical line bundle over M. Let F
be a locally constant line bundle over M.

(i) // 2F 4- K is positive, then

H^(F)=0 for p - ^ q > n .

(ii) // 2F 4- K is negative, then

H P ^ ( F ) = O for p ^ q < n .
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Proof. - Suppose 2F + K is negative. Then B + (3 is negative
definite. Therefore g ' = — (B + fS) gives a Hessian metric on M.
If we denote by ff the Koszul form on M with respect to g', then
there exists a positive C°° -function / on M such that

^ = ft + D2 log/.

If B is a Koszul form of F with respect to a fiber metric a = {a^} ,
then the Koszul form B' of F with respect to the fiber metric
a' = {fa^} satisfies

B' + ^ = B + ( 3 = -g1.

Therefore if we use — (B + j3) as a Hessian metric, the formula in
Proposition 6.2 (iii) is reduced to

([W,-^)]0,0)>0 for ^Ege^^F).

Thus by Proposition 1.2 we have

Oi-p-<?)(0,0) <0 for 0E ge^ (F).

Therefore, if n - p -q>0 then 0 = 0 . Hence (ii) is proved.
(i) follows from (ii) and Theorem 2.2

Q.E.D.

7. A vanishing theorem of Koszul type.

In this section we mention a vanishing theorem of Koszul
type. Let M be a compact oriented hyperbolic affine manifold. Then
there exists a canonical Hessian metric g and a unique Killing vector
field H on M such that

D x H = X , (7.1)

for all vector field X on M [7 ]. The following theorem is essentially
due to Koszul.

THEOREM 7.1. — Let F be a locally constant vector bundle
over a compact hyperbolic affine manifold. If there exist a fiber metric
a = {(a, ft and a constant c (=^= — 2q) such that

Ha^ = ca^,
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then we have
H^(F)=0, for p>0 and q>0.

The proof of this theorem is nearly the same as Koszul [7], and
so we omit the proof.

COROLLARY lA.—Let M be a compact oriented hyperbolic
of fine manifold. Then we have

H^d)^, for p , ^ > 0 ,

where 1 is the trivial vector bundle over M.
r s

The tensor bundle ® T ® T * satisfies the condition of
Theorem 7.1 if q — r + s ^ 0.

We give another example of locally constant vector bundle over
M which satisfies the conditions of Theorem 7.1. Let Sl be an open
convex cone in R" with vertex 0 not containing any full straight
line. Suppose that a discrete subgroup F of GL(n, R) acts properly
discontinuously and freely on Sl such that M = r\S2 is compact.
Assume further that there exist a linear mapping from Sl to the
space of all m x m positive definite real symmetric matrices and
a homomorphism from F to GL(w, R) , which are denoted by
the same letter p, such that

P(7^) = P(7) P (x) ̂ (7) for 7 ̂  F, x e Sl.

We denote by F^ the vector bundle over M associated with the
universal covering Sl —> M and p. Let U be an evenly covered
open set in M. Choosing a section a on U we set

a = ( p o a ) ~ 1 .

Then a is a fiber metric on F^ and we have

HA = -a.

Therefore

COROLLARY 7.2. - We have

H^F^O for p>0 and q>0.
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