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A NEW CONSTRUCTION OF p-ADIC
L-FUNCTIONS ATTACHED

TO CERTAIN ELLIPTIC CURVES
WITH COMPLEX MULTIPLICATION

by John L. BOXALL

Introduction.

The purpose of this paper is to use some of the results on p-adic
interpolation obtained in an earlier article [1] to construct locally analytic
p-adic L-functions associated to certain elliptic curves with comple
multiplication. Although our main interest lies with supersingular primes,
we shall also consider ordinary primes since our method applies with little
change to both cases.

To explain our results, let p ^ 5 be a prime number, K an imaginary
quadratic field, F an extension of K of degree n and p a prime ideal of
K lying above p. Fix once and for all embeddings of the algebraic closure
Q of Q into C and Cp subject to (13) in § 2. Here Cp denotes the
completion of the algebraic closure of Qp. If p splits in
K((?) = PP» P 7^ p) we suppose further that the embedding Q <—». Cp is
p-adic. If a is an integer of K not divisible by p we write ©(a) for the
unique prime-to—p-th root of unity in Cp congruent to a modulo p. Let
E be an elliptic curve defined over F having complex multiplication by
the full ring of integers OK °f K— Choose a Weierstrass model
y2 = x3 + ax + b of E over F and let ^ be the lattice of periods of

the differential — on E(C). We suppose that the following conditions on

E, p and F are satisfied:
(i) E has good reduction at all the primes of F above p,
(ii) F(E^rs) is abelian over K.

Key-words : Fonctions Lp-adiques - Courbes elliptiques.
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It is also convenient to assume that
(iii) ^ = ^OK for some QeC* (which we fix).

It is well-known that this can be satisfied by replacing E by one of its
Gal(F/K)-conjugates. If A is an arbitrary lattice in C and k > 0 is an
integer, we define, for all z, seC with Re(s) sufficiently large

0) o.teA)-E^

where the sum is taken over all w e A except w = — z if z e A. It is
known that for fixed k and z, s ^-> Gfc(z,5,A) has an analytic
continuation to the whole complex plane. Let v : C^ -> Q be the
valuation normalised so that v(p) = 1. In § 2 we shall prove

THEOREM A. — Let g be an integral ideal of K divisible by p and a an
element of OK which is not divisible by p. Let d^ be the discriminant of K
and Q as above. Then there exists a constant Qp e C^ and a unique locally
meromorphic function Gp(a,5,g) -> Cp such that

0, if p splits in K ((p)=pp,p^p)

2 _ . if P is inert in K((p)=p)v(^) = p - 1 p2 - 1
1 » if p is ramified in K ((p)=p2)2(p-l)

I^V^GJfl.L^ . 1

and

„ o ,̂.̂ )-̂ -,,]

for all k > 0. Moreover Gp(a,s,g) (5 locally analytic except at s = 0
where it has a simple pole with residue (Ng)~1 .

The formulation of this theorem is by analogy with Theorem 5.9 of
Washington [30] where the p-adic interpolation of partial zeta functions at
negative integers is obtained and later used to construct the Kubota-
Leopoldt p-adic L-functions. Indeed we shall see in § 3 that Theorem A
can be used to construct p-adic partial zeta functions attached to abelian
extensions of K. The appearance of the functions G^ at s = 1 rather
than s = k may be viewed as analogous to the fact that it is easier to
interpolate partial zeta functions at negative rather than positive integers
(though they are related via the functional equation).
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The algebraicity of 0^ x (the right hand since of (2)) follows from a
result of Damerell [7] (see also Weil [31, chapters VI and IX]).

In § 3 we apply Theorem A to the construction of p-adic L-functions of
E. Let Jp be the idele group of F and Ap the direct sum of the
components of the idele A at the primes of F above p. Let \|/:
JF -)> K* be the Hecke character attached to E over F as in Serre-Tate
[26, Theorem 10], and e: Gal(Q/F) -> K^ the character giving the
action of Gal(Q/F) on the p-division points of E. Here Kp is the
completion of the image of K in Cp and K^ its multiplicative group.
Clearly e factors through to a character of Gal(F(Ep)/F) and so can be
viewed as a character of Jp via class field theory. We shall see
(Proposition 8 (i)) that the conductor of \|/e~1 is divisible at most by
primes above p. Since £ is of finite order \|/e~1 takes values in Q*;
therefore if 9: GaUF^/F) -» Q* is a character of finite order (again
viewed as a character on Jp) we can define, for each integer k ^ 1, the
complex L-series

L.< -̂.M,).£<*î m
where the sum is taken over all ideals A of F prime to p and the
conductor of 9. The asterisk is used to indicate that the Euler factors for
primes above p have been omitted. We shall prove

THEOREM B. — Let notation be as above and suppose in addition that 9
factors through a character of Gal (K^/F). Then there is a unique locally
meromorphic function Lp(\|/,9,5): Z., -> Cp such that

4(W)=^[((^)'̂ )"L.(*s-.)>,e,l)]

whenever k ^ 1. Moreover Lp(v|/,9,5) is locally analytic except when 9 is
trivial, in which case the only singularity is a simple pole at s = 0.

In particular taking 9 = e; we obtain a function Lp(E/F,s) which
deserves to be called the p-adic L-function of E over F. It has a pole at
s = 9 if and only if F(Ep) = F.

The proof of Theorem B is given in § 3 and § 4. In § 4 we also discuss p-
adic Kronecker limit formulae at s = 0 for some of the function discussed
in § 3, and use this to outline the existence of the pole of Lp(v|/,9,s) at s = 0
when 9 is trivial.
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p-adic L-functions of one and several variables associated to elliptic
curves with complex multiplication were introduced by Vishik-Manin [29]
and then studied by Katz [13], [14], Lichtenbaum [19], Coates-Wiles [6] and
many others. For recent versions see Coates-Goldstein [4], Yager [32], [33],
de Shalit [27]. Moreover very recent work of Colmez and Schneps should
enable one to suppress the restriction that F(E^s) is abelian over K. A
quite different idea valid for any so-called Weil curve, was introduced by
Mazur-Wiles [22]. All the above authors confine their attention to ordinary
primes, but the treatment involving partial zeta functions associated to
abelian extensions of K appears to be new. In a subsequent paper [2], we
shall show how to construct Iwasawa functions from these partial zeta
functions. As for supersingular primes, the literature seems to be confined
to Katz [15], [16] and Rubin [24]. Although these authors confine their
attention to elliptic curves over K they obtain congruences between the
values of the L-series which seem to be difficult to derive using the methods
developped in [1] and the present paper. Finally it should be mentioned
that nothing seems to be known about two-variable p-adic L-functions in
the supersingular case.

Acknowledgements.
An earlier version of this paper first appeared as part of my Oxford D

Phil Thesis, and I would like to thank the SERC for its financial support
during its preparation. I would also like to thank my research supervisor
Dr. B. J. Birch, as well as J. Tilouine, N. Schappacher and G. Robert for
their interest in my work.

1. Notation and Results Needed form [1].

As in the Introduction, let p ^ 5 be a prime number, K an imaginary
quadratic field, F an extension of degree n of K and p a prime ideal of
K lying above p. Let OK be the ring of integers of K, e the
ramification index of p in K and q the number of elements of the residue
field OK/P. Let Cp denote the completion of the algebraic closure of Qp,
0 be its ring of integers and m its maximal ideal. We fix embeddings of
the algebraic closure Q of Q into C and Cp subject to (13) in §2. If in
addition p splits in K, we require the embedding Q c_^ Cp to be p-
adic. Let E be an elliptic curve defined over F having complex
multiplication by OK' F^ a Weierstrass model y2 = x3 -+- ax -+- b of E

over F and let ^ be the lattice of periods of the differential — on
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E(C). We suppose that the conditions (i), (ii) and (iii) are satisfied. In
particular condition (ii) implies that F/K is abelian and that E is
isogeneous over F to each of its Gal(F/G)-conjugates (see [9, §4]). If a
is an integral ideal of K, E^ denotes the group of a-torsion points of E

00

and E,p^ = (J E^n.

Let Kp (resp. Fp) denote the completion of the image of K (resp. F) in
Cp and let 0^ (resp. Op ) be the ring of integers of Kp (resp. Fp). If
aeC^ , the group of invertible elements of 0^ ? we denote by 00(0) the
unique root of unity in Kp congruent to a (modulo p). Let E be the
formal group of E, — it is defined over Op . If TT denotes a uniforming
parameter of Kp, and go ls ̂ e basic Lubin-Tate formal group associated
to the polynomial nX + X4, then our hypothesis on E imply that E is
isomorphic to ®o over ^ • This allows us to apply the results of [1] which
we now recall. Let 6^ denote the multiplicative group. According to a
result ofTate [28] (see also [1, § I], Homo(E,G^) is a free 0^ -module of
rank one. Fix a generator ^eO[[T]]. We denote by +e the operation of
the addition law on E on power series or on elements of m. Thus
Hom^(E,GJ = {/(T)eO[[T]]|/(X+eY) = /(X)/(Y) and /(O) =1}. If
a e OK we denote by [a] the corresponding endomorphism of E and
write ta for t ^ o [a]. Define a constant Qp e C^ by

OT)= 1 +Op^T+0(T 2 ) .

It is shown in [1,§4] that under our hypotheses

.w- •p - \ e(q-\)

and our proof of Theorem A will show that the Qp appearing there is in
fact the same as this one.

Let K denote the logarithm of E, i.e. the unique element of Fp[[T]]
satisfying MX+^Y) = HX) + MY) and )i(T) = T + 0(T2). It is well-
known that ^(T)e 1 + TO[[T]]. Define a differential operator Di on

Cp[[T]] by (DJ^^^—nT). Thus D, takes elements of 0[[T]]

to elements of 0[[T]] and if z = )i(T), then

"•-„.
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Let B = {/€C^[[T]]|3r ^ 0 such that D-i/€0[[T]]}, (we adopt the
convention that D';/ = / if r = 0). Fix a non-trivial element Tio of
ker[7r], so that ker[7i] = {[c](r|o)} where c runs over a complete set of
representatives of 0^ modulo n. Let ^eZ/(q-l)Z with p ^ 0, and
define

VP) = E coP(«)t,([«](iio))
and

^(P) = Ti(P)

where the sum runs over a complete set of representatives of O*
modulo it. By Lemma 3 of [1] we have ''

^,(P) = (O'^^TCP) if ae-O?pand
^(P)T(-P)=(-1)V

For each peZ/(g-l)Z, we define an operator A^ on B by

(AW/)(T)=/(T)-lI;/(T+EM(^^o)) if P = 0
•f U

=T^)E/(T+6[M](T1p))0)-P(M) if ( 3 ^ 0 ,
f U

where the first (resp. second) sum is taken over a complete set of
representatives of 0^ (resp. 0^) modulo n. This is well-defined, since
B is in fact contained in the ring Bo discussed in § 1 of [1]. According to
Lemma 5 of [I], B can be decomposed into eigenspaces for the A^s.
More precisely, if fe B and a eC^ , then we define

(3) F,(T)= ^ /(T+eTl)^);
T| e ker[7t]

we have

(4)
(A<P>F,)(T) = O)W,(T) if ai.0 (mod. 71)

= 0 if a = 0 (mod. 71).

We shall need the following interpolation theorem, which is Corollary 12
of[l]:

THEOREM 1. - Let / eB and aeZ/(^-l)Z. Then there exists a
unique locally analytic function C^ : Zp -> Cp such that for each
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p€Z/(g-l)Z

c^).(-,,-.pî _^
p

w^neuer k ^ 0 and k e P.

Here C^ locally analytic means that it can be expanded in a Taylor
series with non-zero radius of convergence about every point of Zp.

2. Interpolation of Eisenstein Series.

This section is devoted to the proof of Theorem A. We begin by
recalling some definitions and results on elliptic functions and Eisenstein
series.

Let A be a lattice in C. Define as usual

II(^•A)-^^(l+^e'">H+^)
w + 0

^A)=^loga(z,A)=^J^-^)

w ^ 0

^,A)--^,A)^^(^-^)-
w ^ 0

Since ^(z,A) is an elliptic function, r|(w,A) = ^(z+w,A) — ^(z,A) is
independent of z and the map w -> r|(w,A) defines a homomorphism
A ->• C which extends by R-linearity to a map C -> C also denoted by
r|(w,A). We have, if w e A ,

(5) a(z+w,A) = ± CT(z,A)exp(r|(w,AHz+,wjJ

where the sign is taken + or — according as to whether w e 2A or not
(see [17], Chapter 18, §1]).

Let p, p e C and a(A) be the «area» of A, i.e. the quantity
W i W 2 — W i W 2 , , " r, i • r A A ^ ^——— where w^ and \v^ are a Z-basis for A, and the bar
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denotes complex conjugation. We define

(6) <P,P>A = exp^-—(pp-pp)j

where 7 t=3 .14159 . . . . If f e e N and 5 e C with Re(s) sufficiently
large, define

' (0 4- W^
(7) H,(p,p,s,A)= S < W , P > A — — , ^

w e A IP" 1 ' " !

where the summation is taken over all w e A except w = — p if p e A . I t
is known (see Weil [31, VIII, § 13]) that HK(P,P,S,A) extends to a
holomorphic function on the whole of C and satisfies the functional
equation

(8) r(s)H^(p,p,s,A)/^y^-25
^(l+k-s)<f),f»>.lH^p,(),l-^-k-s,^).

Write

and

G^(p,s,A) = Ht(p,0,s,A)
G»(p,A) = G»(p,fe,A)

G»(A) = G,(0,A);

i y^'^to M
if f c > 3 then G,(p.A) = Z . ^ ^ = (-1)" ^_^; provided

p ^ A. We have the identities

KZ \
(9A) ,̂A) = Gi(z,A) + zG,(A) + a(A)
(9B) ^(z,A) = G2(z,A) - G2(A) [ ^ A

(10) ii(z,A) = zG^A) + nz

a(A) /

(see [9] (1.5) and (1.6)).

Let A(A) = (60G4(A))3 - 27(140G<,(A))2 be the discriminant of A
and define

(11) 9(z,A) = exp (-6G,(A)z2) A(A)CT12(z,A).
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If, further, A' is a lattice containing A with index (A': A) we define

9(7 A W^)
(12) e^A.A.).^-.

LEMMA 2. — (i) 6(z,A;A') is an elliptic function on A and in fact

\(\\^''-^ '
9(z,A; A') = v / , n (^(z,A)-^0,A))-6

tx\nL) •k

where the product is taken over a complete set of representatives {^} of the
non-zero cosets of A in A'.

(ii) We have the Laurent expansions

d i ^ A A^ ^((A'A)-!)—log9(z,A;A') = ————————dz z
+ 12 f (-^-^(AKA'^-G^W-1

k = l

and, if p ^ A

-^logeCz+p.A;^)^ f (-l)k-l(G,(p,A)(A':A)-G,(p,A/))zk-l.
az k = i

proof. - (i) The fact that 9(z,A;A') is an elliptic function on A
follows easily from (5). The explicit formula for it follows from a routine
comparison of divisors and ratios as z -> 0, and we omit the details.

(ii) We only consider the case p ^ A . In view of (11) we have

^^(z+^A) = - 12G2(A)(z+p) + 12^(z+p,A).
dz

00 ^

Now (;(z+p,A) = i;(p,A) + ^(p,A)z + ^ ^(^A),- and
k=2 K •

^'(p,A) = - ̂ (p,A)
and

^)(p,A) = (-1)^ i (p,A)fc ! if k > 2.

Therefore by (9)

^log6(z+p,A) = nf-^ + G,(p,A)) + 12 ^ (-^-^(p,^-1.
dZ \^(AJ / fc=2
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Comparing this with the similar expression for —log9(z+p,A') anddz
observing that a(\) = (\': \)a(\') we obtain (ii).

Our next lemma is a version of the functional equation (8) more suited
to our purposes. If A' is a lattice containing A and p e A, then the
map p \—> <p ,p>A gives rise to a character of the additive group A'/A.
Let A" be the dual lattice of A' with respect to A, i.e.
{p e C | < p,p>A = 1 for all p e A'}. Then A" is clearly a sublattice of A
with index (A': A).

LEMMA 3. — With notation as above let p e A be fixed. Then for each
k ̂  1

F(5) E G,(p,5,A)<p,p>A
pmod A

fa(^)\l+k~2s

= (A':A) -̂ - r(l+fc-5)Gfc(p,l+fe-5,A")
\ K )

where the sum on the left is taken over a complete set a/representatives {p}
in C of A' modulo A.

Proof. — For each representative p multiply (8) by <p,p>A and sum
over p. Since p e A , one has H^(p,p,s,A) = Gj^(p,5,A) so that we obtain

/aiMY^-18

r(s)£G,(p,5,A)<p,p>A = P— r(l+fc-5)H,(p,p,l+fe-5,A).\ n )

Recalling the definition of Hfc(p,p,l+fe—s,A) from (24) and that

E <w,p>A = (A': A) or 0
p

according as to whether w e A" or not we obtain Lemma 15.

Now let E be our elliptic curve with Weierstrass model

y2 = x3 4- ax 4- b, and ^ the lattice of periods of x on E(C). Let ^

be the analytic isomorphism C/^f -> E(C) given by

z »-> ^(z) = [ ̂ (z,^f)-^'(z,^))- On the other hand if E is the formal

group of E and E(m)^rs the torsion subgroup of £(m) then the maps

E(m)^ ^ E^oo c_ E(Q) c^ E(C) ^ C/J?
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00

induce an 0^ -module isomorphism v : E(m)tors -> [j p ~ " ^ / ^ which
n= 1

is determined by our embeddings of Q into C and Cp.

It is convenient to choose the generator ^ of Homo(E,G^) (or
equivalently the embeddings of Q into C and Cp) in such a way that

(13) ti(r|) = <V(TI),Q>^

for all r|efi(m)tors- This is possible since as a runs over 0^ so
r! ̂  ^Cn) runs over

Hom^(E(m)^,^oo) -^ Hom^(u p-"^/J^,^oo)

where ^ipoo denotes the group of p-power roots of unity : and so in
particular there exists ^eO^ such that ^o^) = <V(T^)^>^ f01" a^
T| . Then OQ ^ 0 (mod n) since T| i—^ < v(rj),Q>^ restricted to ker[7c]
is non-trivial and so by applying an automorphism of Cp/Kp we may
suppose that OQ = 1.

We shall now begin the proof of Theorem A, deducing it from
Theorem 1 by constructing suitable elements of 0[[T]] with the help of
Propositions 4 and 5 below. Let g be an integral ideal of K divisible by p
and Z the set of integral ideals c of K satisfying c 7^ (1) and c is prime
to 6Ng x (the product of the primes of K lying below those of F at
which E does not have good reduction). It is convenient to introduce a
finite set S of pairs (c,^) with c e E and a ,eZ satisfying
^(Nc-l)a ,=0.

c

Let p e g~ 1 if and suppose that p ^ p"" ̂  for any n e Z+ . Then
it is well-known (see § 4 and Robert [23]) that 9(p,if;c~1^) is a p-unit
of Q for each c € £ and so we can define an element ^(T,p,c) of Cp[[T]]
by

(14) ^(T,p,c) = log,(9(HT)+p,^;c-1^)).
This is to be interpreted as follows : by Lemma 2 (i) 6(z + p, ̂  ; c~ 1 if) has
a Taylor expansion at z = 0 with coefficients in Q, and constant term a
p-unit, so we may formally substitute z = ^(T) and take the p-adic
logarithm. If now p is an arbitrary element of g"^, then
n9(P,if;c~1 if)^ is still a p-unit and we can apply similar

c

considerations to obtain a power series

(15) /(T,p,S) = log^n(9(^(T)+P,^;c-1^
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in Cp[[T]]. Since 9(z,J^;c~1 ^f) is an elliptic function on ^ it is clear
that the power series (14) and (15) depend only on p modulo ^ . The
following proposition is a generalisation of Lemma 21 of [5].

PROPOSITION 4. — Lei p e Q J ^ f .
(i)// p^p-^ for all neZ^ then D^(T,p,c) eO[[T]] while

Di/(T,p,5)60[[T]] for arbitrary p.
(ii) For all integers k ^ 1, we have

D^(T,p,c)|^o = 12(-l)k-l(fe-l)!(G,(p,^)Nc-G,(p,c-l^))

and

DW,p,S)|^o = ^(-ir^-l^^G^p.^Nc - G,(p,c-1^))^.
c

(iii) 7fr|eker[7t] and p^p""^ r/î  ^(T+gT|,p,c) = ̂ (T,v(r|)+p,c)
and/or all peg" 1^ w^ ha^ /(T+£TI,P,S) = /(T,v(ri)+p,S).

Proof. - (i) We first show that, if aeQ^f and a^p~" j^ for all
n e Z + , then

(16) ^(a,^f) and l^'(a,J^)eO.

Indeed if one of ^(a) and ^^'(a) did not belong to 0, then the
/I \2

equation (.^(a) j = ^(a)3 + a^(a) + fc would imply that the other

also didn't, and so y[.^ '(a)2)=t;(^(a)3)<0. Hence ^^ em
v / ^'(a)

and so a gives rise to a point of fi(m)tors a contradiction.

We divide the proof of (i) proper into three cases (a) p e ^ , (b) p ^ j^f
but pep~"^f for some n, and (c) p^p""^ for all n .

(a) We may assume that p = 0. For each c, . " lies in theA(c 1^)
Hilbert class field of K and has the ideal factorisation c~1 2 (see Lang [17,
Chapter 12]). Therefore since E has good reduction at p and p )( c, we

AfJ^V^ A f ( ^ }
have v / = A^)^ _ 7 G Q n O*. Recall that there exists
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a power series A(T)e 1 + 0[[T]] such that

(17) x = ̂  A(T) and y = - ̂  A(T),

y
where T = — — is a local parameter at the origin of E. Hence by

Lemma 2 (i)

r^z^c-1^ = p-unit x nf n (^^-^(Y))-^
c c VYec'"1.^/^ /

Y^

/ ' / 1 Y6^= p-umt x n n ^ A(T)-^^)
c \ Y \1 / /

using (17). But for each c,

nY-A(T)-^(y))e——^^(l+TO[[T]])
Y \ /

by (16) and so Ft fn f—A(T)-^(y)) T e 1 + TO[[T]] since
c \ Y \ / /

Z(Nc—1)^=0. Applying the operator D^ logp gives rise to an element
of 0[[T]].

(fc) By case (a) Di/(T,0,S) e 0[[T]] and so Di/(T+er|,0,S) is

well-defined for all r|eE(m)^rs. Recall that f] 9(^^;c~1 J^)^ is an
c

elliptic function on <5f and so may be regarded as a rational function on E
which is defined over Q. But then DJ'(T+eT|,0,S) and DJ'(T,v(r|),S)
can both be interpreted as the Taylor expansion in powers of

T — — ^ o f
2^'CO

^lognecz+voi),^-1^

and are therefore equal. Hence

Di/(T.v(n),S) = Di/(T+er|,0,S)60[[T]].

A^)^
(c) Again we know that -i <y\ ls a P"11111^ and so we need only

show that 9(X(T)+ p, .§?; c~1 £')~1 e 0[[T]] with constant term a p-unit,
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since we may then again apply Di log,. Now by the addition theorem
for ^(z),

^-^--\[^^]-^-^-^

ry-1^'^= bc^prj - x - ̂ ) - ̂
-T-3A(T)-^'(p) ^

- [—rA(T)^(p)—J --p^)-^?)-^).
Clearing denominators shows that this power series lies in

0[^(p), ̂ '(p), ̂ (Y), '̂(Y)][[T]] = 0[[T]]

by (16). Hence fl WY(T)+ p)-^(y))6 e 0[[T]] and since we know that

9(p,^; c-1 ̂ ) e0* n Q (see § 4), the desired property of (̂T,p,c) and
hence also of /(T,p,S), follows.

(") Since ^yy^p = -^ by the chain rule, this follows at once from
the definitions together with Lemma 2 (ii).

(iii) The argument here is similar to that in case (b) of (i) (starting with
g(T,p,c) or /(T,p,S) instead of Di/(T,0,S)) and will be omitted.

This completes the proof of Proposition 4. For p 6 £' we define

(18) /p(T,S)=S/(T,p,S)<p,p>^
p

where the sum is taken over a complete set of representatives {p} of
9 1^/^? in C. This is well-defined since /(T,p,S) depends only on p
modulo S' as observed just before Proposition 4. Let p be the image of
the complex conjugate of Q"1? in C

PROPOSITION 5. - (i) /p(T,S) depends only on p modulo q S ' .

(ii) D^(T,S)60[[T]].

(ni) For each p6Z/(<?-l)Z, (AW/,(T,S)) = o)P(p)/,(T,S) whenever
P^P-S?.
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(iv) D^(T,S)|^ = ̂ -l^Na^^y"'

x S(Gt(p,l,9^) - G^Nc^l.ac.S^Nc
c

for all k ^ 1, where 8^ f5 an^ integer satisfying (Nc)8^ = 1 (mod N9).

Proof. — (i) It is clearly enough to prove that p -> < p,p>^> depends
only on p modulo gJ^f, and for this it suffices to show that <p,p>^== 1
whenever pegoSf . Write p = xQ with x e g ~ 1 and p = aft with
a € 9. Then ax — ax e 20^ anc!ls purely imaginary, and therefore of the
form iy\d^ with y e Z . But then pp - pp = f lQI 2^]^! 2 and

a(^) = . I^PI^I 2 so that <p,p>^ = exp(2niy) = 1.

(ii) This follows from Proposition 4 (i) since <p,p>^ is a root of
unity.

(iii) If a 6 OK, define F^(T,S) = ^ /p(T+£T1,S)r,(r|).
TIe ker [n]

Using (4) we have

(A^F^)(T,S) = o)P(a)F^(T,S), if ae0;
= 0 if a = 0 (mod m^ ).

But

Z/p(T+eTi,SK(Ti) = E/(T+eTi,p,S)r,(Ti)<p,p>^
r\ n.p

= Z/(T,v(Ti)+p,SK(n)<p+v(Ti), p>^<-v(r|),p>^
n.p

(by Proposition 4 (iii))

= ̂  /(T,p,S)<p,p>^ ̂  ̂ (TlX-v(Tl), P>^
p n

=/p(T,S)^^(Tl)<-v(Tl),p>^.
n

Now r| \—> ^(r|) and T| i-+ <—v(r(),p>^ both give rise to additive
characters on Ep(C) and hence ^ ^(r|)<—v(r|),p>^=0 except when a

n
belongs to the unique residue class (mod p) such that ^(r!) = W^P)^
in which case the sum is q. Therefore (A^/pHT.S) = ^(a)fp(T,S} for
this a, provided aeO^ . Since we have agreed that <v(r|),Q>^==^(r|)
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we find that ^(M(r|))<^v(r|),Q>^ = <v(r|),0a>^ and so
a = 0~1 p (mod p) whence indeed a E 0^ and co^a) = co^p). This
proves (iii).

(iv) By Proposition 4 (ii)

DU(T,S)|T=O= ^(-ir^-i)!̂
 ̂  (G,(p,^)Nc-G,(p,c-1 J^))<p,p>^

c p ^

whenever fc ^ 1. By the functional equation Lemma 3 (with A = ^f,

A' = 9-1^ so that A" = g^f, a(A) - I Q I 2 ! ^ ! ^ (A': A) = N9, and

5 = fe), we obtain

12(fc-1)! (-1)^- ̂  G,(p, ̂ )<p,p>^
p ^ i _

= 12(-^-N9(^KPy-fcG,(p,l,9^).

On the other hand, if peg"1^ and p e J ^ f , then <p,p>c-i^ = (p,?)^
is a Ng — th root of unity, so that if 8^ is an integer with
Nc5,=l (modNg) we find (p^^p^i^P^p^-i^. Applying

the functional equation with A = c ~ l J ^ , A ' = g~ 1 c~ 1 J^f, etc... we
obtain

^(fe-l^-l^-^G^p.c-^Kp.p^

'.n(-o.-.N«(!"^)'"G.(w,c-w.

But G^pJ.c"1^) = Nc^^G^NcS.pJ^g^f), hence, simplifying and
summing over c we obtain (iv).

Proof of Theorem A. — We use the notation and hypothesis of
Theorem A : in particular a is an element of OK which is not divisible by
p. Then p = Q,a and so p = a. Applying Theorem 1 with
f(T) = /p(T,S) and a = 0, we deduce the existence of a locally analytic
function Gp(a,5,g,S): Zp -> Cp satisfying

(19) G^,0,9,S) = /p(0,S)
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and ^

(20) O.^S)--^^1]-1^)

x Z (0,(p,l,S-2')-Gi(Nc8,p,l,8tJ?))Nco,
c

for every integer k ^ 1.

We now suppose that the c's each have a generator y, = 1 (mod 9).
In this case

Gfc(Nc8,p,l,gc^) == G,(yjAp4^c^)

= ^G,(yAp,l,9^) = ^G,(p,l,9^)

since 8j, — l e g . Hence the above formula reduces to

r ( ^ ^ ^[w2{dK^~k^^Gp(a,fe,gJS) = - 12^ —^—— (0 "(p)

x G^U^^Nc-y^.
c

Since Vc = 1 (mod g) and p | g the function

Co(s)=E(Nc-y>,
c

is well-defined on Zp, and if p = a e OK then

G»(p,l,9^)=|§p-G,(a,l,g).

Hence if we define
G,(a,5,g,S)

^'^ = T2NgCo(.)
we find that

G,(a,fc,9) = ̂ [(^)l-^co-^a)G,(a,l,9)]

for all k ^ 1, which shows that Gp(a,s,g) is independent of the choice of
S as our notation suggests. It remains to prove that Gp(a,s,g) has a
simple pole at s = 0 with residue (Ng)~ 1 . Clearly
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Co(s) = - E(logpY.)a,s + 0(s2). If we make the additional hypothesis

that the c's are mutually coprime then ^ (log,,y.)a, ^ 0 and so it suffices

to show that G,(a,0,g,S) = - l2^(\og^)a,. Now
C

G,(a,0,g,S) = /p(0,S) = /(0,0,S) + ^ /(0,p,S)<p,p>^
p^o

.so that we need only show that /(0,0,S) = - 12 ̂  (logpy,)a, and

/(0,p,S) = 0 for the other p. Indeed (cf. the proof of case (a) of
Proposition 4 (ii)), we have

( \( ^^Nc \°c/(o,o,s)^n^)
/ I:(Nc-I)^ .

= log, A(^)c n Y;12"' = - 12 E (log^)a..
\ c / c

On the other hand the case p ^ 0 will be dealt with if we can show that
ft 9(P,^; c~ 1 ̂  is a root of unity. It follows easily from (5), (10) and

(11) that 9(z,A) satisfies the identity

9(z+w,A) = 9(z,A) x exp('-^w(w+2z))

for z e C and we A, and so

6(p,c-1^) = 9(Y,p,JSf) = 9(p+(y,-l)p,^)

= e(p,^)exp^—12Jt-^(^-l)(Y,+l)ppl.
^l2!^!2 J

The proof will be complete once it is shown that

127cpp ^
————T Z (Yc - l)(Yc + l)^c e "iQw2^ c

and this follows almost at once from the facts -^-eQ, y^ == Nc

and ^(Nc-1)^=0.
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3. p-adic L-Functions of Elliptic Curves.

We now begin the task of associating p-adic L-functions to elliptic
curves with complex multiplication. We keep the notation already
introduced. In particular E is an elliptic curve satisfying conditions (i) to
(iii) of the Introduction and F is an abelian extension of K. If L is an
algebraic number field, we write JL for the idele group of L, while if L' is
a subfield of L, q a prime of L' and A e JL , then Aq denotes the direct
product of the components of A at the primes of L above q. If A € JL ,
we write (.(A) for the ideal ]~[ O0^0^0 of L where the product is over all

o
the primes of L. We shall write NL/L for the norm map from L to L'
(on elements, ideals, ideles or components of ideles above a given prime of
L'). On the other hand if ® is an integral ideal of L, then I(®) denotes
the group of fractional ideals of L prime to ®, P(®) the subgroup of
I(®) consisting of principal ideals, and P ® = { ^ e P ( ® ) | ^ has a
generator A with A = 1 (mod" ®)}. Finally we write F(®) for the ray
class group I(®)/P®, while the image of ^el(®) in F(®) is denoted
by CW).

Fix an integral ideal f of K and let X : I(f) -^ Q* be a
homomorphism satisfying the following conditions :

(i) If a e P ^ with generator a = 1 (mod" f), then ^(a) = a,
(ii) ^(a) = 1 (modm) for all a e l ( f ) (recall that m is the maximal

ideal of 0 and we have fixed embedding Q c_^ Cp).

Condition (ii) clearly implies that p | f . If g is an ideal of K divisible
by f , and CeF(g), and k an integer ^1, define

W,.,c).Z^
where the sum is taken over all integral ideals a of K belonging to C.
Suppose that a^ is an integral ideal belonging to C ~ 1 . Since p | f and
Np ^ 5, every ideal a^a with a e C has a unique generator
a = l (mod 9) and a = 0 (mod a^); conversely as a runs through all the
solutions of these congruences, so (fl)a^1 runs through all the integral
ideals belonging to C. Hence

W ^ No; Hp^ ^ Nag ^
^c Na5 W L N(a)5 W L W'
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where the summation in the last two sums is over all a such that
a = l (mod 9) and a = 0 (mod a^). Fixing once and for all a solution a^
of a = 1 (mod g) and a = 0 (mod a^) we see that

No5

^(5,fe,9,C) = - ^ Gk(a, ,5,0,9).

This shows that ^(5,fe,g,C) has an analytic continuation to the whole
complex plane; in particular we write ^(k,g,C) for ^(l,fc,9,C) so that

^(fe,g,C) = .-̂ -G^a,,!,̂ ).71 v0^

On the other hand we define the p-adic function ^p(5,g,C) by

i;p(s,9,C) = —^Gp(a,,s,a,9)
M0^

for seZp. Note that ^(a,)5 is well-defined since X(a^) = 1 (modm).
One sees at once that !^(5,g,C) does not depend on the choice of a, and
dc: moreover Theorem A implies that 5 ^-> ^p(5,g,C) is a locally
meromorphic function which is analytic except for a simple pole at 5 = 0
with residue (Ng)~1 while if k ^ 1 is an integer, then

on r^no 1 W^V'^^^I(21) ^,C) = ̂  ̂ -^-J —QT-J '

(the factor ©"^(flc) being 1 since a^ = 1 (mod?)).

Now let 50 ^ Gal (K^/K) ->- Q be a character of finite order, which
can be viewed as a character of JK, and if t) is any multiple of the
conductor of ^, we obtain a character of 1(1)) in the usual manner. Let g
be the least common multiple of f and the conductor of 7, and define

L*.(s,fe,x)=^fl-M^^y S ^(s,fe,g,C)x(C)
9 \ JN^ / Cer(g)

where the product in the middle is taken over all primes q of K prime
to g. We use the asterisk to indicate that this is not necessarily a primitive
L-function owing to the possible existence of primes dividing 9 at which
^k/ ls unramified. Again L^ has an analytic continuation to the whole
complex plane and we can consider its value Loo(l,fe,7). On the other
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hand we define the p-adic L—function Lp(s,/) by

(22) L,(5,x)= S i;p(5,9,C)x(C).
Cer(g)

We then have

THEOREM 6. — Lp(s,^) fs a locally meromorphic function on Zp which
is locally analytic except when ^ is trivial in which case the only singularity
is a simple pole at s = 0 with residue

Wi--lV1
m^1^ N1; '

/IK being the class number and m^. the number of roots of unity of K, and
the product is taken over all primes I of K which divide f . Moreover

^ , /, , 1 [(WY^LW^-}
(23) LM=-^[[-^) ——^——\

for keZ with k > 1.

Proof. — If / is trivial 9 = f and the residue at 5 = 0 is

— x |r(g)| which is equal to the asserted formula. The other assertions
Ng
follow at once from the previous remarks.

The discussion below leads to a specific choice of \ in Theorem 6 from
which the p-adic L-functions of E are obtained. Let M be a finite
extension of K and (p : JM -* Q* a homomorphism satisfying:

(a) ker (p is an open subgroup of JM.
(b) There exists an integral ideal (5 of M such that ker (p contains the

subgroup Y[ (1 +®OM )>< of JM, where the product is taken over all the
<?

primes ^ of M and (I+SOMJ" is interpreted as 0^ if ^®. The
smallest such ® is called the conductor of (p.

(c) If A e JM satisfies A<p = 1 for all ^ \ ® and (.(A) e P® with
generator A, then (p(A) = NM/RA.

(d) If A = ( . . . , A , A , . . . ) with AeM*, then <P (A)=NM/KA.

Associated to such a (p, there is a p-adic character cpp: JM -> C^ defined
by

(24) (Pp(A)=(p(A)(NM/KAp)-1.
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LEMMA 7. — (i) (pp i5 continuous (with regard to the topology of Cp),
comes from a character of Gal (M^/M) (of infinite order), and its image is a
compact subgroup of O*.

(ii) If (p': JM -^ Q* ;5 another homomorphism satisfying (a) to (rf),
^en (p(p'~1 = <Pp(Pp~1 com^s /row a character of finite order of
GaUM^/M).

(iii) There is at most one such (p (for fixed M and p) having the
additional property that (pp rafe^s values in ( l -hpO^)" •

Proof. — (i) (a) implies that (p is continuous. On the other hand
A i—^ (NM/icAp)"1 is certainly continuous, hence the continuity of (pp.
Since Cp is totally disconnected, ker (pp contains the connected
component of the identity of JM , whence (pp comes from a character of
Gal (M^/M). Since Gal (M^/M) is compact, im (pp is compact and in
particular contained in O*.

(ii) Clearly (p(p'~1 = (ppCpp"1. It ® and ®' are the conductor of (p
and (p', then (b), (c) and (rf) imply that (p(p' ~1 is trivial on a subgroup of
finite index of JM , and (i) then shows that ker ((pp(pp~x) corresponds to an
extension of M of conductor dividing ©© /, i.e. a finite abelian extension
of M.

(iii) If (p and q/ are such that (pp and (pp take values in (l-hpO^ ) x ,
then by (i) (p^'"1 is a character of finite order taking values in
(l-hpOic )x • Since Np ^ 5, this implies that (p' = (p.

Now let v|/: JF -^ K* be the Hecke character of E over F as in
Serre-Tate [26, Theorem 10]. In fact \|/ is a homomorphism satisfying the
properties (a) to (d) above. Let s: Gal (Q/F) -> Kp6 be the character
giving the action of Gal (Q/F) on the p-division points of E. It is clear
that e factors through to a character of Gal (F(Ep)/F), and class field
theory enables us to view it as a character of Jp. Since e is of finite order,
\|/8~1 is also a homomorphism satisfying (a) to (d). Let ^Pi, ^2» .. • , ^Pr be
the primes of F above p.

PROPOSITION 8. —
(i) The conductor of \l/e~1 is (1) or ^1^2 • • • ^r according as to

whether F(Ep) = F or not, and (v^e"1)? takes values in ( l+pOK)^
(ii) There exists a homomorphism X : JK -> Q* satisfying (a) to (d)

above as well as the following :
(e) The conductor of X, is p.
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(f) \(a) = 1 (modm) for all ael^.
(g) (^"^(A) = MNp/KA) for all A e J p .

Proof. — (i) We first show that \1/£~1 is unramified at all primes of F
that do not lie above p. Let Q be such a prime, and regard the local
units 05" as being embedded in Jp. Now v|/(A)P = e(A)P for all
A e 0^ and P e Ep, and so ^(A) = e(A) (mod p) and
(vl/e'^A) = 1 (mod p). On the other hand \|/ and e are both of finite
order when restricted to 0^ , and so if \|/£~1 were ramified at Q we
could choose A so that vj/e'^A) were a primitive p-th root of unity. But
\|/8~1 takes values in K^ and \ip f. K since p ^ 5. Hence v|/e~1 is
unramified at Q. The fact that F(E^s) is abelian over K implies that the
conductor of \|/E~1 is invariant under Gal (F/K) and is therefore of the
form OP 1^2 • • • ^rf tb1' some e ^ 0. Since E has good reduction at
each prime of F above p, \|/ is unramified at p and so the conductor of
\|/£~1 is the same as the p-part of the conductor of e. On the other hand
the fact that fi is isomorphic to a Lubin-Tate group implies that
[F(Ep): F] divides q — 1, and so the ramification must be tame, i.e.
e ^ 1. But then clearly e = 0 if and only if e is trivial, that is if and only
if F (Ep)=F .

Finally we show that (vl/e"1)? takes values in ( l -hpO^)" . Since
(1 +?OK )" is an open subgroup of 0^ its preimage is an open subgroup
of JF. Now we have already seen that (\|/e-l)p(A) e(l+pOK )x if
Ap = 1, and so this must hold under the weaker assumption
Ap = 1 (mod pQ for some r > 0. The fact that it holds in general now
follows from the approximation theorem, together with the fact that
(^"^(A)^ if A = ( . . . A, A, . . . ) with AeF* .

(ii) We define K as follows : suppose in the first place that a e JK with
a? = 1, and that the ideal i(a) is principal with generator a a unit at p .
We then define ^(g) to be w~l(a)a. Let C be the ideal class group of
K, and C = C ^ x C ^ x ' " x C r S i decomposition of C into cyclic
subgroups Cf . For each i, let m^ be the order of C; and & e JK an idele
with a, = 1 such that the class of i(a^ generates C\. We then define

l/w^ ^
X(gf) to be (Hg^)) , where we have fixed once and for all an m^-th
root of ^(cT1) which is congruent to 1 modulo m. Then if ae3^ has
a? = 1 there exist unique ^ with 0 ^ ̂  < m^ and b will by = 1 and

/ r \ "/ r \

i(b) principal such that a = ]"[ g f ' l f c ; we define M a\\ ̂ (a^1 ]Ub).
\ i = l / ~ \ i= l - ) -
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If a = ( . . .a,a,...) with a e K* we define \(a) = a. We thus obtain a
homomorphism K^p -^ Q, where J^p denotes the subgroup of a e JK
with a? = 1. It is easily seen from the definitions that this homomorphism
is continuous, and that in fact its kernel is an open subgroup of K*J^p.
Since K*J^p is dense in JK we can extend ^ by continuity to JK , and it
satisfies (a).

We now show that ^ satisfies the conditions (b) to (g). It is clear that
the restriction to 0^ is trivial for all primes q ^ p of K. On the other
hand the restriction of ^ to ( l+pOK)" ls trivial since K does not
contain any p-power roots of unity; to see that ^ is non-trivial on the
whole of 0^ we observe that 'k(u) = — 1, where u is the idele with
Mp = — 1 and all other components one. This proves (b) and (e). (c)
follows since if ge JK has a? = 1 and i(g) has a generator
a == 1 (mod p) then o"1^) = 1, while (d) is clear from the definition of
K. To prove (/) observe that certainly ^p(g) = 1 (modm) if a? = 1
since \(a) = X,(g) in this case. Since ^-p(g) = 1 if g = ( . . .,a,a,...)
with a e K*, (/) follows by continuity. To prove (g) it suffices, after
Lemma 7 (hi), to prove that ^ o Np/K satisfies (a) to (d) (with M = F)
and that ^p o Np/K = (X, o Np/K)p takes values in (1 +?OK )" • It l s d®^
that (^) to (d) are indeed satisfied, as well as the values of ^pONp/K
being congruent to 1 modulo m. Hence it suffices to show that \ o Np/K
takes values in Kp', or equivalently that the restriction of Xp to the
subgroup of JK corresponding to F takes values in Kp'. Now this
subgroup is contained in the subgroup Z corresponding to the Hilbert
class field H of K. If aeZ and gp = 1, then ;(g) is principal with
generator prime to p, and so \(a) = ' k ( a ) e K ^ . Since \(a) = 1 if
g = ( . . .,a,a,...) with aeK* the continuity of \ implies that
^p(g)eKp for all y e Z , which is (g). This completes the proof of
Proposition 8.

Proof of Theorem B. — We first establish the identity

(25) L*((^£-l)^9,s)=^Loo(s,fe,x)
x

where the character used to define the L^(s,k,^ys is the character X of
Proposition 8 (ii) (or rather the homomorphism ^: I(p) -> Q that it
induces — which satisfies the properties (i) and (ii) (with f=p) given at
the beginning of this section), and the product on the right is over all the
characters of Gal(K^/K) whose restriction to GaUK^/F) is 9. Let
q 7^ p be a prime of K and Qi, Q^, . . . , Q^ the primes of F above q.
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We observe that 9 is either unramified at all the Q'5, or ramified at all of
them and so we can speak of 9 being ramified or unramified above q.
Indeed, let M be the finite extension of F corresponding to the kernel of
9, so that M/K is abelian. Let I be the inertia field of q in M. Then
the Galois group Gal(M/I) (resp. Gal (M/FI) is the ramification group of
q (resp. of any Q in F above q) in M/K. From this we see that 9 is
unramified above q if and only if all the ^'s are unramified at q : in fact it
is clear that if 9 is non-trivial on Gal (M/FI) then any ^ is non-trivial on
Gal(M/I). Conservely if 9 is trivial on Gal (M/FI) then 9 factors
through Gal(FI/F) inducing a character 9o of Gal (I/I nF). Let us
choose any prolongation of 9o to a character ^Q of Gal(I/K): as a
character of Gal(M/K) /o is trivial on Gal(M/I) and its restriction to
Gal(M/F) is our given 9.

Hence to establish (25) it suffices to compare Euler factors above primes
q + p of K where 9 is unramified. Fix a ^e Gal (M/K) whose
restriction to Gal(M/F) is 9, and which is unramified at p . Write
X = ^(q^oO^Nq"5. Then if Q is any prime of F above q, and / the
residue class degree, then one finds that Xf = (vl/e'^S^GCONCr5.
Hence one is reduced to verifying the identity

( l-X^=n(l-X(q)X)
x

where g is the number of primes of F above q and 7 runs over a^ ^e
characters of Gal(F/K). But this is precisely the same identity needed to
prove the analogue of (25) for Dirichlet L-series (see e.g. S. Lang,
« Algebraic Number Theory », p. 230) and so (25) itself is proved. We
define Lp(v|/,9,5) to be the product

(26) nLp(^C).
x

It is clear from (26) and Theorem 6 that Lp(v|/,9,s) is locally meromorphic
and satisfies the required formula at s = k, k ^ 1. Moreover it is locally
analytic except perhaps when the trivial character appears in the product
on the right hand side, and this happens if and only if 9 is itself trivial, in
which case there is at most a simple pole at 5 = 9 . The existence of this
pole will be proved in the next section.
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4. A Formula for Ly(0^).

In this section we give a formula for the value of the function L (s,^)
introduced in § 3 at 5 = 0. In addition to the (complex) functions
discussed in § 2, we define, for every lattice A, and z e C,

(27) <D(z,A) = exp (-67i(z,A)z) A(A)CT12(z,A).

This function is denoted by (^((.r) in Robert [23, p. 8] where t = z
and r = A. If ^ e C* we have the homogeneity relation

(28) <&(?iz,?iA)=0(z,A);

moreover (10), (11) and the homogeneity property of a(A) easily imply
that if A' is a lattice containing A,

,̂-%i
We shall need the following relations which are proved in [26, p. 9]. If n^ is
the exponent of the group A'/A, then

(30 n »feA)--r^T1-
zeA'modA |_A(A)J

zi\

Furthermore, if re/-1 A, but r ^ A , and m=(n^f), then

(31) n ^(t^-z^ = ^.AT.
z € A' mod A

The purpose of introducing the function 0 is that its values at points of
QA are algebraic numbers belonging to certain well-described fields (at
least in the case when A has complex multiplication). If f is an integral
ideal of K we denote by i(f) the smallest positive integer contained in f ;
as in §3, I(f) is the group of ideals prime to f , P^ the subgroup consisting
of those ideals having a generator a = 1 (mod f), F(f) denotes the
quotient group I(f)/P^ while if ael( f ) we write Cly(a) for the image of a
in r(f). Let A(f) be the set of pairs (a, I)) where aeK* and t)€ !((!))
such that f = {xeOiJ^et)}. It is clear that if (a,l))eA(f) then the
ideal (fi)ft)-1 is prime to f , and we write d^afy) for CH(a)fl)-1).
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Conserselyif CeF(f) we can find (a,t))(=A(f) with C == Cly(a,t)), while
C^(afy) = Cly(a',l)') if and only if there exists x e K* with t/ = xl) and
a' - xa e t)'. If f ^ (1) and C e F(f) we define a complex number <^(C)
by

(32) Oy(C) = (D^.l))^

where Cly(a,t)) = C.

The quantities (32) are known to enjoy the following properties
(cf. [23]):

(i) They are algebraic integers belonging to the ray class field Hy
modulo f of K, which are units if f is divisible by at least two distinct
primes of K, while if f = q^ q a prime then the ideal generated by <Dy(C)
is independent of C and only divisible by primes above q.

In view of (29), this justifies the remarks made in § 2, just before (14)
and (15).

(ii) Writing a (C) for the element of Gal(H^/K) corresponding to C,
we have the explicit reciprocity law

(33) <^(CC) = ̂ (C)0^.

We also need an analogue of (i) and (ii) when f = (1). If C € F((l))
and Cl(i)(l)~1) = C, we define

^-[^'-
where h^ is the class number of K and P is any generator of 1) .̂ Then
8(C) belongs to the Hilbert class field H(I) of K and again we have the
reciprocity law

(35) §(CC) = ̂ CT^ 8(C)

for all C, C e F((l)), where again a(C) is the element of Gal(H(i)/K)
corresponding to C (see [23, p. 24]; note however that his 8(C) is
different from ours).

Finally we record a norm relation between the ^(C)'5 and 8(C)'5
which is part of [23, Theoreme 2], (and in any case follows easily from (30)
and (31)). Let m^) denote the number of roots of unity in K which are
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congruent to 1 (modf). Then if p ^ f , one has since i(p) > 5

i(fp) ( 0;(C) \
(36A) ^(f) S log, <I»,,,(C) - -^^''^.(CCUp-1))/

c'gr(fp) v / N T v T V I ///

c-c.ra „ ,^_

•^ -•^-••^(wa^h))
if f = (1), where the sum on the left is taken over all the C e r(fp) whose
image in r(f) is C.

Now let x be a character of finite order on Gal^^/K) and f its
conductor. If y e K has denominator exactly f we define the Gauss sum
GOC) by

(37) G(X)=X((Y)R E x(M)exp(27ifTr(-^)) if f ^ (1)
^<=(OK/O* \ \\/^K//

= 1 if f = ( l ) ,

where the sum is taken over a set of representatives {x} in OK of

(OK/D*, and Tr is the trace from K to Q. Since T r ( ^ = ) e Z for all
W^K/

y e OK, we see that G(^) does not depend on the choice of
representatives {x} . Also G(/) does not depend on the choice of y, for
if Y' also has exact denominator f we can find aeOK with ((a),f) = (1)
and y - a y ' e O K . Therefore x((y)f) = x((ay')f) and

Ti/^) = ̂ f0^) (̂ d Z) and so
VV^K/ VV^K/

G(x) = x((aY')f) Z X(x)) exp fiTif Tr f0^))
xeXOK/O* \ \\/^K//

= X^f) E X((ax)) exp fiTri Tr f0^))
^€(OK/R* \ \\/^K//

and so the assertion follows on replacing ax by x .

We need one final definition before stating the main result of this
section. We write

(38) S(x)- E X-^Qlog^C) if f = ( l )
tic r-cr/nvt"KCerai))

E X^Qlog^C) if f ^ ( l ) .
Cer(f)
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THEOREM 9. — Let ^ be a non-trivial character of finite order on
GaUK^/K) and f be its conductor. Let m^f) be the number of roots of
unity in K which are congruent to 1 (modf), i(f) be the least positive
integer which belongs to f , and G(^) be defined by (37) and (38)
respectively. Then we have

^--^^s^^-^)0^-
where we interpret ^(p) as 0 if p | f .

Proof. — Let f* be the least common multiple of f and the conductor
of ' k . According to Proposition 8 (ii), f* = f or fp according as to
whether p divides f or not. Let N be the order of F(f*) and
a i , d 2 , . . . , a N a set of mutually coprime integral ideals in I(f*)
representing the elements of r(f*). For each f , let a^ be a fixed solution
of the congruences a = 0 (mod a;) and a = 1 (modf*). We say that
x » 6 K is primitive if it has exact denominator Q;f*, i.e.

(^)=l)i(aj*)-1 with (I),,^f*)-(I).
We need

LEMMA 10. — We can choose primitive x\s in such a way that
(i) XiOi - XjOj € OK for all i, j = 1, 2, . . . , N, and
(ii) There exists Co€r(f*) independent of i such that

CW = Cl^(a,)Co
for all i.

Proof. — Since the o;.s are coprime, we can find for each i an integral

ideal b, prime to f* and to all the a\s such that (]~[ Oj jb, e Pa.y». Since
\J^i )

p [ f * and i(p) ^ 5, (n^ ' l^i ^as a î̂ 110 generator a, such that
\J^i )

a, = 1 (modf*) and a^ = 1 (mod a,). Then if i ̂  j

^ -o^ (n^ ) f*\w /

but a, ^ a, (mod aflj). Let b be an integral ideal prime to all the a\s and
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to f* such that (n^Jf*6"1 is principal with generator p, and define

a-x, = — for each f = l , 2 , . . . , N .

Then (x,) = b^a.f*)-1, say, with (b,b,a,f*) = (1) so that the x;.5 are
primitive and ^ = b;b. Also

xi ~ xj = ̂ B^6601^"1 c W

and since a, GO, and a, = 1 + P, for some P.ef* we see that in the
decomposition

x,a, - xfl, = (x,-x,) 4- (x,P,-x,P,)

the right hand side lies in (a^.)-1 while the left hand side belongs to
f * ~ 1 . Therefore x^-x^eOic because the a;.5 and f* are coprime.

( / N \ \ -1
Finally since a, = 1 (mod f*), Cl^(b,) = Cl^(a,) Cl^ f] ̂  ' s o

\»=i //that
Cl^(l),) = Cl^(a,)Co

/ / N \ \ -1

with Co = Cl^(b)(Cl^ n ^ ) ) • T^s completes the proof of
Lemma 10. v v=l //

We now evaluate Lp(0,3c). Let S be as in § 2 (with b = f*), i.e. S is
a set of pairs (c,a,) with c e Z and a, satisfying ^(Nc-1)^=0. We

c

now further suppose that the c's are prime to a 1 ,03, .. . , O N and
moreover that ^ (l-z(c))a, ^ 0. To satisfy this last condition, we need

c

only take an S consisting of two pairs (c,a,) and (c',^) with
^c = Nc' - 1 and a,, = - (Nc-1); choose c so that ^(c) ^ 1 and

then c' so that Nc' - 1 > ( c } Let 8, be an integer such that

Nc8, = l^odf*), so that Nc8,a, == 1 (modf*) and Nc6^ea,c.
Consider for seZp, 5 ^ 0 , the expression

N Na
(39) E^ '(^a,))^) ̂ (GA )s9alfslc) ~ ̂ ^ 6cai ̂ f^Nca,
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which is equal to

m ̂ ht.p^0-^
-wnw ,1, frcXo,) ̂  8•••] ̂ f')}'

which simplifies, in view of the calculations leading up to (22) of the
previous section, to

["^(Nc-a^xCc^lL^s.x)

which, by virtue of the relation ^(Nc—1)^ = 0, can be written as
c

(41) [Z (1 -(nc)Yl(c))a^L,(s,TO.
L t J

On the other hand we have for s ^ 0

- 12Na.r^(G,(a,Aa,-n - G,(Nc8,a.Aa.-f*c)Nc)fl. = G,,(a.,s,a^,S).
C

This is true for s = k e Z, k ^ 1 by (20) and the definition of Gp (0,5,9,8)
and Gp(a,s,g) and follows for arbitrary s ^ 0 by continuity, and so the
equality of (39) and (41) implies that

1 N Gp(a,,sA.f*,S) |\, - . ^ 1- , ,
- l2Nf* S Wx(a.) = Is (1 -MO-XCO)^^).

This equality is valid also for 5 = 0 since both sides remain bounded as
s -> 0. Hence taking s = 0 and using (19) we obtain

(42) [£(l-x(c))aJLp(0,x) = - ——,, E X(a.)-1 /.(0,S),i^FNy 1=1

where /»(T,S) is the function /p(T,S) of §2 with 9 replaced by aj* and
p by afl. Thus the proof of Theorem 9 involves the evaluation of /;(0,S)
and rearranging the right hand side of (42).

Now in Cp[[T]] we have

/.(T,S)= S y;(T,p,S)<p,a^
pea,"1!*"^

modJS?
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where Y;(T,p,S) is the function /(T,p,S) of (15) with 9 = 0 ^ * . Also if
p = xft ^ ^ then

/(T)fY r^ ^Vc
/(0,p,S)=log,n ———17 =EOog^(^OK)Nc-log,<D(x,c-l))fl,;

c \ -•'V1^ ) / c

( Afj^)^ V'
on the other hand /,(0,0,S) = logp ]~[x7-T—, is independent of f ,

c ^(^ c^)/

and so ^ xtor^yi^^O^) = 0. Taking all this into account we find that
1=1

Z(l-X(c))flcLp(°'X) is equal to
c

(43) - mSff* s ̂ ~^'<^i>^ E(log^(x,C>K)Ncl^'l^I 1 = 1 y (

- logp<D(x,c~1))^

where x runs over a set of representatives of the non-zero elements of
(Off*)"1 /OK , and so the rest of the proof consists of simplifying (43). To
this end we consider the sum

N

Z x^r^Z'^A^oK10^^^"1)
i= l x

where c is now either one of the ideals appearing in S or c = (1). From
now on we write <z,w> for <z,w>^. We fix x ^ , x ^ , . . . , X N as in
Lemma 10 and observe that (x^a^) = <x^.,l> and so the expression
becomes

N

(44) S X(a»-') E' <W,1> logp <D(x,z,c- ̂ .
»= 1 zeOj^/aj*

z ^ O

Since x^, - x .̂ e OK by Lemma 10, the term <XfflfZ,l> is independent of
i and we can choose ^ e f * ~ 1 such that <X,1> = <x^,l> for all i.
Moreover if y e ( C ^ / ^ ) we have, by (30) and (31)

^ logp(D(x,z,c-1) = logpO^.a,-^-1) if ^0

—(^?).^-»
where the sum is taken over all z e (OK/aJ*) with z ^ 0 whose image in
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(Ac/f*) is y . For each ideal 9 dividing f*, let

Yg = ̂  € OK I y + 0 and (^ = r ^ with (^ J*) = (1)1.
I a J

It is clear that OK\{O} = (J Yg (disjoint union) and if ^ / eOK\{0}
9lf

with ^ = /(mod I*) then y and / belong to the same Yg. Therefore
the image Yg of Yg in (OK/T*) is well-defined. Thus (44) splits up as the
sum over g | f* of the expressions

(45A) ^x(a.-1) Z ^y^log^x^a^c-1) if 9 + (1)
1=1 ^9

and

(45B) ^(ar^log/^^ if 9=(1) .

If (^f) = b^f"1!*"1 and (^) = f*^"1^, then, recalling the definitions
given just before (32), we have

CVx^a^c-1) = Cl^c) = Clg(aA,c)Co,,,

(using Lemma 10) where Co,g is the image of Co in r(g). Hence (45A)
can be rewritten as

^)J; x(a^l){J, < l̂>logp^(Cl,(aA,c)Co,)l

or, writing C = Clg(aft)yC)Cog and replacing the sum over the a^ by that
over CeFd*)

(46) ——X(cCo)fE <^,l>x(t).)V Z ^(C-^log^^C))
^Q) \ye\Q /Vcenn /

where we have written Og(C) for <I>g(C) for any class C e F(f*) whose
image in r(g) is C.

If we take |S| copies of (46) with c = 1 and subtract the sum of
a, x (46) as (c,a,) runs over S, and divide by ^(l—x(c))^ (which is
non-zero by our choice of S), we obtain c

(47A) ^^f1 w^^y z ^c-^iog^c))
^BJ \^eY /\Cer(f*) /
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(where 9 + (1)). Applying similar reasoning with (45B) (case 9 = (1))
gives (after dividing by ^(l-z(c)^))

c

(47B) 1 $; ^(C-^log^C), (9=(1))
^K cenn

where again we have written 8(C) instead of 8(C) for any class
C€r(f*) whose image in F((l))is C. Hence \(0,5c) is equal to

— ——. (the sum of the (47A) 's and (47B) 's, as 9 runs over all the

divisors of f*).

We now show that (47A) and (47B) vanish except perhaps when 9 = f
or 9 = f*. Since f is the exact conductor of ^ » this is the same as saying
that 3c do^s not factor through to a character of F(9), i.e. the restriction
of / to the kernel of the natural mapping Fd*) -> F(9) is non-trivial,
and so for each Cer(9), the sum E5c(C) taker over all C in r(f*)
whose image in F(9) is C vanishes. Since logp<Dg(C) and logp8(C)
depend only on C', we deduce that (47A) and (47B) vanish for these 9.

To complete the proof of Theorem 9 we need to evaluate (47A) and
(47B) when 9 = f or 9 = f * , and consider separately the three cases (a)
9 = f = (1), (b) 9 = f ^ (1) and (c) p ^ f and 9 = f* = Pf .

(a) In this case f* = p and we have

irff*^!
$: x(C-1) 108,8(0='^ S ^C'-^log^C')

Cer(f*) I1 \ l))\ C'er((l))

and since |r((l))| = A K , |r(f*)| = |r(p)| = feK(NP-l) we find that
WK

(47B) reduces to (recalling the definition of G(/) and S(%) when f = (1))

(48) NprJ-G(x)S(x).
WK

In order to discuss (b) and (c) we need

LEMMA 11. — We have

G(x)=X(Co) E <^,1>X(1),),
y^

where K is as defined just after (44).
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Proof. - Fix yo eY^ so that Yy can be identified with
{^l^e(OK/f)*}, and

X(Co) E <^,1>X(1),) = x(Cot)^) Z <^l>X((i;)).
>'eY^ ^(OK/O*

We may choose ^ specifically to be x^, and if y = Kyo then y has
exact denominator f ; then

<WU> = expf27^{Yi^^Y| = exp fiTifTrf^^V
V Vyi^d// \ Vv^//

On the other hand (y)f = (x,a,)^r1^ = W^i^y^) in the
notation of the proof of Lemma 10, and so since a^ = 1 (modf),

CH(^)f)=Cl^(bibar1^).

/ N \

But Co y = CU b n ^ 1 ] = Cly(bibar1) since ai = 1 (mod f) and the
\ » = i /

Lemma follows.

We now return to the proof of Theorem 9, and in particular discuss case
(fc). In fact, by an argument similar to that in (a) together with Lemma 11,
(47A) becomes, on recalling the definition of S(/)

(49) dNO^-0000500

if f* = f p , and

(50) d^f)000800

if r = f .
Finally we deal with case (c). We shall show that

(51) x(Co) E WW) = - X(P)G(X)
3-6Yf.

and that

(52) ^ x(C- l)log,<&f.(C)=—(rl——(l-x- l(p)S(x))
C6r(f) UT)»iK(f)
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so that (47A) is equal to

(53) ndMO0-^000^-

To prove (51), let ^ be a fixed solution of the congruences
^ = 1 (mod p) and ^ = 0 (mod f). Then multiplication by 1 - ^ gives
rise to a natural mapping from Yy, onto Yy , and

2: <^,1> = - <?LZ,1>
yi--z

where the sum is taken over all y in Y^, whose image in Y^ is z. On the
other hand for these y , we have

X(l)y) = X(Pbz) = X(p)xO)z)

since f is the conductor of /. Taking the sum over all z e Yy and using
Lemma 11 we obtain (51). On the other hand the left hand side of (52) is
equal to

Z x(c'-1) E iog,^(C).
C'er(f) Cer(f*)

c •-» c

Invoking (36) and writing Cp for Cly(p), this becomes (if f + (1))

!(n z x^-^iogF<l)f(c) 1 -^Dc^)^ / Hw'c,-1)]9

and using (33) we see that this equals the right hand side of (52). If f = (1)
we obtain the same result using (35) instead of (33).

In view of the fact that Lp(0,5c) = - -^ x (the sum of the (47A)'s
-1-AlNp

and (47B)'s as 9 varies over all the divisors of f*) Theorem 9 follows
easily from these formulae. If f = (1) then f* = p and we use (48) and
(53). If f + (1) and p )( f then f ^ f p and we use (49) and (53), while if
p j f , so that f* = f we use (50) together with ^(p) = 0.

Completion of the Proof of Theorem B (sketch). - It suffices to show
that L^(0,3c) + 0 if ^ is non-trivial, and this is done in much the same
way as the cyclotomic analogue (a full account of which may be found in
[3]). Let Ry be the p-adic regulator of Hy which, according to a theorem
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ofBrumer [3] is non-zero. One can show that Rp = M ]~[ 8(7'), where the
x

product is taken over all the non-trivial characters of Gal(H^/K) (which
includes ^) and M is a non-zero element of Cp (for an account of the
archimedean analogue of this see [8], the argument goes over without
change to the p-adic case). Hence 8(7) 9^ O and therefore, since it is well-
known that GQc) ^ 0, Lp(0,5c) + 0 as desired.
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