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TRANSFERRING U MULTIPLIERS
by Anthony H. DOOLEY

1. Introduction.

The homomorphism theorem for L/ multipliers, in its most general
form, asserts that if G is a separable locally compact amenable group and
if H is a normal subgroup of G then there is a canonical nornx-
nonincreasing map /* : CONV/G) -^ CONV/G/H) (where CONVp
denotes the space of Fourier multipliers of L^). In this form, it is due to
C. S. Herz [11] although of course the theorem is a descendant of de
Leeuw's theorem which applies to the case where G is abelian. It is
instructive to consider the case G = R", H = Z". Starting from the
quotient map T^ : x -> (^i^^/^nA): R» h-^ T" one computes that

(/?<D)A ( f e , , . . . ,fe^ = ^ (k,,... ,fe^, for <D e CONV/R").

The genesis of this work was the idea that one could develop an
analogue of the homomorphism theorem where the group homomorphism
7i is replaced by a family of contraction maps ([7]) from one Lie group to
another. It appears that this is possible in some generality, but while the
foundations of a general theory are presented here, in § 2, we will devote the
bulk of the paper to two rather specific cases, the contraction onto a
compact Lie group G of its Lie algebra 9, and the contraction of the
Cartan motion group V x K associated to a Riemannian symmetric pair
of the compact type (G,K) onto G.

In both these cases, one is able to develop an explicit formula for the
periodification maps c\ from Ap(G) into Bp(g) or Bp(V xi K)
respectively, associated to the contraction maps. This enables us to
compute the Fourier transform of /?<!>, also in an explicit manner.

These techniques are useful for producing examples of multipliers on
compact groups and homogeneous spaces. Considering first the contraction
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of 9 onto G, one may apply the maps /? to a fairly arbitrary multiplier
of 1^(9) and obtain a multiplier of I-AG) . Starting from Ad invariant
multiplier one obtains a central multiplier: one can hence prove
boundedness of most known central multipliers on G. However, the
method applies equally well to non-central multipliers. For example, we
will show that for G = SU(2) the Riesz kernels are obtained by applying
<? j to the Riesz kernels on 9 = R 3 ; hence we obtain new bounds for their
norms.

The contraction of V xi K onto G also yields interesting results.
Starting from Ad K invariant multipliers of L^(V) one obtains bi-K
invariant multipliers of L^V). Thus, for example, from each radial
multiplier of the plane, one may obtain a family of multipliers of L^S2).
As before, the method applies equally well to non K-in variant multipliers.

The original de Leeuw theorem gains in power by the fact that it has a
converse : if <D is some function on R" so that /?<!> is a bounded
multiplier of /L^T") for each K and if lim sup | ||/?(D| ||p ^ K, then

X,-* oo

d) e Mp(R") and || |<I>| \\p < K. Versions of this theorem have been proved
by Clerc [1] for the contraction of 9 to G, by Rubin [5] for the
contraction of M(2) onto SO (3) and by Dooley and Gaudry [6] for
V xi K onto G. It is interesting to enquire to what extent the present
results constitute a converse to these theorems. It is readily seen that the
restriction C^ used by these authors is not the same as /i"^; indeed,
0^ is not in general a multiplier of V when <S) is a multiplier of L^.
Rather, it appears that in each degree d^ /^^(a) is an average of
^^(o) together with dy — 1 other terms involving representations
with lower weights. It seems reasonable to suggest that <?0, arising as it
does from natural structural mappings between the groups and algebras of
functions is a better notion of restriction than ^^ (which, after all, was
defined using a particular special choice of embeddings for representation
spaces).

If this suggestion is to be followed through, one should try to prove
converse theorems (a la Clerc, Rubin, etc.) with /?0 replacing O^.
Looking just at the case of SO (2) invariant multipliers of SU(2), a

necessary condition is that lim €-R— (^) should equal <6(R), or at
<f-»oo I v J

least a multiple of the latter. Unfortunately this will be seen to be not true
for general multipliers, although it does hold for certain special multipliers
of interest in particular the Riesz means and the Bochner — Riesz means.
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2. The map c\.

2.1. Throughout this section, let G be a connected Lie group and K a
reductive subgroup of G. Thus, the Lie algebra g of G may be
decomposed as

9 = t ® V

where t is the Lie algebra of K, and V is an ad(K)-invariant vector
subspace of V. We let V >^ K denote the semidirect product of V by the
adjoint action of K.

In the case where K is amenable, which we will assume henceforth,
V xi K, a semidirect product of amenable groups, is again amenable.

We introduce, for each ^ > 0, the contraction map

/ v\
n^ : V xi K -> G : (v,k) \-^ [ expo r- ) • k.

\ A7

In the case (G,K) = (T,{^}), the map T^ is x -> e1^: R -> T. It is
the purpose of this section to use n-^ to construct a periodification map
A/G) ^ B/V xi K).

We will make the additional assumption, satisfied in all cases of interest
to us, that every element of G has the form (exp v). k for some where
v e V, k e K. This implies that the map n^ onto and hence is a quotient
map of locally compact Hausdorff spaces.

2.2. We recall [11] §3 the notion of V/Y) for a locally compact
Hausdorff space Y; it is the algebra of continuous functions F:
Y x Y -> C which are bounded multipliers of the Banach space tensor
product ^ p x ^(Y). Such a function has norm

||F||v =sup inf f K||, \\v^
"p ^u,v ("nU^n^

where the supremum is taken over all pairs u, v of complex valued
functions with

[Z I^OOl^ = \\u\\p < 1 and [S liW'}' = IHIp' ^ 1
Ly=Y J Ly=Y J
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and the infimum over all representations

00

¥(x,y)u(x)v(y) = ^ u^(x)v^(y).
n=l

According to [II], theorem 5, if n: F-> G is a quotient map of
locally compact Hausdorff spaces, then F -> F o TC x TC is an isometric
Banach algebra inclusion

Yp(G) -^ Yp(r).
Applying this to the case where n = TC^, we s.ee that

LEMMA. — \|̂  : F -> F o n^ x n^ is an isometric Banach algebra
inclusion

Yp(G) ^ Vp(V>^ K).

2.3. Now Bp(G) denotes the closed subspace of elements F of Vp(G)
for which ¥(tx,ty) = F(xj0, Vx, ^, r e G. It may be realized as a set of
functions on G via / <—> F, where

FOc^/O^x).

We will usually consider Bp to consist of functions on G.

By theorem 1 of[10], Ap(G) c Bp(G) where Ap(G) denotes the space of
continuous functions on G which are in the image of the projective tensor
product V ® I/ under the map P: u ® v -> u * v * . Thus, we have a
norm-decreasing map / : Ap(G) -^ Vp(G).

On the other hand, V xi K is amenable; let M denote a left invariant
mean on L^CV x K). (We will here and in the sequel, assume that M is
normalized so that M(i)=l). We have a map, also denoted M :

Y^(V ^ K) ^ B^(V x K)
defined by

(MF)(x) = M(t-^F(tx,0).

It is easily checked that M is a norm nonincreasing map
V(V>4 K)^B/V>^ K).

Finally, let e\ = M o \|/^ o / be the concatenation of all the above
maps. We have proved, by our construction,
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PROPOSITION. — ^\: Ap(G) -> Bp(V xi K) f5 a norm-nonincr'easing
linear map,

2.4. Herz ([8], theoreme 2) has shown that A^(G) = CONV/G), the
set of all Fourier multipliers of LP(G). Further, V xi K being amenable,
it results from theoreme 2 of [10] that Bp(V x K) is the dual of PFp
where PFp is the closure of L^V xi K) in CONVp. Thus, we may
think of B^(V xi K) as a kind of ultra-weak closure of L^V xi K),
B?=PF^.

Dualizing proposition (2.3), we obtain:

COROLLARY. - /?: PF^(V xi K) -^ CONV/G) is a norm
nonincreasing map.

In particular, for every /eL^V xi K) and for every ^ > 0 we obtain
a Fourier multiplier ef(f) of 1 (̂0) whose norm does not exceed 11|/|| \p.

2.5. Since PFp(V ^ K) is dense in the weak topology of
CONVp(V xi K) we may, for certain other elements of CONV/V >o K)
obtain elements of CONVp(G). This, however, is a rather delicate
question which we shall not pursue here.

2.6. Remark. - In the case where (G,K) = (T,{^}) the map c\:

A/T) - B/R)

is easily seen to be usual « periodification » map (^\(f))(x)=f(ei3c/>') and
its dual B;(R) -> CONVp(T) is the map D -^ 0^ defined in the
introduction. Thus, corollary (2.4) is a generalization of de Leeuw's
theorem.

3. Computation of c\.

3.1. In the previous section, we considered a connected Lie group G
with a reductive amenable subgroup K and constructed a norm-
nonincreasing map c\: Ap(G) -^ Bp(V xi K). One can do little more
without making specific hypotheses on G and K, which we proceed to
do.
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3.2. Let us assume that K is compact. The mean M on L°°(V xi K)
can then be defined as follows. Fix a K-invariant norm ||. || on V with
the property that the Haar measure (in V) of Bp = {x e V : ||x|| ^ R} is
R^"^. Set

M/ = R^, R^v f f fW dv dk for / € L-CV x K).
JK JB^

We have

PROPOSITION. - Let feBp(G). Then

^f(P,k) = lim / ( exp-RwexpfRw+^V)r fw
R^jBi \ \ \) )

Proof. - This is just a matter of using definitions from § 2. Thus

(4/)(t^) = lim R-^ v | f(n^(t - i)^(r. (v,k)) dt
R -+ CO j y , D»/ K X Dn

=limR-d in 'v j ( /^(-h-^^-^w+hvM^dwdh
K. —> co l Y 1 n•/ IS. »/ t»j^

=limR-vf f /(exp^p'V/,-R-oc) J K J B R \\ x 7
/ w+At;\ \
I exp —,— j • hk ) d\v dh

-.'—-"JJ./^^)^"^)4)—-
Since BR is K invariant, the K integral disappears and we are left

with

limR-vf ^xp-^exp^)^..
R^00 JBR \\ ^ ^ ) )

Making the change of variables w -> R. w, we obtain

,1- f ^P^expf^^)^.
^^jBi \ A \ ^ \) )

which clearly equals the given expression.
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In order to eliminate the limit in the above expression, we need to
/ iA

consider the limit as R -^ oo of exp — Rwexp( R w + , - ) • Since R
\ A</

approaches infinity rather than zero, we cannot use the Campbell-Baker-
Hausdorff formula. Rather, a method akin to the method of stationary
phase seems appropriate.

3.3 Let us specialize the above somewhat, and assume that (G,K) is a
Riemannian symmetric pair of the compact type. In this case 9 = I -I- V is
the Cartan decomposition and TT^ is onto so that the hypotheses of § 2 are
satisfied. We may consider the polar decomposition of the measure dw on
BI, as follows. Let a be a maximal abelian subalgebra of V, and let
Oi = a n Hi . Then (Y,k) -> Ad(k)Y; a x K -^ V is onto with kernel
{(0,fe): k e M} where M is the stabilizer of a in K, and we have (cf. [9],
X,§1.5)

| dw = | | ]~[ a(H)^Hd/i.
JB^ j K j a ^ a e P ^ .

Substituting this in the expression from (3.1) and making the change of
variables h -> h~1, we obtain

LEMMA. — (e^f)(v,k)
f* (* / / L \ \

= lim /(/i^exp - R H e x p ( R H + — y ) ^ ) ]~[ a(H)dHdA.
J K R - ^ J Q I \ \ /l / / a e P ^

Using this lemma we will prove

3.4. THEOREM. — Let (G,K) be a Riemannian symmetric pair of the
compact type. Then for /eC(G)

(^)(^)= f /f^expf^) hk\dh
JK \ \ A- /a /

where ( )a denotes the projection in V onto the maximal abelian
subalgebra a.

Proof. — By lemma (3.3), it will suffice to show that for every v e V

I := lim f /(exp -RH,exp(RH+i;)) ]"[ a(H) rfH =/(exp uj.
^^Jai aeP^
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The left regular representation of the compact abelian group A = exp a
on C(G) may be decomposed as a direct sum of characters of A. Hence,
we may assume without loss of generality that f(t~1 g) = x(0/fe) f01

some character ^ of A. By approximating / in the uniform norm, if
necessary, we may also assume that / is C°°.

In this case, writing y = A + Q, A e a, Qea 1 , we have

/(exp-RHexp(RH+i;))
= x(exp A)/(exp - (A + RH) exp ((A + RH) + Q))

and 7 (exp A)/ (e) = /(exp A); thus we obtain

i r
/(exp-RHexpRH+iO n a(H) dH-/(expA)

IJai aeP^

= | f (/(exp-RHexp(RH+Q)
l lu<>i+^

-/(exp-RHexpRH)) n "f1!--)^
<xeP+ \ R/

^ f |/(exp-RHexp(RH+Q)
IJai+^

/ A \ |

-/(exp-RHexpRH)l ]"[ a H-n- rfH

aep+ v 7' / A\
_ f |/(exp(RH+Q)-/(expRH)| [1 a H-_ )dH_ f |/(exp(RH+Q)-/(expRH)| [1 afH-^ r fH•

A ^ ^ ^
• /a1+..

A a6p. v K/

l̂̂

Let h = /o exp |v: V -^ C. Since / is C°°, so is h and by the
mean value theorem, there exists for each R > 0 a number SR e [0,1] with

|A(RH+Q)-A(RH)[ = [^(RH+SRQXQ)!.

The derivative h' o /, h is a map V* -> V which may be computed by
the chain rule

/l-^-ad"\
h(u) = /* ,expu ° (Lexpu)*,. ° [ ——,——— j

where we have used the expression for the differential of the exponential
given in [9], II, Theorem 1.7.
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const
I claim that |A'(RH+SRQ)(Q)| is dominated by

R n a(H)
< X 6 P ,

Indeed, since G is compact, we have a uniform bound for the
operators

/^: 9 ^ T,(G) (xeG)
(L,)^: T,(G) - 9

and ^-adx = ad(exp-X): 9 - ^ 9 -

Now Q has the form ^ ^(X'-OX01).
a e P .

Writing Q = a d ( R H ) ^ ——— (X01 + ex"), we obtain
a e P , a(Kl-l)

^ _ ^-ad(RH+SRQ)

(Q)ad(RH+SpQ) ^\\
1 _ -ad(RH+SRQ) „

^ d^H^m ((ad(RH+S,Q)) E .7^(xflt+exot)ad (RH + SRQ) a g p ̂  a (KM)

-SRadQsatH)(xt+9xa)) •

The norm of the first term on the right hand side of this expression is

^_^-,d(RH^Q) ^ ——(x'+ex')^ const •
"^a(RH) " R n a(H)

a e P ,

The norm of the second expression is dominated by

SR HI-^(RH^Q) [Q.c^x^ex01)]
adCRH+SpQ) "'R n i^")!

a e P .

^ a(H)c, is majorized by a multiple of c, which iswhere \c^\ =
P € P +

P ^a

independent of R. Thus, to show that the second term is appropriately
bounded it suffices to show that

^_^-ad(RH+SRQ)
(Y) ^ const ||Y||

^J|ad(RH+S^Q)
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or alternatively, that for all Y e 9

sup||dexpx(V)|| ^ const ||Y||.
X e g

This follows from the compactness of G.

One notices that for all g e G, dexpX
(Y) d expAd(g)x(Y)

IIYII
Thus, one may take the supremum over X e t . Since the X" span g0 t ,

h-e-3^it suffices to check that sup
H e t ad(H) (a) ^ const Vae^. But

ad(H)Xa = o^I-I^X") where a(H) is purely imaginary; thus we have
1 -e-adH

adH -(X01) =
1-e'><x(H)

a(H) IIX"!] < const. .

We have thus shown that

|/(exp (RH + Q) - /(exp RH) | ̂  - • (2)const

R n ^(H)
a e P ,

Now let e > 0 and choose a neighbourhood Og in a of the set
{H e di : a(H) = 0 for some a e P^} such that

2H/IL n a(H) < £

wherever H e CL .

Next, choose R so large that there is P > 0 for which

a/H-^) > P for all a e P + for all Hea, .

We obtain from (2)

] | /(exp - RH exp (RH + Q))
Joi+^

-/(exp-RHexpRH)l ]"[ (l(H--}dH

oceP+ \ R/r .TT const r T-r a(H) ^T^ £ PH+-R- n / A\ dH
Jo, ^ J a i \ a , a e P ^ ^ TJ _ A\^ l \ ^ ^ P + a ( H - A

V R
^ £ +

const
~R~
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Combining this with (1), we obtain, since e is arbitrary,
I = /(exp A), as claimed.

3.5. One case of interest not covered by the above theorem is the case
where G is a compact Lie group and K = {e} . In that case, V ^ K is
the Lie algebra 9 of G. Fix a maximal torus T in G. One can prove in
a manner similar to the above.

THEOREM. - Let X e g , and /eAp(G). Then

(.J)(X) = f f(g exp (^——x) g-1} dg.
JG/T \ \ A- /t /

Proof. — As in the previous theorem, one writes, using the Weyl
integration formula

f Av= f f [I WdHdg.
jBi Jo /Tj t iae^

Essentially the analysis given in (3.4) enables one to deduce that

f / f (exp-RH)expfRH+ g • x ) ) ft ^(H) dH -. f((^—x\\
Jti \ \ A( / / a e < D + \\ A- /t/

for all continuous /. D

Presumably there is some more general theorem which contains both
(3.4) and (3.5); the author has been unable to find a satisfactory
generalization of these two theorems.

Remarks. — These formulae may at first sight seem curious. However,
they are in some senses the natural nonabelian analogue of the
periodification map which lies at the heart of de Leeuw's theorems (and,
indeed, a number of other techniques of abelian harmonic analysis).

If, in theorem (3.5), G were abelian, we would have t = 9. Thus, the
g ' s in the integrand would commute with projection onto t and cancel,

/ x\
the integral over G/T would disappear and we would obtain /( exp — )

\ k )
— the periodification ofde Leeuw. Similarly in (3.4) if we could commute
projection onto a with the adjoint action of G, c-J would reduce to
/°^.
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4. The contraction of 9 onto G.

In this section we will study the map ^ associated to the contraction
map of 9 onto G, and obtain formulae for the multipliers of G which
arise from multipliers of its Lie algebra 9.

4.1. One may use Theorem (3.5) to obtain an expression for the Fourier
transform of <?(p ((peL^), say). For each veA*(G,T), let n(v) be
the set of weights which occur in a^. Choose an orthonormal basis

K/^^1---^^)}
for

^^{/e^: a,(r)/=^(r-1)/}.

THEOREM. - Let (peL^). Then for u,\ve^\
r / \

^^(CT^W) = ̂  0(^1 )<^(g)u,w^(^(g)w,w,.)dg.
\i,f JG/T \ /l /

Proof. - By definition,

^(p^CTjM.w) = <(p,^(t(*W*)>

= f(p(X)4(u*w*)(X)dX.
Js

Now by (3.5),

4(u * w*)(X) = f (u . w*)(g-l exp (g^x} g\ dg
Jon \ \ A- A /

u(g~1 expl5———) gx)w(x)dx dg
JG/TJG \ \ A /( /

(CTfe)") (exp f5-.-^) x)CT^)w(x) dx dg.
J o r T j G \ \ A, /( )

We expand a(g)u as ^<CT(^)M,M^>^ and use the fact that
".,/' "'

u^(tx) = ̂ (t-^u'^x) to obtain

4(«*w*)(x) = f $; x/exp- f^-^))
jG/Tn,^ \ \ A- //

<CTfe)(w), < .̂> <CT(^(H'),«^.> ̂ .
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Thus
/» /• ig.<fH(X)

-^ IU,̂  J G/T J 9
((^^(c^v^E ^

n,/ JG/T Ja

(P(X) rfX<CT(^U,M,> <CT(g)(wV > ̂
t"<cf \~i'f

-^ ̂H^ JG/T \ A- /
L ^P—— KcTfe^^.Xa^w,^ .>^.
n^jG^r \ A / "^ "^

4.2. An important simplification occurs in this formula when (p is an

Ad(G) invariant function. In this case $ ( — — ) = ^(-l and so we may
\ A / V^/

apply the orthogonality relations to obtain

^V (a)u,w> = $: J-^^^^.^H,).
n e 0(0)^0 V^/

COROLLARY. — If (p fs an Ad(G) invariant function on 9, ^n /^(p fs
a central multiplier of L^(G) anrf

(^(p)A(a)= l I: (p^L,(u)Î .
"CT ^en(CT) V71/

This formula is particularly simple and allows us to obtain from Ad(G)
invariant multipliers of L^g), central multipliers of LP(G).

4.3. Given a complex valued function \|/ on G = A^G^) we may
enquire when there is an Ad(G) invariant multiplier (p of 1^(9) with
/^"(p = v(/, i.e. one may attempt to invert /?. This can always be done
formally by the Weyl character formula ([14], § 20.2). One obtains

<P(T( = f Ft Da(^.v|/))(v)
W \a6d>+ /

where Da(rf.v|/)(v) == ^-^(v—a) — d^(v) is the difference operator
associated to the positive root a.

Hence, we have proved a theorem of Coifman and Weiss [4]; if
v-> P] Da(rf.v|/)(^v) belongs to PFp(g) then v|/ is a central multiplier of

aecp4 '

LP(G). This enables us to prove that a number of well-known multipliers
on G are bounded (e.g. the Riesz kernels of Clerc [1]).



120 ANTHONY H. DOOLEY

4.4 Recall that the central multipliers 17 are in general different from
the multipliers of the centre of 17. We should emphasize that our methods
apply to the former but not to the latter. N. J. Weiss-[18] has proved some
results pertaining to multipliers of the centre of 17 (G), for G = SO (n) for
a limited range of p. While it is true that if / is a central invariant
function on AP(G), /^/eBp(g) is Ad(G) invariant, it is not obvious that

A

'invi-J belongs to B^(g),nv (i.e. is a pointwise multiplier of Lf^ ® Lf^(g)).
Weiss' restriction, which is particular to S0(n) does not seem to be
attainable from ours.

4.5. In this paragraph, we examine the special case G = SU(2), so
that 9 = R 3 . Choose

T-{(C;.):o.e<.}.

We have A^G/T) = N, and for !?eN, n(<f) = {-{,.../} and,

fl if \p\ ^ {
mM = )0 otherwise •

It follows readily that

- s f <^-)k=-^jG/T \ A' /
<^^)\a,)u^) = ^ n—g'e,)(a(g)u,u0(a(g)^u0dg

k^-^Jorr \A /

i 0^where e^ is the element of R3 corresponding to ( . ) • (G acts on R3

by the adjoint action.) v /

We suppose that (p is a product of a radial function and an associated
spherical harmonic. Let x e R3 ; we assume that

(p(x) = /(M)P(-)
Vl-^l/

where /: R^ -> C and P = Y,^ is a spherical harmonic of degree s,
and — s ^ q < 5.

One knows from the Bochner-Hecke formula that for ^eSU(2)

^g.e,) = 27^rs^-l/2/(54-l/2,^)P(i)
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where g denotes a coset representative of g in S2 = SU(2)/T and
/(s+l/2,n) is the Bessel transform defined by

/(s+ l/2,n) = f00 /(r^^^r)^372 rfr.
Jo

Combining this expression with our expression for /?, we obtain

< /ifciv"^2 / ij^i\ r
(^(0^,= E 2^^ /^i/^ P(g)t^(g)dg

k=-f \^ ) \ A, / Js2

(it is clear that the product t^tmi(g) depends only on the coset
representative of g ) .

The associated harmonic P = Y^ is in fact the matrix coefficient t^(g)
of SU(2) (see [17], p. 129). The integral over S2 is than equal to the
following integral over SU(2):

r
I fS ^ ^-£ j ' \

tqotmktnk a r u '
JSU(2)

The latter may be computed by the Clebsch-Gordan coefficients (see
[17], p. 178 ff); it is zero unless m + q = n, in which case it is given by

^. . C(^,g/; fe.o.fc) C(<f,5/; m,q,n) = A(^,s,n,^)(say).

Thus we have proved

PROPOSITION. — (^(p)^^)^ f5 zero unless n — m = q y^hen it is
equal to

{ /IHV"1/2 / IJH\
S 27trs (w] f 5+1/2;^ A(^,|fe|,^).

k=-£ \^/ \ A./

The Clebsh-Gordan coefficients simplify somewhat for the case
P = Y^o- One sees easily from the expression on p. 181 of [17] that

A ^ 1 I ^ 2w2fe

A^1^0) = (27+2)(2^1)27-

The matrix (^(p)^^) is a diagonal matrix: its m,m entry is

^i V ^^V^^^.^ ^^^l
"^J-A^ V2'^(2^2)(2^1)2^•
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This expression becomes particularly simple when /(r) = r3 . One
/ fc\ / [^ | \- i /2 /^

computes that /( 3/2; — } = ( — ) /—, and hence the m, m entry is
\ A/ v ^ / V71

/^— • w • T^ 1 1 1 r^~' m

-^^^W+w^^ -^'(T+W
This matrix is closely related to the operator B^ of [3], p. 135 ff; in fact

one has I - ̂ Tc)"1^?^ = B2, so that

(271)-^(p = I + B2.

Thus, the operator I + B^ has multiplier norm on SU(2) not
exceeding (27c)~l/2|||(p|| \p^3. This bound is considerably more precise
than the bound given in Theorem (1.7) of [3].

It is equally easy to treat the other Riesz kernels B ^ , B^ of Coifman
and Weiss. In fact, it is obtained by transferring the appropriate Riesz
kernel on R 3 .

Specifically, we let P = Y^ and f(s) = s ~ 3 . In this case,

A</•l•t•"•l) - w+iw^-^-^

^.^.^--^-^w^
£ (\\!\\W / k\Y (\^\) fi^n. k\.L ^^-n^2^]

k=-£ A \ /w/

As before, this reduces to

^-^(f-m)(f^m-\)
~-/2nl——27T1——•

Comparing this expression with the expression for 6i(<0 on page 134
of [3], we have

(27^)-l/2f(/^p)A(a,). =B,OQ.

Thus, the map ^\ transfers the Riesz kernel on R3 to the Riesz kernel
on SU(2), and one has immediately
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THEOREM. - |||BJ|[^2) < I H ( P l l l l p , R 3

l l |I-B2lllp,SU(2)^IH(P2lllp,R3

where q>2 is the kernel on R3 obtained by taking f(s) = s3 and P = Y^,
and q>2 fs ̂  fe^rn^ on R3 obtained by taking f(s) = s3 and P = Y^o •

4.6. Coifman and Weiss deduce their estimates from a general theorem
giving sufficient conditions for a family (|̂ )̂  = 0, 1/2, 1, . . . to be a
multiplier of 17(811(2)). One can use theorem (4.1) to give a different
proof of their result. Details will appear elsewhere.

5. The contraction of V >^ K onto G.

We will now return to the case where (G,K) is a Riemannian
symmetric space of the compact type. In this case, starting from (3.4)
instead of (3.5) we can prove analogues of some of the theorems in §4,
obtaining transference theorems from V xi K to G.

5.1. The representations of V ^ K.

For each \|/ e m*, we may define a representation p^ of V xi K on
L^K) by the formula

P^^)/(feo)=^^o-ll;)/(fc-lfco)

where \|/ is extended to an element of V* by making it zero on a. This is
the representation of V ^ K induced from the character v -> e^ of V.
It is not in general irreducible.

In the case where \|/ is generic «v|/,a>^0, Vae P+) we have a
canonical procedure for choosing an irreducible subrepresentation of p^.
The stabilizer of \|/ in K is then M (the stabilizer of a in K); and we
choose a maximal torus T^ in M. Let x6^ = { x ^ ^
< ^ , a > ^ 0 , a e P - } and let P be a character of the finite group
A n M .

Set

L^p = {/eL^K):/^) = ̂ (t-W) and f(kd)

= P^-1)/^), V f e e K , ( e T , a e A }
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and
^= {/eHpnC-OC): X-^O, V a e P _ } .

Then Px,p,^ = P^ljrX» P is irreducible, and almost all irreducible
representations of V x K are obtained by this construction. (Further
details of this construction may be found in [6], Theorem (4.8), but we give
a word of explanation here. Evidently, p^ may be obtained as

... , V xi K
' V > 4 M ' where ^ denotes the left ^g^ar representation of M.

The representation p^p^ corresponds to ^ x a^ f v x K , where

o^p denotes the irreducible representation of M holomorphically
induced from x x p. We may realise c^p as a subrepresentation of
L^M); by Mackey's restriction theorem, p^p^ is a subrepresentation
of p^.)

5.2. To describe the irreducible representations of G, we take the
maximal torus T corresponding to t^ 4- a, and let

T-' = { v e t : ^v.a^O.aeO-^}.

There is a bijection v <—»- a^ of t+ onto 6. Given v e t+ we let

^= {/eC^G): /te0=v((-1)/^), g e G , (eT, X-V^O, ae^}.

Then CT^ is the left regular action of G in H. As in (4.1), one chooses an
orthonormal basis

{<,: Hen(v),7=l,. . . ,w,(n)}

for J^\ where [u^: j= 1,.. .,^(n)} is an orthonormal basis for H^. A
moment's thought will convince the reader of

LEMMA. - Let { w i = ^ , W 2 , . . .,w,wi} be a fixed set of coset
representatives for the Weyl group W = No(T)/T. We may choose the
basis mth the following property. For each w, = w/T e W, \ve have

<i.k = ̂ rw /or 1 ^ fe ^ m^n) = w^(wn).

(^r ,̂ WM(^) = M(w^).)

We shall henceforth assume the basis {u^j} has this property. Often,
when v is clear from the context, we will write u^j instead of u" ..
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5.3. Before stating our first main theorem, a piece of notation. Let
T| et '^. The derivative dr\ then belongs to it* = fr* © m*. Let

dr\ = rfr|i + dr|2

be its decomposition with respect to this direct sum.

5.4. THEOREM. — Let v e T + , and let u, w € FT. For each x e V xi K
and /or ^ac/i X e R'^, \ve have

WyOl)

^(M * W*) = E E (P^OC" 1)^ * ̂ J'IK » w * ̂ JlOL2^) •
nen( i ; ) j= i -T-

Proo/. — The proof of this theorem is sufficiently similar to the proof of
Theorem (4.1) to be left to the reader.

Remark. — It is obvious that u * u*^ e L^K). The question of when
it belongs to one of the Jf^'s and hence of when the matrix coefficients
occuring on the right hand side belong to our standard family of irreducible
representations will be considered below.

5.5 We shall consider the Fourier transform of / e L^V xi K) at the
not necessarily irreducible representation p^ to be defined by

yw= f/(x)p^(x-1)^
(Bochner integral). We obtain immediately from (5.4)

COROLLARY. - Let /eL^V xi K), v e t + , i^weJf . Then
wv(n)

O^n'O^H^ ^ E (/(P^)U*<.|K,W*<,|K)L2(K).
u e n ( v ) j = i ~r

Notice that (^/)(u * w*) = ((/?/)A (o^)u,w). We see that this gives us
an explicit formula for the matrix of the Fourier transform of /*/ in terms
of certain non-irreducible matrix coefficients of /. This is an analogue of
Theorem (4.1) (Although there, because of the simplicity of the vector
group we did not have to worry about non-irreducible matrix entries.)
Again, we note that we have on the right an average of a number of terms
equal to the dimension of v.

The next theorem eliminates the non irreducible matrix coefficients —
at the expense of introducing some differential operators.
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5.6. THEOREM. - Let / e L1 (V xi K), v e T + , u,we^\ Let
v^ = v|-r , Pi = v | M n A - Then for every 46 A'1' with n < v and for every
7 = 1 , . . . ,m^(n) , ^r^ ar^ differential operators Z(v,nJ) eu^m0) anrf
Y^nj^eu^0) 5MC/1 r/i^

1 w^(p)

((^*/)A(cyv)^)L2(G)=.- E |WH| S (Z(v,nJ)/(p ^)Y(V,^>|K,
"u ti<v j=l 1 ' ^

^6A+(G,T)

Z(V,HJ)Y(V,HJ)W|K)L2(K)

where \(v,[ij)(u\^ e ̂ ^.

An explicit description of the operators Y and Z is given below,
although their determination in practice is difficult.

Proof. — First, notice that by our choice of orthonormal basis —
lemma (5.3) — we have for all w e W , for all r |efa* we have

PwnM(M*M^)|K, (W * M^J)IK = (P,iOO(^*<./)lK, W*M^.|K)

hence the sum over II (v) in corollary (5.4) may be changed to ^ , each
term occuring with multiplicity |Wn|. ^^

For veT'* ' , let u^ denote the unique element of ^f^ such that
Hi^H = 1 and ^(e) > 0. It is well known (cf. [14], §20.2) that ^ is a
cyclic vector for J^ considered as a module over the universal enveloping
algebra u^0). Thus, for each H and for each je {1 , . . .,mv(n)} there is
an element X(v,|^J) e ̂ Q^ such that

a^v.Hj))^ = M^.

In fact, it is not hard to see that action of the elements of i^fe0)
generate the whole of e^f" (see [14] for a proof), and hence, the operators
X(v,nJ) may be taken to belong to u^0).

Now according to the orthogonality relations, for any MeJf^

u*uv = ^ 7 2 M •icy

It follows readily that, for all ue^\

* u^j = X(v,uJ)M * ̂  = ̂ X(V,HJ>M * M . = A(V,U,/IM*
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where — denotes the complex conjugation in u^) induced by

X -h fY <—^ X - fY(X,Y e f),

and X e t acts on u by the right derivative

XM(G)=^ M(^exp(X).
A (=0

By the Poincare-Birkhoff-Witt theorem ([14], p. 92), we may suppose
that

X(v.nJ) = Z(v,pJ)Y(v,uJ)

where Z(v,nJ) e u^) and Y is in the algebra generated by
{X+9X: Xe^ . aeP^} .

Indeed, Z may be taken to have the form

n (XT
a e P _

where Vi - ̂  = ^ n,a.
a e P _

Now (JY(Y(v,^J))MV transforms according to v^ under T\ and
according to Pi under M n A; hence we have

Y^J^ke^'1^1.

Since ZeuOn0) and since [m,a] = 0 , it is easy to check that

ZP^)= P^MZ.

We have proved the theorem. D

5.7. Remarks. - (i) Theorem (5.5) gives a description of
((^./y C^)^) m terms of the coefficients of the Fourier transform of /
at our standard irreducible representations.

The particular matrix entry chosen is obtained as a sum of u\^ acted
upon by certain differential operators. While the latter are hard to
compute, the restriction of u to K is well-behaved; in fact ([6], Theorem
(6.2)) assures us that the map u <—^ u\^: Jf" -> jf^'^i is an injection,
and the images, as v^-^ co fill out a dense subspace of Jfi'^i.
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(ii) We used in the above proof, that for

ZeuOn6), Zp^(x) = p^(x)Z.

One may check in general that for X e ̂  and for x = (v,k) e V x K,
/I€C°°(K),

(Xp^(x)/i)(feo) = d ^(^p^xr1 «^(fc-1 exp 5X)
as s=0

= (p^(x)XA)(feo) - i <W9V]> p^(x)/i(feo)

^MX/X^-of1).
\A-/

Thus, one obtains <I?/M,W> as a sum of terms of the form

/(P^ ^ ^2(M|K),Xw|fc)

plus an « error term » which is — times a sum of
A<

<Y,/(p)Y20<lK),YiY2(w|K)>.

Without an explicit knowledge of the operators X(v,nJ) it seems
difficult effectively to estimate this error. It is desirable to estimate it,
because, the leading term is ^simpler to evaluate.

(iii) We noted in the above proof that u^)^ = i^f0)^. In fact, this
can be seen by a simple inductive procedure. Let X = X^X^ . . . X,, be a
monomial in ^g^ and suppose that X2, . . . , X,,eu(fc°). Writing
Xi = l/2(Xi+9Xi), we notice that X i - O X ^ e V , and since
P,V] c v, (Xi-9Xi)X2 . . . X^ is a sum of terms of the form
YI . . . Y^Wi^ where Yi . . . Y^ e f and W e V. But V is spanned by
(X.-9XJ, a e P + : since OX^ = 0, (X^-OX,)^ = (X^+OX.)^.
Hence W^ = Y^-n^ for Y^+i ef0 . This procedure can be turned into
combinatorial procedure for calculating the operators X, Y and Z of
theorem (5.5).

5.8. In the next section, we will compute the operators Y and Z
occurring in (5.6) for the case (G,K) = (SU(2),SO(2)). Before making this
computation, we shall specialize Theorem (5.6) to the case of K-bi-
invariant multipliers.
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If / is a bi-K-invariant function in L^V ^ K), then ^>: v -> f(e,v)
is a radial function on V. The Fourier transform of / is

/(Pv.p,^) = (PWP(V.P)

where Pv,p is the projection onto the zero or one dimensional subspace of
K invariant vectors of ^v,M' m ^act' P(v,p) == ^ unless (v,(i) = (0,0)).

Since (p is radial, (p(v|/) = (p(fe.v|0. Thus \|/ may be supposed to
belong to a*'1'. The radial Fourier transform of / is then given for
H e a* + by

fW=H>(u).

Similarly, (G,K) is a Gelfand pair, so for each veA^G.T), the
space of K-fixed vectors in Jf" is zero or one dimensional — the Cartan-
Helgason theorem states that it is one dimensional iff v^ = 0 and
v(X) = 0 whenever exp(X) e K n A, i.e. iff v^ = 0 and Pi = 0. Thus v
can be considered to belong to a certain lattice A^ in A.

The Fourier transform of a bi-K-invariant function / on G is then
v <—^ T^Py where V2eAi 1 ' ; P^ is the projection onto the 1
dimensional subspace and ^(v^) e C.

The complex valued mapping \|/ is the radial Fourier transform of /.

THEOREM. — Let / e L ^ V x K ) be bi-K-invariant. Then eff is a bi-
K-invariant multiplier of G and

1 rn^Oi) / \

o'?/)^^-, Z Z \c(vw)\2^ r-
"v H<V^. j=l W

peAl

where c(v,nj) is the constant term of the operator X(v,Hj) e u^0) of
theorem (5.6) and (p is the radial Fourier transform of /.

This theorem enables us to transfer K-in variant multipliers on V to bi-
K-invariant multipliers on G thus, for example, taking
(G,K) = (S0(3), S0(2)), we can transfer radial multipliers of 17 (R2) to
give bi-SO(2)-in variant multipliers of L^S3).

The catch is that the constants c(v,(ij) are rather hard to compute,
even for this simple case. (Nevertheless, there is an algorithm, based on
(5.6) for computing them, in general).
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6. Transferring from M(2) to SU(2).

6.1. The aim of this section is to explicitly calculate the expressions
for eff given in the previous section in the case where
(G,K) = (SU(2),SO(2)). Here, the associated motion group is M(2),
the twofold cover of the Euclidean motion group. (It is the semidirect
product of C by T where T acts on C by w.z = vi^z). Much of the
apparent complexity of the formulae of the previous section disappears.
Indeed,

—{C:.0.)——}-
Thus P _ = 0 . The elements of A^G.T) are indexed by the
nonnegative half integers {0, 1 /2 ,1 ,3/2, . . .} and for <f e A^ , we have
TcOO = { -<f , -<f+l, .. . ,< f} . The integers m^t) for \t\ < <f are all 1 .

Furthermore, the representations p^ ^ of M(2), acting in
L^K) = L2(SO(2)) are all irreducible. Hence, corollary (5.5) takes the
form, for u, w e ̂ f",

WX^w*) = ^ (/(Pm ^)u*uf\so(2)^*uf\so(2))
\w r'^ /

where [u^\ —^^j^} is an orthonormal basis for ^. In particular,
choosing u^ = \|/̂ . as in [17], III, § 2, (4) we may see that matrix of the
Fourier transform of i^f is

(/?/) (°^j,k = ̂ , i L [f(°\t\ , ,^)^ls0(2)» ^tls0(2) ) •2 < /"^ l |(|<A r^"^ /

Now, using the notation of [17], we have, for 9eSO(2),
^(9) = P^(cosO). The remarks of the preceding section, together with
the fact that SO (2) is commutative enables us to see that P^(cos 0) is a
linear combination of the functions Pf<f(cos 9), — ^ ^ 5 ^ <f . While the
following formula may be known to the experts, we have not been able to
find a reference for it, so we give a proof.

6.2. LEMMA. — Let ^eA^ and let — ^ ^ 7 , t ^ /. Then

P^(cos9)= ^ a(^,s)Pf,,(cos9)
s=-<"
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where
/ €-t \ / ^+r \ , i

a(W= (,-t^s} ^t^j-s } ̂ ^^^(WV' "' ' ' i ____- J 1 ____•• I 1 c^y\l ^y >'» i //» i <\ i )(2^)! (<f-()!(^+()!^
2 / \ 2

Proo/. — We start from the generating function for P^(, [17], III,
§3(3):

/ e . ey-Y . e ey^I w cos - + i sin . j I iw sin , + cos . )
\ - -/ \ ~ '•I

-i^^)'^'-
We may expand the left hand side of this expression by using the

binomial theorem, obtaining
^+t f-t f / \4 \ //' A / f\\^+t-m+n / f\\^-t+m-n
£

\^ v t t \ l v ~ t \ l u\ I ' • u\L { cos^ ^ s m .,=o^o \ m }\ n }\ l ) \ 2
^-m-\

Changing variables in these sums, to j = m + n — £ and
s = t — m + n, we obtain

^ / ^t \ / ^-t \
E E ^t-^j-s ^+74-5 cos- fsin- w^.

j=-,s=-,\ ^ / \ 2 / \ 2/ \ 2/

Finally, consulting III, § 3 (6), we have

/ gy^/ Qy-. ^-,)!(^+,)!^
(cos-^ ̂  =[———^-)P^

Substituting this expression in the previous one and comparing
coefficients of \v^~1, we obtain the lemma. D

We are now in a position to compare our restriction /?/ with that
used by Rubin[15] and later in [6] in proving the other direction of de
Leeuw's theorem. We use the notation of [6]; thus the elements

{6 : - f ^ 5 ^ <f}

span Jf^ c L^SC^)). The images 31^\ { = 0, 1/2, 1, . . . . form an
increasing family of finite dimensional subspaces whose union is dense.
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Rubin's restriction is defined, for (p a multiplier of I/(M(2)), by

(p^)=^-lP.(p^U
W

where P^ denotes projection onto 9t^(. We have shown that

\ { f {
(<•*/) '(^-^^T £ £ Z ^(^^)a(<f,Up)(A(l^l)^.^ ~r 1 t=-/ ,--/ »-_/t=-{ s=-! p=-<f

Thus, /^/A is a kind of average of f^(\t\). In the abelian case eff is
the same as f^. It seems that for some purposes, eff is to be preferred as
a restriction to /^.

6.3. It is interesting to enquire whether an analogue of Theorem B
holds for the restriction eff. A condition which is certainly necessary is
for each i,j,

nm f^A^. = /(PR),,.

This is certainly satisfied by the restriction /^, and in fact it is not hard
to trace through the arguments of [1] to see that any restriction for which
this holds will satisfy the appropriate version of Theorem B. (Indeed, this
remark holds in the generality of [6].)

It seems that no such theorem holds in general. To see this, we suppose

that /(pp)^ = 0 unless 1 = 7 = 0 and we compute (/*/? (c^)oo.
\ R /

Now
/^\Y^+r\2

fl(^,0,r,0)2 = | ̂ -t | ( <f-hr 1 ofr) 1

~r) \^r) 2^-o! (^+o!
Of-0!^+0!(^!)4

w^y^y2 ] • \ 2

(2f\-1

\f-t] ,

{
£-t

2 y v v •

Even the t = 0 term of this sum blows up; by using Stirling's
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approximation, we have

/2/\""'
( \( \ ^22/-7/V-3/2.f'Twj / ^ 7

6.4. The above argument means that we cannot hope to recover any
type of reasonable average of / from its restrictions eff unless we place
some extra conditions on /.

We now specialize to the case where / is bi-K-invariant. We start from
corollary 5.5, substituting u = w = c / , where cf is a K-invariant vector
in ^£ of norm 1. Then

/?/(aW*) = (/^(a^.aQ = (.T/)'^)

= Z </f^)^<ls0(2),^<ls0(2)>
\tW \^ /

= £ /(^Vvool2
\t\^ \^/

= E/f^K^"^!2.
\tW \^ /\tW \•v /

Now of may be computed as follows. The vector

— — — ) -|—> (a2^-?2)'' is a K-invariant vector in J^, for <f integral.
-Pa/

By the binomial theorem
1 i ' \a' = c ^ t -t (/-'^+t

t=-' \ 2 /(f-teven N '

where c is a constant which we will determine presently.

Thus
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Thus, since the ui are an orthonormal basis,

•-""'"-^Afcfcr1
(^-Oeven v - /(<('-() even

Furthermore

\<af^^=^— ^-p

We have proved

THEOREM. - If f is bi-K-invariant on R2, then

^/'((^

^ M L-, ^)-1
ipi^<' ^^V""^/ V-TV

i^-peven N /

/ / \ 2
' 2/ \-1

^-JS ^-f
I'l̂  \-y-

^-(even \ z'

From this it follows that

-^wrE / R i ^1 /wW(^/(^a^^
\ R / / //\ 2 / ' ) / \ - 1y /^ \ l1£\

^o W V2p;

By Stirling's approximation, (J^)"1 ~ ̂ ^(^). Hence.

as <f -+ oo, the above quotient approachesr/(R(ii-
Jo 2^|)Vx(l-x)Jx

/ x ( l - x ) d x
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This is an average value of /. In certain cases, this expression is a
multiple of /(R).

For example, taking f(x) = |^|1"2, one computes /(R) = c.R"1

r°°
where c = t1'1^^) dt

J o

/ , (\l-2x)iJx(l^x)dx
lim /*/ Y^^c.R-1

f̂o-
-i J O

I1Jo
x(l—x) dx

0

which is a nonzero multiple of /(R).

A similar calculation enables one to conclude that the Bochner-Riesz
means are bounded on L^S2).
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