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APPLICATIONS OF CONVEX INTEGRATION
TO SYMPLECTIC AND CONTACT GEOMETRY

by Dusa McDuFF(*)

1. Introduction.

Gromov's method of convex integration [G2,3] gives a very
general way of constructing differential forms on closed manifolds.
It is not powerful enough actually to construct symplectic or contact
forms. However it does construct such forms "in codimension I":
for example, it constructs closed 2-forms of maximal rank on odd-
dimensioned manifolds. Geometrically, such forms correspond
to 1-dimensional foliations with transverse symplectic or contact
structures. In this paper we discuss the implications of such construc-
tions. In particular, we give a geometric meaning to the concept of
formal equivalence of symplectic or contact structures. We also
calculate the first non-trivial homotopy group of the classifying space
for transversally symplectic (or contact) foliations.

We begin by describing the problems which concern us. A
symplectic form a on a manifold X2^ gives rise to a cohomo-
logy class [a] E H2 (X, R) and to a homotopy class of almost com-
plex structures on X, or, equivalently, to a homotopy class of reduc-
tions of the structural group of the tangent bundle of X to the unitary

(*) Partially supported by NSF grant N.° MCS 8203300.
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Transversally symplectic foliations. .



108 D. McDUFF

group U(m). Similarly, a transversally oriented contact structure
on X2 m +1 gives rise to a homotopy class of reductions of this struc-
tural group to V(m) (B 1. This will be called the formal data underly-
ing the symplectic or contact structure. We are interested in the exist-
ence problem: is there always a structure corresponding to given
formal data ? If such a structure exists, we would also like to know
how unique it is.

The techniques of Gromov's thesis [G 1 ,3 ] solve the existence
problem in the affirmative on open manifolds. No general method
is known for closed manifolds, although Lutz and Martinet have
solved it in the 3-dimensional case by very geometric methods. See
[M]. Techniques for constructing contact and symplectic structures
may be found, for example, in [G3], [MD4], [Me], [T], [TW]. See
also the references in [B]. However Gromov's most recent results in
[G4] suggest that the existence problem may have a negative answer,
in general.

It is now known that formally equivalent structures need not
be diffeomorphic. Bennequin [B] constructed explicit counter
examples in the case of contact manifolds of dimension 3. See also
[E], [G4], [MD5]. In § 3 below, we discuss the connection between
different notions of equivalence for symplectic structures. We also
define some further isotopy invariants of cohomological type which
arise for symplectic forms on open manifolds.

Convex integration allows one to construct from appropriate
formal data closed non degenerate 2-forms r (i.e. r^ never vanishes)
on manifolds of dimension 2 m + 1, as well as non-degenerate 1 -forms
a (i.e. a A doi.m~^ never vanishes) on manifolds of dimension 2m.
Our first application of this result is given in § 4, where we interpret
geometrically what it means for two symplectic structures to have
the same formal data. The analogous result in the contact case appears
in §7.

In § 5 we use Sullivan's language of structural cycles to pinpoint
the difference between a contact structure and a non-vanishing flow
with transverse exact symplectic structure. Since the formal data for
a contact structure gives rise to such a flow, this shows just how far
the method of convex integration goes towards solving the existence
problem in the contact case. This result has no symplectic analogue
since symplectic forms do not give rise to flows.
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Our final application of convex integration is a calculation of
^n (B r^^ where for even (resp. odd) n, B F^ denotes the classify-
ing space for codimension n foliations with transverse symplectic
(resp. contact) structure. See § 6, § 7.

In order to make this paper reasonably self-contained, we begin
by describing the method of convex integration. Here is a list of the
contents.

§ 2. Convex integration.
§ 3. Equivalences of symplectic forms.
§ 4. Transversally symplectic foliations and concordance.
§ 5. Transversally exact symplectic foliations and contact struc-

tures.
§ 6. The classifying space for transversally symplectic foliations.
§7. The contact case.
Throughout we will write 7 =^ 0 to mean that the form 7 never

vanishes. Also, a 2-form (resp. 1-form) 7 on a manifold of dimension

n will be called non-degenerate if J k ^0 where k = — (resp.

7 A d^ ^ 0 where k = ——— ).

2. Convex Integration.

In this section we state the version of Gromov's theorem which
we shall need. Then we discuss the two main examples, the symplectic
case (2.2) and the contact case (2.6).

Let p : X ——^ V be a smooth fibration, X"' be the manifold
of r-jets of germs of sections of p and ^/ : X'' —> V be the
natural projection. A differential relation is a set ^2 C X"". A solution
of the relation ^2 is a C'-section /: V —^ X whose r-jet V(f)
takes V into ^2. Let /o be a solution of Sl defined in an open
neighbourhood of the closed subset W of V. Then we write
r (n , /o ,W) for the space of all continuous sections V——> ^2
which equal J^/o) on ^ with the compact-open topology.
Similarly, let Sol(n, /o,W) be the space of all C^-solutions of
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n over V which equal /o near ^ wlt^ ^e appropriate direct
limit C^-topology. Then we say that n satisfies the relative weak
homotopy equivalence principle (or relative w.h.e. principle) if the
map / 1—> V(f) induces a weak homotopy equivalence
Sol W, /o , W) —> F (n, fo, W) for all closed submanifolds
W C V and all /o. The method of convex integration gives a very
general condition under which a relation ^2 C X1 satisfies this
principle. To state it, we need the following definitions.

A subset Q of an affine space L is said to be ample if, for
every connected component Qp of Q, the convex hull Conv (Q^)
of QQ equals L. For example, if Q is the complement L — W
of an affine subspace W of L, then Q is ample unless W has
codimension 1. In particular, the empty set is considered to be ample.
Here we follow the terminology of [G2]. The definitions in [G3]
are more general.

A q-dimensional direction in an affine space L is a decomposition
of L into a disjoint union of parallel ^-dimensional affine subspaces.
A subset Q C L is said to be ample in a given direction if, for every
subspace S in this direction, the set Q H S is ample in S.

Now let us go back to the fibration p : X —> V and the
associated fibration p1: X1 ——> X , where X1 is the space of
1-jets of section of p . If u^ , . . . , u^ are local coordinates about
v E V and y ^ , . . . , y^ are local coordinates in the fiber p~~l (v)
about x E X , then the fiber (p1)"1^) has coordinates
a^ , 1 < / < n , 1 < k < q , where (a^) represents the 1-jet

( x ,2 a-^ —k-). One can easily check that these coordinates provide

the map p1: X1 —> X with the structure of an /^-dimensional
affine bundle over X. Also, each coordinate u^ determines a
^-dimensional direction in the fiber (p1)"1 (x) as follows : the affine
subspace containing the point (bj^) is just {(a.^): a-^ = b.^ if /^ 0 .
Note that these directions do not depend on the choice of the fiber
coordinates y^ . In fact, the ith. direction in { p l ) ~ l ( x ) may be
defined as follows: two jets are in the same affine subspace if they
may be represented by germs of sections whose restrictions to the
submanifold u^ = const. through p (x) are equal. These directions
in the fibers of p1 are called coordinate directions. The version
of Gromov's theorem which we shall use is the following:
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THEOREM 2.1. -Let p : X —^ V be a smooth fibration
and n C X1 an open set. If, for every x e: X, there are local
coordinates about p ( x ) such that S2 is ample in the coordinate
directions for all the fibers of p1 sufficiently close to that over x,
then Sl satisfies the relative v^.h.e. principle.

This is proved in [G2] § 2,3. See also [G3] 2.4.1-2.4.3 and [Sp].
The essential idea is contained in the proof below.

Proof of the simplest case. - Let (V,W) = (I , 31), X = I x R9

and i2 = X x A C X x ̂  = X1 . We will show that
TTo (Sol (^, /o , 31)) = TTo (T (ft, /o , 31))

for any solution /y of ?2 which is defined near 31.
A section 0o ^ F(n, /o, 31) is a pair ( @ o » ^ o ) where

OQ : I —> R^ and V/o : I —> A and where

(0oW^oW)=(/oW^w)

for ^ = 0 , 1 . We must show that 0o can be homotoped relative
dQto 31 to a section (Q , V/) such that V/(r ) =—(^) for all t . Let
<^

AQ be the connected component of A which contains —°(1).
dt

Because A is ample, the element fo(\) ~ foW is a convex linear
combination of elements of AQ . Therefore, there is a step function
a : I —^ AQ whose integral f 1 a (s) ds equals /o (1) — f^ (0).

,, •A)
Because —°(1) belongs to the open, connected set AQ , this

function a may be approximated by a continuous loop

(1,31) —> (AQ , —°(1)) whose integral is arbitrarily close to

/yd) ~fo(0). Let ^/ : I —^ AQ be a continuous path formed by
going quickly along ^^ and then round such a loop. By
parametrizing ^ suitably, we may assume that the integral
J o ^(^^ ls arbitrarily close to fo(\) ~ foW. Because \ is
open, i// may be adjusted to a path ^ whose integral is exactly
/ o ( l ) — / o ( 0 ) . (For example, we may assume that V/ equals a
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on some fixed interval J , and has integral arbitrarily close to
/ o ( l ) — / o ( 0 ) . Then we may adjust ^ on J) . Now define

e(t)-f^w + r ^ ( s ) d s .<y o

Then, by construction, 0(t)=fo(t) and \l^(t)=—°(t) for

^ = 0 , 1 . Also, since we may assume that the loop which approximates
a is contractible, the initial path i//o is homotopic rel 31 to V / ,
and hence to V / , through paths in A y . Since 6 : I —> R^ is
obviously homotopic rel 31 to 0^: I —^ R ^ , the proof is
complete.

D

In [G2, 3] Gromov gives many applications of this theorem,
and also discusses variants which apply when S7 is closed or when
r > 1 . In particular he points out that the theorem applies when
n is the complement of a generic singularity 2 C X1 of codimension
> 2 . The examples which follow are of this type.

Example 2.2. - Let X = T*V, so that sections of p : X —> V
are 1-forms on V. Because p has a canonical section (the zero
section), the bundle p1 : X1 —> X has a linear rather than just
an affine structure. In fact, it is the pull-back over p of a vector
bundle q : 3 —> V, and there is a commutative diagram

X1 •" J ———•" A^^V)

P 1 1 \Q ^ (2.3)
p id

X ———•" V ———•" V ,

where A is the unique vector bundle homomorphism such that

da= Ao^(:P(a)) ,

for all C1 1-forms a on V. Given any 2-form X on V, define

^ ^ { ^ E X ^ X + A o g((f)) is non-degenerate} .
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When dim V is even, ^ is the complement of a set of codi-
mension 1, and it is easy to see that it is not ample in any coordinate
direction.

LEMMA 2.4. — When dim V is odd, ^ is ample in every coor-
dinate direction.

Proof. — Given x ^ X, let u^ , . . . , u^ be local coordinates
near p ( x ) and coordinatize the fibers of p by the map

( y i . ' - . V n ) —> ^ y ^ d u ^ .
Then the coordinates (a^) , 1 </ , k < n, represent the 1-jet

(x ,Z^^) in L=(^ 1 ) - 1 ^) .

Clearly A o ^ ( ^ ) = ^ (a^-a^^du^ A du^. It will suffice to
f<k

check that ^ n L is ample in the first coordinate direction. If S is
a subspace in this direction, the coordinates a.^ , /> 1, are constant

on S. Let X = ^ \^ du^ A duj,, and let us write z ^ , . . . , z^ for
/ < f c

the unknowns a^ , ̂  - ̂ 21 + ^12 . • • • ^in - ̂ i + \n and b^ ,
2<j <k<n, for the known quantities a^ - a^^ + X^. Then,
we must show that for every choice of the b .^ the set

Q= { ( z ^ , . . . , z J G R " :^8(z)^0}
is ample in S = R" , where j3 (z) = S z^ ̂ i A rf^ + 2 6^ ̂ . A du^
and 71 = 2 m + 1. Since the coefficient of du^ A. . . . A du^ in ^(z)^
is independent of z, the set Q will equal S when this coefficient
is non-zero. If this coefficient is zero, it is easy to check that Q is the
complement in S of the set of solutions to the equations

n

Z € i J c ^ i k z k = o ^ i = 2 , . . . , n ,
k=2

where B^ = B^. is the coefficient of
du^ A . . A dUi A . . .A du^ A . . A du^

in ^(z)^ , and where e^ = ± 1. If B^ ^ 0, then the ;th. and the
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kth. rows are linearly independent since B .̂ = B^ = 0. Thus this
system of equations does not have rank 1. It follows that Q never
has codimension 1 in S, and so is ample, a

Therefore Theorem 2.1 applies to the relations ^ . To illustrate
what this means, let us take X to be a closed 2-form which represents
some cohomology class a ^ H2 (V , R) , and let p^ be a closed non-
degenerate 2-form which is defined near W and is such that

[ p o l W ] = ^ | W .

Further, let us suppose given a non-degenerate 2-form ^o which
equals ?o near W. Because the fibers of A o g are contractible,
fJi^ — X may be lifted to an element 0^ of r ( ^ , p Q — X , W ) .
Theorem 2.1 then implies that 0^ is homotopic to a solution (^ of
S2^. Hence P.Q is homotopic, through non-degenerate forms ^
which equal po near W, to a closed non-degenerate 2-form

J^i == X + A o g(0^)= X + (exact). Therefore, we have shown:

THEOREM 2.5. — // dim V is odd, any non-degenerate 2-form
IJiQ on V is homotopic to a non-degenerate closed 2-form j n ^ . We
may specify in advance the cohomology class a of j u ^ . Further,
if VLQ is closed in a neighbourhood of the submanifold W, we may
perform the homotopy relative to W provided that a |W = [ /Xo l^L

The geometric implications of this result are discussed in § 4.

Example 2.6. — Let p : X —^ V be as in the previous example,
but suppose now that dim V = 2m > 2. Using diagram (2.3), we will
think of elements of X1 as pairs

(0 , i / / ) E T * V x J with p(0)=qW.
Then, given any 2-form X on VI, define

^ = {(0 , , / / ) : Q A ^ + A ^ - 1 ^0} C X 1 .

LEMMA 2.7. - ̂  is ample in all coordinate directions.

Proof. - We will show as in Lemma 2.4 that ^ is ample at
X o = ( 0 o , ^ / Q ) in the first coordinate direction. Let us write
OQ = 2 Of du, and

X 4- Ai// = j3 (z) = 2j z^ du^ A du^ + 1̂  b^ du^ A du^
k j<k
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as before, where the Q^b^ are known and the z^ are unknown.
If the component of ^A^z^" 1 which does not contain du^
is non-zero, then Q = S. Otherwise, Q is the complement in
S of the set of solutions to a system of equations of the form

S 6^ 6 i z ] D i i k = ^ , fc= 2 , . . . , 2 m .

Here c^ = c^(O^b^) is known, D^ is the coefficient of the term
in jSCz/""2 which does not involve du^,du^du., or du^ and
so is independent of the ordering of i,f , k , while e^ is the sign
of the permutation (;,/, 2 , 3 , . . . , i. . . j . . . k . . . , 2m). One
can check that the ratio c^/e^. depends only on 7 and k. It

follows that the coefficient Z e^ Q, D^ of z^ in the fcth.
i

equation is ± the coefficient of z^ in the /th. equation. As before,
this implies that Q is ample.

A typical conclusion would be the following. Let us call a pair
(a, (3), consisting of a 1-form a together with a 2-form j3,
non-degenerate if a A ^m ~1 ^ 0. Then any such pair is homotopic
through non-degenerate pairs to a non-degenerate pair of the form
(a, da). A geometric interpretation of this result is given in § 7 .

3. Equivalences of symplectic forms.

In § 3 and § 4 we discuss various equivalence relations on
the set of symplectic forms on a 2m-dimensional manifold X. One
of our main aims is to show that the relation of formal equivalence
which was mentioned in § 1 has some geometric content. In
particular, we will see that two formally equivalent forms are
concordant, that is, there is a non-vanishing flow on X x I with a
transverse symplectic form r , which restricts to the given forms
on X x i , ; = 0, 1 . To put this result in perspective, we will begin
by discussing some other equivalence relations for symplectic
forms.
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Note that a reduction of the structural group of TX to
S p ( 2 m , R ) determines and is determined by a non-degenerate
2-form j3 on X. Thus a homotopy class of reduction of the structure
group to U(m) is equivalent to a homotopy class of non-degenerate
2-forms jS. Therefore, we may recast the definition of formal
equivalence as follows:

DEFINITION 3.1.- Two symplectic forms OQ , a, are :

(i) formally equivalent iff [aj = [aj and there is a smooth
family of non-degenerate 2-forms ^, 0 < t < 1 , such that

f t = ^, ;•= 0 ,1

(ii) homotopic iff there is a smooth family p ^ , 0 < t < 1,
of cohomologous symplectic forms with p^ = a^i == 0, 1 , and

(iii) isotopic iff there is a smooth family g ^ , 0 < t < 1 ,
of diffeomorphisms of X with g^ = id and g^ * o^ = o^ .

Two further equivalence relations, concordance and strong
concordance, are defined in (4.1). As we shall see, the following
implications hold :

(if X is closed)

(Moser)

isotopys: —> homotopy ==^ formal equivalence ̂ =^

strong concordance ==^ concordance.

(if X is open)

(Gromov)
isotopy ==> homotopy ! ' ' • formal equivalence <====»

strong concordance =====> concordance.

Indeed it is immediate that isotopy implies homotopy, and that
homotopy implies formal equivalence. For the other direction, we
must distinguish between open and closed manifolds: Moser [Mo]
proved that homotopy implies isotopy on open manifolds, and, by
[Gl,3], formal equivalence implies homotopy on open manifolds.
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However, formal equivalence does not imply isotopy in either case.
Some counter examples for closed manifolds are given in [MD5],
and for open manifolds in [G4] 0.3.A. These examples involve quite
subtle invariants. Indeed Gromov's examples are simply the products
D ( R ^ ) x D ( R ^ ) in R4 with the induced structure, where
D(R) C R2 is an open disc of radius R . Here there is no obvious
invariant apart from the volume, and yet he shows that these
structures for R^ < R^ are all distinct.

As the last sentence makes clear, there are further isotopy
invariants of formally equivalent forms on open manifolds which are
elementary, in the sense that they are of cohomological type and do
not involve the almost-complex geometry developed in [G4]. We
will now discuss some obstructions to isotopy which arise from the
volume and other related forms on X.

Evidently the total a-volume of X is an isotopy invariant,
as is the set of ends of infinite volume. (An end E has infinite volume
if, for every compact set K C X the component of X — K which
contains E has infinite volume.) Moser's Theorem has been extended
in [GS] to show that these are the only invariants which arise solely
from the volume form. However, in the symplectic case, one may
assign a numerical volume v(E) to certain isolated ends E of finite
a-volume as follows:

If S is a compact oriented hypersurface in X such that

ak\S is exact, where k= — , we define I(S) by the formula:

m + 1KS)= rJs
a A a

s

where a is any form on S such that da= ak\S. It is easy to
check that I(S) is independent of the choice of a. An isolated
end E has a neighbourhood N which is a connected manifold with
boundary 8N and has E as its only end. If, in addition, o^ \ N
is exact then I (3 N) is defined and we put

^(E) = vol^N- I(3N),

where 3N is oriented as the boundary of N . It is easy to check
that v (E) is independent of the choice of N satisfying the above
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conditions. Note, also, that if X has isolated ends and if o^ is exact

then v (E) is defined for them all, and voly X = V v (E).

Example 3.2. -Let o^ , be the symplectic form on the
annulus A = S 2 w ~ l x R , m > 2 , which is induced from the
standard structure o^ on R2'" by radially identifying A with the
annulus [x G R2^ : r < \\ x \\ < s} . Then '

^(S2^"1 xoo) = vol { | | x | |<^}
and v (^•m ~ v x - oo) = - vol {|| x || < r} . Therefore, none of
these forms are isotopic, although they are homotopic, and in some
cases have the same total volume. However, they are all essentially
the same: for instance, their germs at S2m~l x 0 are isotopic when
multiplied by a suitable constant. This is no longer the case if we
consider forms induced on A by immersions /: A —> R2'" . For
example, it is easy to construct an immersion / such that

fs^-^xo ^ * x = = o ' where dx = am ' (see figure.) It follows
easily that both ends of A have v (E) > 0. Also, the germ of
7*0^ at S ^ ^ x O does not extend over any disc D with
boundary ^ D = S 2 w - l x O , since if it did the integral

Js2m-i /* X would be positive. Hence this germ does not
xO

embed in R2m

R2m — 1

Note 3.3. — Suppose that S is a compact oriented hypersurface
in (X,a) such that I(S) is defined and non-zero. Then a small
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collar neighbourhood of S will have one end with ^ ( E ) > 0 and
the other with v (E) < 0 . Note that this designation is independent
of the choice of orientation for S. It follows that S has a
"positive" and a "negative" side which cannot be interchanged by
any symplectic diffeomorphism. This generalizes a remark of
Calabi-Weinstein in [W] § 3 .

4. Transversally symplectic foliation and concordance.

The main aim of this section is to prove Theorem 4.2 which
gives a geometric interpretation of the relation of formal
equivalence.

Let S be a codimension 2m foliation on a manifold y^2"^ .
It may be described by an atlas (Up(^., 0,))^A » where (V/p0,)
is a diffeomorphism of U .̂ C Y onto an open subset of R^ x R2^ ,
and where the leaves of S I U. are 0^~l (p t ) . A transverse
symplectic structure on S is a closed 2-form r on Y such that, for
some such atlas, r | U, = 0,* (a^) for all ;, where o^ is the canonical
form dx^ ^dx^+ . . . + dx^_^ ^dx^ on R2'" . Such r will
exist if and only if the transition functions 0. - 0^~l all preserve
o^ and so are local symplectic diffeomorphisms of R^ . Darboux's
theorem implies that a closed 2-form r is a transverse symplectic
form for 8 if and only if r"" + 0 and the 1-form $ -I7' vanishes
for every vector field ^ tangent to the leaves of 8 . Using the
identity K ^ T = d (^ Jr) 4- ^ Jrfr, one easily sees that the latter
condition is equivalent to requiring that r is invariant under every
vector field tangent to 8 . In particular, if r is a non-degenerate
closed 2-form on a (2m + 1 )-dimensional manifold Y , its kernel
[v ^TY: v Jr = 0} is everywhere 1-dimensional. Hence r defines
a 1-dimensional foliation 8-r tor which r is the traverse symplectic
form. If Y is orientable,then 8 .̂ will be too. If ^ is any non-vanishing
vector field along 8^ , the pair (^,r) will be called a flow with
transverse symplectic structure.

DEFINITION 4.1. - Two symptectic forms OQ and a^ on X are
said to be concordant if there is a closed non-degenerate 2-form r
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on X x I which restricts to o .̂ on X x / for i = 0,1. Further, the
forms will be called strongly concordant if in addition, the foliation
S^. is homotopic rel X x 31 to the trivial foliation %o with leaves
pt x I. More precisely, this means that there is a family ^, 0 < t < 1,
of non-vanishing vector fields on X x l , which are transverse to X x 3 I
and are such that $o is tangent to So and ^ is tangent to 8^.
(Note that X and X x I are oriented,)

Thus two concordant symplectic forms are connected by a non-
vanishing transversally symplectic flow on X x l . Of course, this
flow will not in general be everywhere transverse to the slices X x s ,
s^ l . If it is, then OQ and a^ are homotopic, and hence also
isotopic in the case of compact X.

Our main result is:

THEOREM 4.2. - Two symplectic forms OQ , o^ are formally
equivalent if and only if they are strongly concordant.

Before proving this, we will reformulate the extra condition
which occurs in the definition of strong concordance in terms of
differential forms.

LEMMA 4.3. — Two symplectic forms OQ , o^ are strongly concor-
dant if and only if there is a continuous family ^ , 0 < t < 1, of non-
degenerate 2-forms on X x l such that :

(i) ̂  | X x i = a, for all t and i = 0,1,

(ii) So-I ^o = = ^ ' where ^ is the vector field along the foliation
pt x I, and

(iii)^i is closed.

Proof. — (• >) The requisite family of vector fields may be
taken to lie in ker ^.

(<==) Put G^GL^ (2m + 1 , R). Let P be the principal
G-bundle over X x R associated to T(X xR) , and let Ep^ , E^ be the
associated bundles with fibers G/H , G/K , where
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( / S 0 \ ;1
H== ( J G G : SESp(2m, R) CK

( v * * ' '
and

K= ( A ) E G S A E G L - ^ (2m, R)v * * /

Sections of Ep^ (resp. E^) correspond to non-degenerate 2-forms
on X x I (resp. to non-zero oriented line fields on X x I). Clearly
EH fibers over E^ with fiber K/H. Moreover, this map takes a
non-degenerate 2-form to its (oriented) kernel. Since vector fields
determine oriented line fields and since ^ lifts to r, the homotopy
^ , 0 ̂  t < 1, lifts to a family ^ of non-degenerate 2-forms on
X x I with JLI^ = T and ^o C ker jn^. D

Proof of Theorem 4.2. — Suppose first that OQ and a^ are
strongly concordant, and let ^Q be the non-degenerate 2-form with
kernel along ^ which is mentioned in Lemma 4.3. Then for -each
/ E [0 , 1 ] the form ^o I X x t may be identified with a non-degenerate
form ^ on X. Clearly, this family ^ , 0 < t < 1, satisfies the condi-
tions of Definition 3.1.

Now suppose that OQ and a^ are formally equivalent. If X is
open, [H2] II Thm 3 implies that they are strongly concordant. In
the general case, we must use the method of convex integration. Let
^ be given by (3.1), and let ^ be the unique form on X x I such
that ^Q\Xxt=^ for all t and ? o J j L i o = 0 . Clearly, we may
assume that ^o ls closed near X x 31. (One just has to reparametrize
the (3^ so that they are constant for t near 0 and 1.) Let a be the
cohomology class TT* [(JQ ] = TT* [o^ ], where TT : X x I —> X is
the projection. Then it follows from Theorem 2.5 that HQ may be
homotoped rel X x 31 to a closed non-degenerate form r which
represents a. n

5. Transversally exact symplectic flows and contact structures.

Let X be an oriented compact manifold of dimension 2 m 4- 1
with a non-degenerate exact 2-form da. Following [W], we will
say that (X , da) is of contact type if there is a contact form a9

on X with da9 == da. In this section we give a necessary and suffi-
cient condition for (X,da) to be of contact type.
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It is of considerable interest to know when (X , da) is of contact
type. In [W] Weinstein considers the following situation. Suppose that
X is embedded as a hypersurface in some (2 m + 2)-dimensional sym-
plectic manifold (P , Sl). Then the 2-form ^2 | X is non-degenerate
on X and so, as in § 4, gives rise to a flow (which is called the
Hamiltonian flow) on X. If f t |X is exact, we have a pair (X, da)
as above. Weinstein conjectures that if (X, da) is of contact type
and if H1 (X ; R) == 0 then this flow has a closed orbit. He presents
certain evidence for this, though the general question seems very
hard. (See [V].) The question of when (X, da) is of contact type also
arises when one is trying to construct contact structures. For, the formal
data for a transversally oriented contact structure is a homotopy class
of reductions of the structural group of TX to U(w), or, equiva-
lently, a homotopy class of non-degenerate 2-forms on X. Theorem
2.5 shows that such a homotopy class always contains exact 2-forms
da. Thus the formal data always gives rise to pairs (X,r fa) , and
one would like to know which, if any, are of contact type.

We will formulate the condition for (X, da) to be of contact
type in terms of Sullivan's theory of cone structures [S]. (Sullivan
discusses the relevence of cone structures to symplectic forms, but
does not treat the contact case). Throughout, we will assume that X
and a are as above. Further, we will choose once and for all a non-
vanishing vector field { in ker a. (Our criterion will not depend on
this choice). It is easy to see that a 1-form a' = a 4- (closed) is a
contact form on X if and only if the function a^ (^) never vanishes.
Our main result says roughly that such a form a' will exist if and

only if certain integrals a do not vanish, where b runs over the
"b

set of all "structural boundaries" associated to ^. In particular, any
closed null-homologous orbit of ^ is such a boundary.

We will begin by recalling some notation and definitions from
[S]. Let ( i ) p be the space of p-currents on X, topologized as the
dual of the space S)p of C°° ^-forms on X. The boundary

3 • CD' ——> WP P - I
is dual to the exterior derivative. Its range <Bp_ i is closed, and is
a direct summand in < 0 p _ i . Further, the dual (D'p of (Dp equals
(3) . These facts imply:
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LEMMA 5.1. - (\)A p-form fS is closed if and only if its kernel
H^= {ce®; : < c , ^ > = 0 }

contains the subspace (K of boundaries
(ii) c e ®p ^ a boundary if and only if (c ,k) = 0 /c^- a// cto^rf

p-forms k.

The vector field ^ on X determines a co^6? (° C (D^ of struc-
ture currents as follows: (° is the closed convex cone in (D[ which
is generated by the Dirac currents 5(^) along S([S]L4) . Here
< 5 (^), J S ) = ̂  (^). It follows that elements of 6 have the form

P ^ f IS(v)dfx

for ^G (DI , where jn is a positive Borel measure on X and v = X^
is a continuous vector field such that the function X is > 0 ([S] 1.8).
Note that (° depends only on the direction of $ and hence only
on the form da and the given orientation of X. Because X is
compact, e is compactly supported ([S] 1.5). Indeed, the closure
e of the set {I: \ 5 (^.) : X, > 0 , 2 X, = 1} is compact and convex,
and is a base for 6 . The cone of structural boundaries is the inter-
section of e with the subspace of boundaries in (D [ . ' Observe that
the cone <° always contains some non-zero boundaries. For, other-
wise, [S] 11.27 implies that there would be a closed manifold T of
codimension 1 which is everywhere transverse to ^. Then da would
restrict to a symplectic form on T, which is impossible since da
is exact.

Here is our main result.

THEOREM 5.2. - (X , da) has contact type if and only if
< 6 , a > ^ = 0

for every non-zero structural boundary b in Q.

Proof. - ( ==>) Suppose that a' = a + ^ is a contact form
with K closed. Then a1 (S) never vanishes, so that ( c ^ a ^ ^ O for
all non-zero c ̂  (° . But ib , K.} ̂  0 for all boundaries 6, by Lemma
5.1. (i). Therefore ( b , a) = ( b , a ' ) ^ 0 for all non-zero boundaries
fee e.
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(^==) Let H^ be the hyperplane [a e (D[ : (a , a> = 0} ,
and let G be the compact convex base of (3 defined above. Our
hypothesis implies that the compact convex set <° H H^ does not
meet the closed subspace (K^ of boundaries. Therefore, by the
Hahn-Banach theorem, there is a hyperplane H in (0\ which
contains d?i and is disjoint from 6 Fi H^ . Thus

(H n H^) n e = 0.
Let K ' be a 1-form with kernel H. Because <B^ C H, Lemma 5.1 (i)
implies that K f is closed. Now consider the quotient (D ^ /H 0 H^ .
This is a 2-dimensional vector space V whose points are separated
by the functionals a and K ' . 'Moreover the image of <° in V is
a compact convex set which does not meet {0} because
H H H^ H <° = 0. Therefore, there is some linear combination,
X^a 4- \^K' say, of a and K ' which is always positive on <° .
Since G is compact, we may assume that X^ i=- 0. Then, setting

K =-^- K 9 , we see that < c, a + K ) ^= 0 for all c ^ (° . Hence
x!

(a -h K) ({) ^ 0, and so (a + K) A (da)171 ^ 0 as required.
D

Note 5.3. — I n [W] Lemma 4, Weinstein proves that if (X,da)
has contact type and if H 1 ( X ; R ) = = 0 , then there cannot be
recurrent orbits 0 , Q ' of S such that c^(^) is positive for all
x € © and negative for all x ^ © r . This result (without the
hypothesis of recurrence) follows from Theorem 5.2. For, by
[S] 11.8, the closure of every orbit ® of ^ supports at least one
non-zero structural cycle c^ . Because H^XiR) = 0, this cycle is
a boundary. Clearly, if c^(^) is positive on © , then (c^ , a > > 0.
Therefore if c^(Sx) ls positive on © and negative on ©' , there
is some convex linear combination of CQ and c^ , on which a
vanishes.

6. The classifying space for transversally symplectic foliations.

Let a^ be the canonical symplectic form

dx^ AdX2 + ... +^2m-l ^d^lm

on R2'" , and denote by F^ the groupoid of germs of symplectic
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diffeomorphisms of (R 2 ^,^) . Then the space B F^" classifies
foliations with transverse symplectic structure. (See § 4 above, and
[H2].) The differential F^ —> S p ( 2 m , R ) , which takes the
germ g at x to its derivative dg^ , is a homomorphism of groupoids,
and so induces a map v : BF^" ——> BSp (2m, R) ^ BU (m). There
is also a map e: B F ^ " — ^ K ( R \ 2 ) which classifies the
cohomology class of the "universal symplectic form" on BF2"" .
(Here R6 denotes the additive group of reals with the discrete
topology.) In other words, if (S,r ) is a foliation on Y with
transverse symplectic structure r , and if / :Y—> Br2^ is its
classifying map, then (e o /) * (e) = [r] E H2 (Y ; R ) s p where
^EH^K^R6 ,2) ;R) is the fundamental class. Similarly, the map
v o / classifies the normal bundle of S .

Let BFJp" denote the homotopy fiber of the product map

v x e: BF^ —> BU(m) x K(R\2 ) .

Haefliger showed in [H2] 11.6 that BF^" is (1m - D-connected.
In this section we prove :

THEOREM 6.1. - ̂ (BF^) = 0.

Proof - We adapt the proof of [H3] Theorem 3 (b). An element
of 7r^(Br^) may be represented by a F2^-structure (5o ^o)
on S2^ , where TQ is exact, together with a trivialization T^ of
its normal bundle as a Sp (2m, R)- bundle. (For short, we will call
such^a trivialization a framing of ©o,To).) This element of
^im (Br^ wm be zero if and only if both the restructure and
its framing extend over D2^1 . By [H2]II.3, we may suppose that
(^o^o^ ls a transversally symplectic foliation defined in a
neighbourhood V of S2^ in R2m+l. The framing T^ of v(Z^
then defines a bundle epimorphism 0^ which covers the constant

0n
TV ———^ TR^

y———»- R2m
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map V —> p t . and is such that 0o * ((^) = ro ' ^V ?2] 11.2,
0o is homotopic through bundle epimorphisms 0^ to an epimorphism
0^ which is the derivative dg of a smooth map g : V —> R2'" .
Thus g is a submersion.

Let ( S ^ , r ^ , T ^ be the transversally symplectic framed
foliation which is defined near the sphere {x e R2"" + 1 : \\x || = 1/2}
by the single projection x '—> g ( 2 x ) . Since g extends to a map
of the disc {\\x\\ < 1/2} into ^2m , this foliation extends to a
framed restructure over this disc. Therefore, it remains to show
that there is a transversally symplectic framed foliation on the annulus
A = {x : 1/2 <\\x || < 1} which extends the foliation given
near 3 A.

It is easy to see that there is a non-degenerate 2-form ^ on
a neighbourhood W of A which equals r^ if | | jc | |<l /2 and
TQ if | | j c | |> l , and is given on the sphere \\x || = X , 1/2 < X < 1 ,
by the form 0^*(^) |S 2 W , where t = r (X) . The "normal bundle"
TW/kerjLio of ^ has a canonical Sp (2 w, Restructure coming
from fJiQ. Moreover, the framing which is already defined near 3 A
extends to a framing T' of the whole normal bundle. Indeed, on
the sphere | | x | | = X , T ' will project via (0^ to the standard
framing on TR2'" .

Since [rj = [rj = 0 , we may use Theorem 2.5 to homotop
the non-degenerate 2-form ju^ to a non-degenerate closed 2-form
^AI on W which equals ^ near 3A. Further, it is not hard to check
that the homotopy ^ lifts to a family of framings T^ of the normal
bundle of JL^, such that T'o = T' and T^ = T' near 3A. (Compare
the proof of Lemma 4.3.) Hence the pair ( j n ^ . T ^ ) defines a
transversally symplectic framed foliation 5 on A which extends
the foliations So'^i given near 3A. The result follows.

Note 6.2. — A similar result for foliations with transverse volume
form may be found in [MD1] Lemma 1. The proof there is not quite
correct since it was not shown that the given framing of S^ extends
over the disc. However, this gap may be filled in by arguments similar
to those above.

The next result was pointed out to me by Steven Hurder. Here,
R6 denotes R with the discrete topology.
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PROPOSITION 6.3. - TT^ + i (BFJp") surjects onto R6 .

Pwo/: - Let BF2^ denote the homotopy fiber of the map
€ : BF^ —> K (R 6 , 2). Thus BF^ classifies transversally exact
symplectic foliations, and there is a fibration

Ir^ —^ BF^—^ BU(m).

Observe that if (S,r) is a transversally symplectic foliation of
codimension 2m on a manifold Y , then the form r^"^ vanishes
identically because r is locally pulled back from R2^" . Moreover,
if r is exact, it is easy to check that the cohomology class of the
(2m + l)-form j3 A r^ does not depend on the choice of j8
satisfying dft = r. ^Applying this to the universal restructures
over BT2^ and BI^, one gets classes a^H^BI^R) and
f lEH^BF^R) such that / * ^ = a .

It is easy to see that a induces a surjection A from
^im +1 (^Jp") to ^6 • F011 example, given a contact form a on
S^^ and X E R , let x^ be the element of ^^(BP^) which
is represented by the classifying map of the transversally symplectic
1-dimensional foliation defined by the 2-form \da. If 96 denotes
the Hurewicz map, then

a (3€ (x^)) ̂ \m+l d0€ (x^)) ̂  0,

which implies that A is surjective. The result now follows easily,
since v^ (x^ ~ Xi) = 0 for all X .

A similar result for the groupoid F^ of germs of volume-
preserving diffeomorphisms is discussed in [MD3]. One can also
calculate ^+i (Br^) : see [MD2].

Note 6.4. - Let a^ be the standard contact form
dx^ ^x,dx^ + . . . + x ^ _ i dx^

on R2m+l , and let ^^m+l denote the groupoid of germs of
diffeomorphisms of R 2^^ 1 which preserve c^,. (These are sometimes
called strict contact diffeomorphisms.) The projection of R 2 ^ + 1

onto R2'" along the coordinate XQ induces a surjection of
groupoids F^ +1 —> F2^ whose kernel is the discrete group R6 .
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As Haefliger observed, this implies that Br^"^ ^BF2 '". Thus,
if BF^ -^ is the homotopy fiber of the map Br2^ +1 ——> BU (m)
we have Br^^^Br^1 . We wiU see in (7.4) below that convex
integration allows us to calculate ^ m + i (Sr2^^), where P2^^
is the groupoid of germs of contact diffeomorphisms of R 2 W + 1 .
Therefore, one might hope that the same method would work for
^im+i (B^^m+l). However, this is not the case, since there is no
analogue of Proposition 7.1. Indeed, the best way to calculate
^.(Br2^4'1) appears to be to exploit its relationship with BF2^ ,
rather than the other way round.

7. The contact case.

Recall that a 1-form a on a manifold of dimension 2m + 2
is said to be non-degenerate if a ^(da^ =5^0. We saw in example
2.6 that the method of convex integration allows the construction
of such forms from suitable formal data. The first result of § 7 is that
non-degenerate 1-forms correspond to 1-dimensional foliations with
(transversely oriented) contact structure. After establishing this, we
will briefly discuss the contact analogues of Theorems 4.2 and 6.1.
For simplicity, we will consider only transversally oriented contact
structures. Such a structure is given by an equivalence class of non-
degenerate 1-forms on an odd-dimensional manifold, where a and
a' are called equivalent if a = \a' for some positive function X.

DEFINITION 7.1. — A foliation 8 of codimension 2m +1 on
a manifold Y^'1 '2 '^4 '1 is said to have transverse contact structure
if there is a transversely oriented field 3€ of hyperplanes on Y
which contains the tangent planes to 8 and restricts to a contact
structure on any (2m + 1 )-dimensional manifold which is transverse
to 8 . Further, 96 must be invariant under any flow along the
leaves of 8.

It follows from Darboux's theorem that near every point one
can choose local coordinates (y , x) = ( y ^ , . . . , . ) , , , XQ , . . . , x^ )
so that the foliation is given by x = const. and ?e is the kernel of
the 1-form a^ = dx^ + x^ dx^ + . . . 4- x^^ _^ dx^^ . As in Defini-
tion 4.1, this implies that the transition functions of 8 may be assumed
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to be local contact diffeomorphisms of R2'"-1-1 . Observe, also, that
because 9€ is transversally oriented there is a global 1-form a on Y
such that 9€= ker a. Clearly, a is determined up to multiplication
by a positive function.

PROPOSITION 7.2. - There is a 1-1 correspondence between
equivalence classes of non-degenerate 1-forms on Y2^'4'2 and
1-dimensional foliations S with transverse contact structure.

Proof. — We must show that if a is non-degenerate, the hyper-
plane field 9€ = ker a is a transverse contact structure for a unique
1-dimensional foliation S . Let Sl be a volume form on Y, and
define the vector field ^ by $ JS2 = OA^O)"" . Then ^0, and
so it defines a foliation 8 on Y. We will show that the field

S€ = ker a
is a transverse contact structure for S . Observe that

O^-KS-I^^J^A^a)^ -ma^(^Jda) ^(da)m-l .

Multiplying this equation by a, we see that ^ Ja==0. Thus T S C96.
It remains to check that 9€ is invariant under any flow along S .
This will follow if ^^a= pa for some function p. (To see this,
note that, if ^ J / = p where ^a=pa , then J?^ (^a) = 0,
which implies that the field 9€ = ker^'-^a) is invariant under X^).

We claim that ^a = pa, where p is defined by the equation
(daF +1 = (m + 1) p S I . This is proved as follows. Since ^Aa = 0,
we have ^a=^Jda . Also,

(m+ naJd^A^ar^J^ar^ =^J(m+ 1)?^

=-(m+ l)paA(rfar.

If (da)'^1 ^=0 near ^, one may use Darboux's theorem for the
symplectic form da to conclude that ^ J d a = = p a near y . Thus
the equation holds on the support of (da)m+l. On the other hand,
if (da/" +1 = 0 near y , then one may choose coordinates

(^o- • • ^ 2 m - n )
near ^ so that a = dy^ +^ d^ + . . . + Y^m-i^im- (See [C]
Ch III.47). Then { J^2 is a multiple of dy^ A . . . f\dy^^ , so that
^ is a multiple of 9/9.)^+i* Hence ^ J d a = 0 = p a near y , as
required.
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It remains to show that there is at most one foliation S with
a given transverse contact stmcture 9€ . So let us suppose that
^ is a vector field tangent to 8 , and that 9C == ker a is a transverse
contact structure for 8 . Then ^ J a = 0 . Also, because S^€ is
invariant, we can express ^ locally as ker \a where
^(Xa) = ^J r f (Xa) = 0. It follows that ^ J d a = - ^ ( X ) a ,
and hence that ^ J(a A (rfoT) = 0. Since a A (doT ^ 0, this
implies that a A (da^ == ^J?2 for some volume form ^2 on Y.
Hence the direction of S is determined by a, and S is unique.

One can now repeat the discussion of § 3,4, making the
obvious changes. Thus we say that two transversally oriented contact
structures 3€ o and ^ are:

(i) Isotopic iff there is an isotopy g^ with g^ = id. and
g^ 9€,= 9€, ;

(ii) Homo topic iff they may be joined by a smooth family
of contact structures ;

(iii) Formally equivalent iff they define homotopic reductions
of the structural group of TX to U (m) ;

(iv) Concordant iff there is a 1-dimensional foliation S on
X x I with transverse contact structure which restricts to 3H ^ on
the end X x ;; and

(v) Strongly concordant iff they are concordant and if in
addition, S is homotopic rel X x 31 to the foliation with leaves
pt x I .

The relations between these concepts are just the same as in
the symplectic case. Note that there are no isotopy invariants for
open contact manifolds corresponding to the volume of ends. On
the other hand, Bennequin's examples show that formal equivalence
does not imply isotopy for either open or closed manifolds(*).

(*) Other possible equivalence relations on contact manifolds are
discussed in [To]. This paper should be read with a certain amount of caution
since it contains several mistakes. The author confuses the groupoid F^+1

defined in Note 6.4 above with the groupoid of germs of contact diffeomorphisms
^w+l • Theorems 6 and 7 are wrong. Also Theorem 2 is unproven with his
(rather than Haefliger's) definition of integrable homotopy.
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PROPOSITION 7.3. — Two contact structures are formally
equivalent if and only if they are strongly concordant.

Proof. - One first shows that 3€o = ker o^ is formally
equivalent to 96^ ==kerc^ if and only if there are 1-forms
c^, 0 < t < 1, and 2-forms j3^ 0 < t < 1, with c^ A (ft^ ^ 0
and such that j3, = dc^, z = 0,1. Then one argues as in the proof
of Theorem 4.2, using example 2.6 instead of example 2.2.

D

Finally consider the groupoid T2^1 + 1 of germs of contact
diffeomorphisms of R 2 '"+ 1 . These diffeomorphisms preserve the
standard contact form a^ up to multiplication by a non-vanishing
function which could be negative. Therefore BF^+ x classifies
foliations with a transverse contact structure which need not be
transversally oriented. Thus, there is a map

.-.^m+l ——BC^,.

where C^-n is the subgroup of 0(2m + 1) which is generated by
U(m) ^ 1 together with the element (conjugation) ^ — 1 . Let
gp^w +1 ^ ̂  homotopy fiber of v . It follows as in the symplectic
case (see [9] 11.6) that BF^'^1 is 2m-connected. Wecan now go
one step further.

PROPOSITION 7.4. - TT^ + ^ (BF^ +1) == 0 .

Proof. — This is entirely analogous to the proof of Theorem 6.1
and will be left to the reader.
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