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Introduction.

Let K =^ R or C. Let X and Y denote analytic spaces over
K , and let 0 : X —> Y be a morphism. Let 0*: 0^ —> 0^
denote the associated homomorphism of the structure sheaves. Suppose
that ^ and ^ are coherent (P^- and (P ̂ -mod\x\es, respectively,
and that ^ : ^ —> ^ is a module homomorphism over the ring
homomorphism 0*.

Let a CE X. Then 0* determines a homomorphism of local
rings 0^ : ^Y,0(<o —> °x,a and ^ determines a module
homomorphism ^ : ^^ —> ^ over 0^. We write
^a =, ^ x , a ' etc^ when there is no possibility of confusion. Let
^: ^000 —" ^a and ^: ^0(0) —> ^a denote the induced
homomorphisms of the completions.

Let s CE N . Let X^ denote the 5'-fold fiber product

X^ = {a = (01 , . . . , ^ )EX 5 : 0(a1) = . . . = 0(^)},

and let V : X^ —^ Y denote the induced morphism.
We study the variation with respect to a = (a1, . . . , a5) ̂  Xs

of the module of formal relations

^ = r^l Ker^ ,,fl /= i

and of associated invariants such as the Hilbert-Samuel function
H, of ^/^:

H^W = dimK ——. ^ -——
^+"^^ • ^(P(.)

(where m^p^ denotes the maximal ideal of ^(^).
We show (cf. Theorem C) that the Hilbert-Samuel function Hg

is upper semicontinuous in the (analytic) Zariski topology of Xs

in each of the following cases:
(a) In the algebraic category. (Here we can use the (algebraic)

Zariski topology.)

Key-words: Morphism of analytic spaces - Module of formal relations -
Hilbert-Samuel function — Diagram of initial exponents — Zariski semicontinuity -
Division and composition of <^00 functions.
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(b) If X is smooth, ^ = 0*; 0^ —> ^ , and 0 is
r^far in the sense of Gabrielov [14]; i.e., the Krull dimension of
^)/Ker 0^ is locally constant on X.

(c) If X is Cohen-Macauley and 0 is locally finite ; i.e., for
all a e X, ^ is a finite ^)-module via the homomorphism
0*^a '

(d) In the coherent case : X = Y, 0 = identity.

Semicontinuity in the coherent case (d) is, of course, known
classically. The image of a morphism 0: X —> Y is not, in general
coherent. Nor, in general, is the Hilbert-Samuel function of
^0(a) /^*0(a) , where ^ = n Ker ^, semicontinuous as

fl£0-i(6)
a function of a e X. Nevertheless, we conjecture that the Hilbert-
Samuel function H^ is always Zariski semicontinuous as a function
of a G X^.

We prove that, in general, Zariski semicontinuity of H is
equivalent to two other important conditions on the variation of the
module of formal relations ̂  (Theorem A):

(1) A uniform version of a lemma of Chevalley [10]. In the
coherent case, this is equivalent to a uniform version of the Artin-Rees
theorem.

(2) Zariski semicontinuity of a diagram of "initial exponents"
associated to ^ , introduced by Hironaka (cf. [8], [15], [23]). This
diagram gives a combinatorial picture of the module ^ , in the spirit
of the classical Newton diagram of a formal power series.

The diagram of initial exponents and the condition (2) depend
on a local embedding of Y in affine space K" and on a presentation
0^ —> ^ —> 0 of ^ . We can assume that ^ is a submodule
of K [MP , where K [[y]] denotes the ring of formal power series
in V = (^i , . . . , ̂ ). Using the condition (2), we prove that X^
admits an analytic stratification with the property that, along each
stratum, ^ is generated by finitely many ^-tuples of formal power
series in y whose coefficients are functions analytic on the stratum
and meromorphic through its frontier (cf. Theorem B). We conclude
that H^ is Zariski semicontinuous on Xs , for a given positive integer
s , if and only if it is Zariski semicontinuous in the case s = 1 .

Our results on the variation of ^ have important applications
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to the solution of equations involving differentiable functions. Suppose
that X and Y are smooth real analytic spaces. Then 0 induces a
homomorphism 0* : <^00 (Y) —> ̂  (X) between the rings of
infinitely differentiable functions. Let A and B denote p x q and
p x r matrices, respectively, whose entries are analytic functions
on X. Let $ : ^(Y)^ —> <€'\Xf denote the module
homomorphism over 0* defined by $(g) (x) = A (x) • g (0 (x)),
where g = ( g ^ , . . . , ̂ ) G ^(Y)^ , and let

B . : ̂ (X/ —> ^(Xy
denote the ^eo (X)-homomorphism induced by multiplication by
the matrix B.

There is also an induced homomorphism $: 0\ —> (P^ over
0* : ^Y —^ ^x » anc^ an induced 0 x-homomorphism

B: ^-^ ^.
Let ^: ̂  —> Coker B denote the homomorphism over 0*
induced by ^. (Locally, any 0*-homomorphism from (9\ to a
coherent 0^ -module has this form.)

For every a € X, there is a Taylor series homomorphism
f ̂  f\ from ^(X)^ onto ^ . Let

(<& ^(Y)9 + B . ̂ (X/y
denote the elements of ^(X^ which formally belong to
$ ^(Y)^ + B • ^'(X/ ; i.e., { /G <^-(X)^ : for all b E 0 (X) ,
there exists G^ G ^ such that ^ - ̂  (G^,) E Im B^ , for aU
aG0- l (6)} . Then (<D ^^Y)^ + B . ^(X/T contains the
closure of d> ^(Y)^ + B . ̂ (X/ in the ^°° topology on
^(X)^ .

Suppose that 0 is proper. We prove that if the Hilbert-Samuel
function H^ of ^^(a)/Ker ̂  is Zariski semicontinuous on X ,
then

$ ^°° (Y)^ + B • ^(Xy = ($ ^^(Y^ + B . ^(X/T (*)

(Theorem D). Because 0 is proper, then (locally in Y) there is a
bound s on the number of distinct submodules Ker ̂  of
Q^, where a^"1^). The conditions (1) and (2) above are

applied with this s to prove (*).
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It follows from (a) above that (*) holds if 0 : X —> Y is
a proper morphism of Nash manifolds and A and B are matrices
of Nash functions on X (Theorem E). This seems to be the first
general result for modules over a ring of composite differentiable
functions.

From (a)-(d), we also recover several classical results, including
Malgrange's theorem on ideals generated by analytic functions [27,
Ch. VI] and his <^00 version of the Weierstrass division theorem [27,
Ch. V]. The solution [5] of the composition problem of Glaeser [16]
follows from (b).

This article was distributed in preprint form in the spring of
1984. Some of our results were announced in [6]. We gratefully
acknowledge valuable discussions we have had with Herwig Hauser
and Gerald W. Schwarz.

CHAPTER 0
MAIN THEOREMS, PROBLEMS, EXAMPLES

We continue to use the notation of the introduction. Let N
denote the nonnegative integers.

1. Preliminaries on local analytic invariants.

Letf l ex^, f l =(a1 , . . . ,a5), and let G E ^ /^. The following
lemma of Chevalley [10, § II, Lemma 7](cf. Lemma 8.2.2) estimates
the order of vanishing of G in terms of the order of vanishing of
^ , ( G ) , f = 1 , . . . , 5 .

a 1

LEMMA 1.1. - Let aex^, a = (a1 , . . . ,a5) . For each A; O N ,
there exists C G N such that if G ̂ ^^a) and ^ . (OEm 6- 1- 1 •i5' .,

a' a a'
z = l , . . . , ^ then GE^+m^.^^.
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DEFINITION 1.2.- Let aeX5^. For each A :eN, let K ( k , a )
denote the smallest £ G N satisfying the conclusion of Lemma 1.1.

Let N^ denote the set of functions from N to itself. N'^1

is partially ordered as follows: Let H, H 'EN '^ 1 . Then H < H ' if
H ( f c ) < H ' ( A ; ) for all k, and H ( A ; ) < H ' ( f e ) for some k.

As in the introduction, H^ E N*^ denotes the Hilbert-Samuel
function of ^<p(a)/^t .

1.3. Locally, we can assume that Y is a closed analytic subspace
of an open subspace V of K'1 , and that ^ is a quotient of 0^
restricted to Y. Let 0 ' : X —> V denote the composition of
0 with the inclusion Y c—> V, and let ^': (P^ ——> y be
the module homomorphism over 0' induced by ^. Clearly, if
a G X^ , then the Hilbert-Samuel functions H^ as well as the Chevalley
estimates C ( ^ , a ) associated to ^ and to ^'coincide. In order to
study the local variation of these invariants, we can, therefore, assume
that Y is an open subspace of K" and that ^ is a free (Py-modu\Q.

1.4. Hironaka 's diagram of initial exponents.
The notation of this subsection will be used throughout the

article .Le t K [ [y ] ] = K [ [y i , . . . , ̂  ] ] denote the ring of formal
power series in n variables. Let R be a submodule of K^]]^ .
Following Hironaka [8], [15], [23], we associate to R a subset ^(R)
of N" x { 1 , . . . , ^ } .

If j3=(^ , . . . , ^ ) G l \ r , put 1 ^ 1 = ^ + . . . 4 - ̂ . We order
the (^2+2)- tuples (^ , . . . , ^ , / , |(3|), where

(^/)GISr x { 1 , . . . , ^ } ,
lexicographically from the right. This induces a total ordering of
N" x { 1 , . . . , ^ } .

Let G G K [ [ v ] ] ^ G = ( G ^ , . . . , G ^ ) . Write G^.= ^ g^.y^
jSeN"

/ = 1 , . . . , q, where g^ ^ E K and y ^ denotes y ^ 1 . . . y^ . We
also let v^7 denote the ^-tuple (0 , . . . . y ^ , . . . . 0) with* 3^ in
the / ' th place, so that G = ^ g. .> / ^ / . Let

^/
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supp G = { ( j 3 , / ) E l \ r x { 1 , . . . ,^}:^ ,^0}

and let v(G) denote the smallest element of suppG. Let in g
denote ^(G)^^.

We define the diagram of initial exponents 92 (R) as
M G ) : G E R } . Clearly, ^(R) + 1ST = yi(R), where addition
is defined by

(?, /) + 7 = (j3 + 7, 7) , (^ /) £ IM" x { 1 , . . . ,q } , 7 e 1ST .

Put ^ (^^)= { ^ C I S T x { 1 , . . . , ^ } : ^+ IM\=92} . Let
y i ^ Q f ( n , q ) . Then there is a smallest finite subset 33 of 92 such
that 91 = SB + N" . We call S8 the ^fcw of ^.

The set 2 (n ,q) is totally ordered as follows: Let 9l1 , 922

E^(^). For each ; = 1 , 2 , let (^,/^), k = 1 , . . . , r,, denote
the vertices of 92 * indexed in ascending order. After perhaps inter-
changing 921 and 922 , there exists r G N such that (^ ,/^) = (^ ,/2),
^ = l , . . . , r , and either (1) ^ = r = ^ , (2) ̂  > r = ^ , or (3)
^ i , ^ >r and (^^/^iX^2 , .^/2^). Incase( l ) , ^1 = 922 .
In case (2) or (3), we say that 9l1 < 922 .

Clearly, if yi1 D 922 , then 921 < 922 .

Assume that Y is an open subspace of K" and that ^ = ^<7.
If b G Y^ then ^ identifies with the ring of formal power series
K [ [ j / ] ] in the affine coordinates y = (y^ ,. . . , y ) of K" Let
o ^ X ^ . We put

^=^(^).

2. Semicontinuity: Theorems A, B, C.

Let S be a partially ordered set and let Z be an analytic space.

DEFINITION 2.1. - A function ^ : Z —> 2 is (analytic)
Zariski (upper-) semicontinuous if, for every a E Z and every
irreducible germ of an analytic subset V of Z at a, there exists
a germ of a proper analytic subset W of V such that
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(1)^(x)=^(y) if j c , ^ E V - W ;

(2)J^(x)<^(y) if j c E V - W . ^ G W .

W6? ̂  rt^ same notation for a germ at a point and a representative
of the germ in a suitable neighborhood.)

Remark 2.2. - If ^ : Z —> 2 is Zariski semicontinuous,
then, for all a G S , {x G Z : ̂ f(x) > a} is a closed analytic subset
of Z. The converse is trueprovided that 2 is totally ordered.

By Zariski semicontinuity of the Hilbert-Samuel function H^
(respectively, of H^ ( k ) for fixed A;, or of the diagram of initial
exponents 9^), we understand Zariski semicontinuity of the
corresponding function on Xs with values in N^ (respectively,
in N, or in Qi (n, q)).

We conjecture that H^ is always Zariski semicontinuous on Xs
0'

Remark 2.3. — For each ^ E Y , let ^ = n Ker ̂
ae^-1^)

Suppose that K = C and 0 is proper. Then the direct image 0 ^
is a coherent sheaf of ^Y-1110^!^ [17], and ^ induces *an
0 Y -homomorphism ^: ^ —^ 0^ ^-. If Z?EY, then Ker ̂
= H Ker ^^ . It follows from a theorem of Siu [35

ae0-l(&)

Thm. 2] that ^==(Ker^) . Hence the Hilbert-Samuel
function of ^/^^ is Zariski semicontinuous on Y.

On the other hand, if K = R and 0 is finite, the Hilbert-Samuel
function of ^ ^ ( a ) l ^ ^ ( a ) need not be ^riski semicontinuous
even as a function of a^X. For example, take X = R 2 , Y = R 3

and define 0 by 0(x^ , ̂ ) = (x^ x^ (;c3 + x ^ x ^ ) . x3 + x , x ^ ) .
Let ^ = 0 * : ^ Y ——> o^. Then the Hilbert-Samuel function
of ^0(a)/^*0(a) is c°"stant on the half-lines {j^ = 0 , jCi > 0}
and [x^ = 0 , x ^ <0} but has different values on the two half-
lines.

If 0 is not proper, the Hilbert-Samuel function of ^^)/^
need not even be topologically semicontinuous. For example, with
K = R or C, define 0 : K - {0} —> K2 by

0(0 = (cosr, sin t -4- sin (1/r)) and take ^ = 0*.
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THEOREM A. — Let X and Y denote analytic spaces over K,
and let 0 : X —^ Y be a morphism. Suppose that ^ and ^
are coherent (P^~ and (P^-modules, respectively, and that
^/ ; ^ —^ ^ ^ ^ homomorphism over the ring homomorphism
0* : ^y ——> ^x • ^et s G ^' Then the following conditions are
equivalent:

(1) The Hilbert-Samuel function Hg is Zariski semicontinuous
on Xs

0

(2)H^(A:) is Zariski semicontinuous on Xs for each fixed
A : G N .

(3) Uniform Chevalley estimate. Let K be a compact subset
of Xs Then, for every k € N, there exists C = C ( k , K) G N such
that f t ( k , a ) < K for all a G K .

Assume, moreover, that Y is an open subspace of K'1 and
that ^ = 0^. Then each of the conditions above is equivalent to:

(4) The diagram of initial exponents yig is Zariski semi-
continuous on Xs .

0

2.4. Special generators.
Although the modules ^ are not, in general, the completions

of stalks of a coherent sheaf, we can deduce from the semicontinuity
of 9^ a precise description of the variation of ^ with respect to
a, which replaces Oka's theorem in the coherent case.

Let R be a submodule of K [ [ ^ ] p , where y = ( y ^ , . . . , ̂ ),
as in 1.4. Let ((^., /^), / = 1 , . . . , t, denote the vertices of 9^ (R).
By the formal division algorithm of Grauert [18] and Hironaka [1]
(cf. Theorem 6.2), for each i = 1 , . . . , r , there is a uniquely
determined element G ^ ' G R such that in G1 = y ^ 1 ' 1 1 and
supp G < n ^ (R) = {(/3, . / , )}. Then G1 , . . . , G t generate R (cf.
Corollary 6.8). Following Hironaka, we call this canonical choice
of generators the standard basis of R.

THEOREM B. - Let X , Y , 0, ^, ^ and ^ be as in Theorem A.
Assume -that Y is an open subspace of K " , ^ == ^q and
yiy = yi (^) is Zariski semicontinuous on Xs Let OQ E Xs Then
there is a neighborhood U of OQ in Xs and a filtration of U by
closed analytic subsets,
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U = X , D X , D . . . D X , ^ = 0 . ,

such that, for each \ = 0 , . . . , ̂ :
(1) ̂  is constant on X^ — X^ ̂  .
(2) Let G^, f = 1 " , . . . , t, denote the standard basis of

^ a c ^ [ [ y } } q . where aeX^-X^^,. Write
G^(y)=Zg^.(a)y^.

Then each g^j is a meromorphic function on X^ with poles in
^\+i •

Remark 2.5. - Although the coefficients of the elements of the
standard bases are meromorphic on each X^ in Theorem B, the
elements of the standard bases themselves need not be meromorphic,
even in the coherent case. For example, let J C 0 ^ be the sheaf
of principal ideals generated by ^ -^2^3 . Then, for each
a = (fli , a^ , ^3) G K3 such that a\ - a^ a\ == 0 and a^ ^ 0,
^a == ^ , 0 , 0) 4- N3 . The standard basis of J\ has one element
G^(x)=a^ +^i -(a^ -^-x^)112 (a^ +^3) , where the square root
is determined by a^ =a^2^. Of course, G^(x) can be rewritten

G.w^,+,,fi-|i^|'» fi+^n
L L ^ J L ^3 J J

so that the coefficients of its power series expansion are rational
functions of a.

Remark 2.6. - Using Theorem B, we prove that the diagram of
initial exponents 9^ is Zariski semicontinuous on Xs , for a given
integer s , if and only if it is Zariski semi-continuous in the case
s = 1 (Proposition 9.6). Nevertheless, in applications of our theorems
on the variation of ^ (e.g., in Theorem D below), the choice of a
suitable s plays a critical part.

2.7. Invariants of Gabrielov [14].
Let 0 : X —> Y be a morphism of analytic spaces. Assume

that X is smooth. Let a € X . Let ^ (a) denote the generic rank
of 0 near a. Put

^ (a)=dim_p^ ^(a)=dim-^-
Ker <^ 3 Ker (j>*
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(where dim denotes the Krull dimension). Then ^ (a) < r^ (a) < r^ (a).
The formal rank ^ (a) is the degree of the Hilbert-Samuel polynomial
of ^(a)/1^1'^ » in particular, if the Hilbert-Samuel function of
^0(a)/Ker0^ is Zariski semi-continuous on X, then so is r^(a).

We say that 0 is regular at a if r ^ ( a ) = ̂ 3 (a). Clearly,
regularity at a is an open condition. We say that 0 is regular if it
is regular at each a EX. For example, if 0 is algebraic, then it is
regular.

Example 2.8 (Grauert-Remmert [19, 11.5.2], Gabrielov [13]). -
Let X be the open unit disk in K 2 . Define 0 : X ——> K3 by
0 0 C i , X 2 ) = ( X i , x ^ X 2 , x ^ 2 e x 2 ) (Osgood).Let a E X O {x^ = 0}.
Then ^ ( a) == 2, but ^ (a) = ̂  (a) = 3. Put

^-^-i i —^^+ 1-
/=! ^=0 ^ r ^-

G (^1^2^3)= 1 / !

/=!

/ 1

y ^ 1 y. - Y — - — — y 1 - 1 ^ 1
1 3 ^ , (z - l ) ! ̂  ^2

Then / converges in X, G is divergent, /=0^(G) but
/^0^K3,o• Define ^ ^ X — ^ K 4 b y ^ ,=0, (x) , / = 1 , 2 , 3 ,
where 0 =(0i ,^2 , 0s), and ^4 =/(x). T h e n ^ - G C ^ , ^ , ; ^ )
generates Ker i^, but K e r ^ = 0 . In particular, for V/ we get
r^ (a) = 2, r^ (a) = 3 and r^ {a) = 4.

Remark 2.9. - Let 0 : X ——^ Y be as in 2.7. Gabrielov [14]
proves that if ^ (a) = ̂  (a), then

(i) r^ (a) = r^ (a) ; i.e., Ker 0^ is generated by Ker 0^ ;
(ii)^ni*(^(,))=0;(^(,)).

In fact, by [4] and [30], (ii) is equivalent to the regularity of 0 at a.
(These results are not used in our theorems; but see Remarks 2.11
and 4.3 below.)

THEOREM C. - Let X, Y, 0, ̂  ^ and ^ be as in Theorem A.
Let s^ N. Then the conditions of Theorem A are satisfied in each
of the following cases:
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( 1 ) Algebraic case. 0 : X —^ Y is a morphism of algebraic
spaces (cf. [3], [24]), ^ and ^ are coherent modules over the
structure sheaves 0^ and €^ of X and Y, respectively, and
^ : ^ —> ^ is a homomorphism over the ring homomorphism
0* : ^Y ———" ^X •

(2) Regular case. X is smooth and 0 is regular, ^ = 0* :
^Y ———' ^X -

(3) Finite case. X is Cohen-Macauley and 0 is locally finite.

(4) Coherent case. X = Y, 0 = identity.

Remark 2.10. — In the coherent case C(4), the uniform
Chevalley estimate A (3) is equivalent to a uniform version of
the Artin-Rees theorem: Let X be an analytic space and let
j^C^" be coherent sheaves of 0^ -modules. Let K be a compact
subset of X. Then there exists X = X ( K ) E N such that, for all
k G N and all a G K, ̂  n m^x - ̂  C m^ . X^ ; cf. [39, Thme.
3.8]. In fact, there exists X = X ( K ) such that, for all A ; G N and
all a E K, ^0 m^ . ̂  = m^ • (^ H m^ . ̂ ) (see Remark
7.6).

Remarks 2.11. — ( l ) I n each case of Theorem C, the analogues
of Gabrielov's results (2.9) hold: Let a G X^, a = (a1 , . . . , 0s).

s s

Let V. : ^^(a\ —^ ^ ^ / denote the composition of ^ ^ ;
'• 'KV"-' . a 1 . a 1

1 = 1 , /= !

with the diagonal injection ^<p(a) —"^ ^ ^ w ( a ) ^ anc^ ^et ^a
/ = i

denote the induced homomorphism of the completions. Then:
(i) Ker H^ is generated by Ker Y^ .

(ii)^^))0^ ^=v.(^p(.))•

In the coherent case, these follow from Krull's theorem. For the
algebraic and finite cases, see Lemma 12 13 and Corollary 12.17,
and Remark 14.12, respectively.

(2) Suppose that (ii) above holds at each f f G X 5 Then the
conclusion of Theorem B can be strengthened as follows: Let
a ^ E X ^ — X ^ ^ ^ and let g1 = G^ , / = 1 , . . . , ^ . Then, for each
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z, g1 is convergent and gm(a\ = ^a ^or a^ o in a suitable neigh-
borhood of ^o i n X ^ - X ^ . ^ (cf. Theorem 9.1).

2.72. Local formulation of Theorems A - C.

The assertions of Theorems A - C are local in Xs . Replacing
our analytic spaces and coherent sheaves by appropriate local models,
we can assume that the module of formal relations ^ is given as
follows:

Let M and N denote analytic manifolds over K, and let
0 : M ——> N be an analytic mapping. Let A (respectively, B)
be a p x q (respectively, p x r) matrix whose entries are analytic
functions on M. If a G M , let A^ (respectively, B^) denote the
matrix of elements of ^ induced by A (respectively, B). If
G=(Gi , . . . ,G^)E^, we write Go^ for (0,*(G,),... ,<(G^)) .

s
If a^M^ a = (a1 , . . . . ,^), put ^ = 0 ^ ^ , where

^ = { G e ^ . , : A . . (Go 0 . ) + B .. H1 =0, for some W G ^r }.
a ' P t - ' / a - a a "

Theorems A - C will be reformulated and proved in this local
context. Our problems, from this point of view, concern the solution
of a system of equations of the form

f(x) = A(x) . g(00c)) + BQc) . h(x) ,

where /= (/i , . . . , /p) is given and g = (g, , . . . , g^ ) and
/ ? = ( / ? , , . . . , / ^ ) are the unknown functions.

3. Geometry of subanalytic sets.

Our conjecture that the Hilbert-Samuel function H^ is always
semicontinuous has the following consequence: Let N be a real
analytic manifold (i.e., a smooth real analytic space) and let E be a
closed subanalytic subset of N. Then the points of E near which
E is not semianalytic form a closed subanalytic subset C of E.
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To prove this, we consider the class of Nash subanalytic subsets
of N ; i.e., the images of proper real analytic mappings 0 : M —> N
such that M is smooth and 0 is regular [5], [71. Every closed semi-
analytic set is Nash. The non-semianalytic (respectively, non-Nash)
points of E, i.e., the points which do not admit neighborhoods in
which E is semianalytic (respectively, Nash) form a closed subset
of E.

Let 0 : M ——^ N be a proper real analytic mapping, where M
is smooth. If r^ (a) = dim(P^fKer(J)^ is Zariski semi-continuous
on M, then 2 = {a e M : ̂  (a) > r^ (a)} is analytic. By 2.9(0,
2 = {a CE M : 0 is not regular at a}. If r^ (a) is constant on M,
then 0(2) is the non-Nash points of 0(M).

If E has pure dimension k, then there exists 0 as above such
that 0(M) = E and ^ (a) = k for all a E M [21](^) ; therefore, the
subset of non-Nash points of E is subanalytic. The same conclusion
follows in general (4).

Put EQ = E. Inductively, let E^.^ denote the complement
in E^ of the smooth points of E^ of the highest dimension. Then
each E^ is subanalytic [36]. Let & E E . We claim that E is semi-
analytic near b if and only if each E^ is Nash near b. Indeed, if
E is semianalytic near b, then so is each E^ [261. Suppose each
E^ is Nash near 6. In a suitable neighborhood of 6, there are
closed analytic sets Z^ such that E^ C Z^ and dim E^ == dim Z^.
Let Sing Z^ denote the singular points of Z^. Then
D^ = E^ — (Z^ , U Sing Z^) is open and closed in
Z ^ — ( Z ^ . ^ U S i n g Z ^ ) . Thus D^ is semi-analytic [26]. If E^+i
is semianalytic at b , then E^ = D^ U E^.^ is too. By induction,
E = EQ is semianalytic near b.

For each X, let C\ denote the non-Nash point of E^ ; C^
is closed and subanalytic. The subset of non-semianalytic points of
E is C = U C\ .

4. Differentiable functions: Theorems D, E.

Suppose that X and Y are smooth real analytic spaces and that
0 : X ——> Y is a morphism. Let A and B be p x q and p x r

(3) For a simple proof, see E. Bierstone and P.D. Milman, Semianalytic
and subanalytic sets (to appear).

(4) This has been proved by W. Pawlucki, Points de Nash des ensembles
sous-analytiques, Mem. Amer. Math. Soc. (to appear).
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matrices, respectively, whose entries are real analytic functions on X.
Let <1> : ^(Y)^ ——> ^00(X)P denote the homomorphism of
modules over 0*: ^'°(Y) —> ^°°(X) defined by

^)Oc)=AOc).^(00c)),

where g G ^(Y^ , and let B . : ̂ (XY ——> ^(X)? denote the
^^(X^homomorphism induced by multiplication by the matrix B.

There is also an induced homomorphism <t> : (P^ ——> (P1-
over 0*: 6^ ——> 0^, and an induced ^-homomorphism
B : 0^ ——> Q^ . Let y = Coker B , ^ = ̂  , and let
^ : ^ —^ ^denote the 0*-homomorphism induced by $. Let
(4> ^(Y)^ + B • ^°° (X)')^ be as in the introduction.

If Z is a closed subset of Y, let J (\ ;Z) denote the ideal
in ^(Y) of functions which vanish on Z together with their
partial derivatives of all orders.

THEOREM D. - Let X , Y , 0 , A , B , $ and ^ be as above.
Suppose that 0 is proper. Let s be a positive integer, and assume any
of the equivalent conditions of Theorem A on ^. Then, if
/E(4)^°°(Y)^ + B . ^(XVF, there exists g^ ^°°(Yy7 and
h G ^(X/ such that

f(x) = A(x) . g(00c)) + B(x) . /z Oc), (4.1)

/or a//^ ^ E X.^ //, moreover, Z /5- a closed subanalytic subset of Y
and / ^ E I m B ^ /or a// ^00-^), r/z^ f<7^ ^ satisfied with
ge^(Y;Z)^ .

Remark 4.2. — According to Remark 2.6, any positive integer
5, e.g., ^ = 1, serves in the hypotheses of Theorem D. Nevertheless,
our proof depends on a suitable choice of s : Let ^ denote the
image of B : (P^ ——> O^. Then ^8 is a coherent 0^ -module.
By Theorem C (4), each point of X admits a coordinate neighborhood
U and a filtration of U by closed analytic subsets,

U = X o D X , D . . . D X ^ = 0,

such that the diagram of initial exponents 9^(^) is constant on
X^ — X^ ^ , X = 0, . . . , t. For U small enough, there is a bound on
the number of connected components E of each

(X^ -x^^r^-1^), be\
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(cf. Corollary 11.6). Moreover, the module of formal relations
Ker ̂  is constant on each such E (Proposition 11.1). (For example,
if B = 0, then Ker ̂  is constant on each connected component
of a fiber 0-1 (&). )

It follows that, if 0 is proper, then (locally in Y) there is a
bound s on the number of distinct submodules Ker ̂  of O q ,
where a ^ ( j ) ~ ^ { b ) . It is with this s that we prove Theorem D.

With s as above, (<P ^(Y)9 + B • <r°(X)T ={/^ ^°°(X)^ :
for all f l E X ^ 1 , o=(a 1 , . . . , f l ^ 1 ) , there exists G^ E ̂
such that / . - 0 , (GJGImB , , ^ = 1 , . . . ,5+1}. 0(a )

a1 a' u a'
As a consequence of Theorems D and C (1), we obtain:

THEOREM E. — Suppose that M and N are Nash manifolds
and that 0 : M —> N is a Nash mapping. Let A and B be p x q
and p x r matrices of Nash functions on M, respectively. Define
^^(N^ —>^QO(M)P by <^)=A. t eo0 ) , where g E ̂ (N)^ ,
anri B.:^°W—^"(M^ ^ multiplication by B. // 0 f5
proper, then

^"(N^ + B • ^(M/ = (^^(N)^ + B-<r°(MyT .

From Theorems D and C(2), we get the composition theorem
of [5], which generalizes earlier results of Glaeser [16], Schwarz [34]
and Tougeron [38]. From C(4) and (3), we recover, respectively,
Malgrange's theorem on ideals generated by analytic functions
[27, Ch. VI] and a result ofMerrien [28].

Remarks 4.3. - We use the notation of the beginning of this
section. Let a ̂  Xs a = (a1 , . . . , 0s).

(1) There is an analogue of Theorem D for germs of <^00 functions
at {a1 , . . . ,^1}, without the hypothesis that 0 is proper. The
conclusion is a (^00 version of 2.11 (1) (ii).

(2) Let ^°° denote the submodule of Ker ̂  generated by
(^00 relations at a ; i.e., ^-tuples g = (^ , . . . ,g^) of germs of
<^00 functions at <p(a) £ Y such that A • (g o 0) vanishes modulo
Im B • as a germ at [a1 , . . . , 0s} . Then

KerV^ C^CKerV^ . (4.4)
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The conclusion of Theorem D implies: Every formal relation (i.e.,
every element of Ker^) is the formal Taylor expansion at <p (a)
of some <^00 relation. In each case of Theorem C, this is also a
consequence of 2.11 (1) (i) and (4.4).

Example 4.5. — The Malgrange preparation theorem. Let P ( r , X)
d

denote the polynomial ^ + ^ \.td~] of degree d in t , with
/ = i

generic coefficients X = (X^ , . . . , X^). Then every (€QO function
f(x , t) = /(Xi , . . . , x^ , t ) can be written

d
/Oc, 0 = P O , X ) . Q O c , r , X ) + ^ R ^ O ^ X ) ^ - 7 ,

/'=!

where Q , R^ , . . . , R^ are ^°° [27, Ch. V]. This follows from
Theorem E, where M = N = R " + c f , 0 : M —> N is the mapping

0 0 ^ , X ^ , . . . , X ^ ) = ( x , X ^ . . . , X ^ , - ^ - ^ \ ^ -^ ) ,
/ = = i

B = 0 and A ( x , r , X ^ , . . . , X ^ _ i ) is the 1 xc? matrix (1 r. . . . r^"1) .
Indeed, by the formal Weierstrass division theorem and an easy
interpolation argument, ^"(M) = ($ ̂ (N)^)'. Therefore, given
f(x , t ) <r°, there exist ^°° functions R, (x , X), / = 1 , . . . , rf,

d d
such that /= ^ r^-7 . (R^ .o0) . Hence /(x, 0- ^ ^-^/x^)

/~'i /^id-1
is divisible by ^ + ^ X, -^ - 7 +X^ = P ( ^ , X).

/ = i

In this example, Zariski semicontinuity of the diagram of initial
exponents 9^ is not difficult to show directly: We can use s = d.
Then M^ can be identified with

0

{ ;c=(x. f i , . . . .^ , \ ^..^^eR"^-1 :

d-' d-1

^ + I x /^ - / ==^+ I x/^- / for each A : , K } .
/= ! / '̂1
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If x = ( x , t ^ , . . . , ^ , \ i , . . . , X ^ _ i ) e M ^ , put
d - l

c(x)=-t^ - ^ ^ftdl~/

/=!

and let m(^) denote the sum of the multiplicities of the distinct
d-1

roots tf of the polynomial p ( z , x ) = z d ^ - ^ \.zd~i-\-c(x)\
/ = i

i.e., m(x) is the degree of the greatest common divisor in R[z]
d

of the polynomials p ( z , j c ) and q ( z , x ) = = TI (z - ̂ )^. It follows
/ = i

from the Euclidean division algorithm that, for all m E N ,
{jcEM^ : m(A:)>m}

is a closed algebraic subset of M^ .On the other hand, if x E M^,
then the vertices of 9^ C N" + d x { 1 , . . . , d} are precisely

( ^ / , ) = ( 0 , r f - z + 1), i= l , . . . , r f - m ( ; c )
(cf. Example 8.5.1).

Remark 4.6. — The conclusion of Theorem D implies that
$^°°(Y)^ 4-B . ^(XY is a closed subspace of ^(X)^, with
the (€00 topology. Using Theorem B and techniques of [7], we can
prove, moreover, that, under the hypotheses of Theorem D, the
canonical surjection

^°°(Y)^ C ^(XY ——> $ ^°°(Y)^ 4- B . ^^(XY
admits a continuous linear splitting. Details of this result will appear
elsewhere (5).

5. Organization of the paper.

Throughout this article, we exploit the elementary but powerful
formal division algorithm of Grauert [18] and Hironaka [ I ] , [8],
which is recalled in § 6.

(5) E. Bierstone and P.D. Milman, Local analytic invariants and splitting
theorems in differential analysis, Israel J . Math. (to appear).
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Section 7 contains a variant of the classical coherent case C(4).
Let X be a closed analytic set and let ^(X , Z) denote the ring
of meromorphic functions on X with poles in a proper closed analytic
subset Z (i.e., analytic functions on X — Z whose germs at each
aG-Z are induced by complex meromorphic functions (cf. [32,
Ch. IV, § 5]) on a local complexification Xc of X whose poles
lie in Z^). For modules generated by power series with coefficients
in M (X , Z), we give elementary proofs of the conditions analogous
to A( l ) - (4 ) . Power series with meromorphic coefficients arise,
for example, in Theorem B. The results of § 7 are needed in §§9,
10, 13 and 14. The techniques illustrate the utility of the diagram
of initial exponents: consequences of Lemma 7.2 include Zariski
semicontinuity of the Hilbert-Samuel functions associated to a coherent
sheaf or to the fibers of an analytic morphism (Lejeune-Teissier
[25, Ch. I, Thme. 8.2.9]) as well as the generic flatness theorem of
Hironaka[22,Rmk. 2.6].

The constructions (and the notation) of § 8 are central to the
article. Theorems A and B are proved here and in the following section.

Chapters II and III are independent. Our results on <^00 functions
are placed in Chapter II; Theorem D is proved in § 11. The proof uses
Malgrange's theorem on ideals generated by analytic functions.
However, we give an elementary proof of the latter in § 10, as an
immediate application of § 7 and the formal division algorithm.
Consequently, the only results used to prove Theorem D, apart
from the techniques in analytic geometry developed here, are
Whitney's extension theorem [27, 1.4.1 ], tojasiewicz's inequality
[27, IV.4.1] and an estimate of Glaeser [16, §§4,5], [37,
pp. 180-181].

The combinatorics of the diagram of initial exponents bears on
questions of convergence or differentiability in the following way
(cf. Corollary 7.7 and § 10>: In the notation of 1.4, let GE^^
= K [Mf , G = (GI , . . . , G^). By the formal division algorithm,
G has a unique representative modulo ̂  such that supp G H 9^ == 0 .
If ft == (j8i , . . . , j3J E 1ST , let D^ denote formal differentiation of
order j8. If supp G n ̂  = 0 , then D^ G .̂ = 0 for all Q3, /) E ̂  ;
in particular, supp D0 G 0 ̂  = 0 for all (3 G N" .
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Chapter III includes cases (1)-(3) of Theorem C. Our proof,
in each case, is presented for arbitrary s ^ N . Although s = l
suffices, by Remark 2.6, the general setting involves no extra cost
and provides the most direct route to the corresponding result on
differentiable functions.

The algebraic hypothesis in Theorem C (1) is essential only to
the following point in our proof: With reference to 2.11 (1) (i) above,
we show that any GE^ =Ker^ can be approximated to any
order by algebraic relations. In the local representation of 2.12,
this amounts to considering a system of equations of the form

n

A ( x ) . g ( y ) - ^ - B ( x ) . h ( x , y ) = ^ q,(x , y ) ( y , - 0,00),
j = = i

where A, B and 0 are algebraic, and finding an algebraic
approximation g ( y ) , h ( x , y ) , Q { ( X , y) to a given formal
solution. Since the equations are linear in h and the q^ this
special case of "Art in approximation with respect to nested
subrings" follows from Artin's theorem [2]; cf. Theorem 12.6.
(A general version has recently been proved by Popescu [33]).
Example 2.8 shows that the corresponding assertion in the analytic
category is false (cf. Remark 12.8).

CHAPTER I
VARIATION OF FORMAL RELATIONS

6. Preliminaries: the formal division algorithm.

Let K be a field and let K [ [ y ] ] denote the ring of formal
power series in y = (y^ ,. . . , y ^ ) with coefficients in K . We use
the notation of 1.4.

Let ^ , . . . , ^K[M]^ and let (j3,, /,) = ̂ /), / = 1, . . . , r.
We associate to g l , . . . , g t the following decomposition of
N" x { 1 , . . . ,p} : Set Ao = 0 and define
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A,=W,,/ , )4-ISr)- U A^, f = l , . . . ^ .
0 < k < i

Put A = N" x { 1 ,. . . ,p} - U A^..
l < / < r

Clearly, for every /E K [ [y ] }P , there exist unique
^ ^ K t h ] ] , / = l , . . . , r , and ^ ° E K [ M ] ^

such that

(f t , / , )+supp^ CA, , ;= l , . . . , ^ ,

suppr0 C A , (6.1)
t

and /= ^ q^ y ^ ' ^ + r0 .
/=!

THEOREM 6.2 (Grauert [18, §2], Hironaka [1, Ch. 1, § I] ,
[S]).-Let g1 ^ . . ^ ^ ^ [ [ y ] ^ and let (ft,/,) = ^(^),
; = 1 , . . . , t. Then, for every /E K [M]^ there exist unique
Q i ^ ^ [ [ y ] ] . i= 1 , . .. ,^ and r ^ K . [ [ y ] ] P such that

( f t , ^ )+supp^ .CA, , i = 1 , . .. , t,
(6.3)

supp r C A,
r

W /= ^ ^^^r.
/=!

Proof. - Uniqueness. By (6.3), v^q^g1) C A^., z = 1 , . . . , ^
and ^(^) C A. Thus in/ is one of the in(^g0 = in^. • ing' or
in r, since their exponents lie in disjoint regions of N" x { 1 , . . . ,?}.
Therefore, if the in^. and inr do not all vanish, neither does /.

Algorithm. Write g1 = ^ ̂  .̂ y ^ ' i , i = 1 , . . . , t. Suppose
(3 , f

/ ^ K [ [ ^ ] ] ^ . Let q°^r° be as in (6.1). Put
^ ( / )=^^ ) - l •^?eK[h ] ] , / = l , . . . , r ,

and ^ ( / ) = r ° E K [ [ ^ ] ] P . Let
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E(/)=/- 1: ^,(/)^-r(/)
/==!

r= i ^-(^..y^-^).f = i ' ' '
For each i = 1 , . . . , / ,

^q^f)•(g^^ysi"ii-gi))

= v ̂ ..n y " " ' 1 - 8') + v (q, (/)) > (^, /,) + v {q, (/)) > v (/).

Therefore, i^(E(/))>y(/). Define

'» 00

<?,= ^ <7/(E/(/)) and r = ^ /-(E/(/)), (6.4)
1=0 J~'Q

where E°(/)=/ and E/(/) - E(E/-'(/)), , > l . n follows
that these series converge in the Krull topology and that
v (f- £ q , g ' - r ) > v (E/ (/)) for every / € IM ; thus /= 2 q , g ' + r.

a

Remark 6.5 - Let A be an integral domain. Suppose that K
is the field of fractions of A. Let A [ [ y ] } denote the subring of
K [ M ] of formal power series with coefficients in A. Suppose
that g ' ,. . . , g> e A [ [y ] ]P . Let S denote the multiplicative
subset of A generated by the g^. , and let S-»A denote the
corresponding localization of A ; i.'e.,'the subring of K comprising
quotients with denominators in S. Then S~ 'A [ [y ] ] C K [ [ y } }
By (6.4). if f C A [ [ y ] ] P , then q^S-^^y]], , = l /
and reS- 'At^ l f . "" ' '

In fact, if A is any ring and each ^ ^ = 1, the formal
division algorithm applies to give quotients and remainder with
coefficients in A.

Remark 6.6. - From the proof of Theorem 6.2, v ( r ) >v(f)
and v (g1) + v (q,) > v ( / ) , ; •= 1 , . . . ,f. Let m denote the
maximal ideal of K [ [ y ] ] . It follows that, for every keN if
/ e m * . K [ h ] ] P , then r ^ m ^ K ^ y ] ] ? and each <?, G in*2 l^'
(where in 6 = K [ [ y ] ] if g <0).
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Remark 6.7. - Assume that K === R or C. Suppose that / and
g1 , . . . ,^ converge. Then the q, and r all converge [1 Ch 1
§ l ] , [ 8 ] , [ 1 5 , C h . l , § 3 ] .

COROLLARY 6.8. - Let R be a submodule of K [ [ ^ ] ] P . Let
yi = yi (R) be the diagram of initial exponents of R, and let
0?p /,), z = 1 , . . . , r, rf^ore rte vertices of yi (without repetitions).
Choose ^ 'ER such that v(g1) = (j3,, /,), z = l , . . . ' , r . 77^;

r
(1) 9^ = U A,, and g1 ,. . . ,^ generate R.

< = i

(2) 77!̂ ? ^ a ^m^6? ̂  of generators f1 , . . . ,f of R ^c/z
^a^, for each i, in /l = jA'^' ^rf supp^' - y ^ i ' 1 ! ) n 9Z = 0 .
// K = R o/- C, and R ^ generated by convergent elements, then
each f1 converges.

We call f1 , . . . ,f in (2) the standard basis of R.

Proof of Corollary 6.8. - (1) is clear from Theorem 6.2. For (2),
divide y 0 1 ' 1 1 by ^2 , . . . ,g^ : By Theorem 6.2, there exist unique
^ ^ K [ h ] L k= 1 , . . . , ^ , and r ' G K ^ ^ ] ] ^ such that

/1'/^= ^ ^ ^ + ^ and (f t , ,4)+supp^ C A^, supp^ 'CA.
A: =1

Then f=y i l j l - r1 satisfies the required conditions. The second
assertion of (2) follows from Remark 6.7. D

COROLLARY 6.9. - Let R be a submodule of K [ [ ^ ] ] P . Put
^ Kn.vl^ /R. Let He rfCTO^ the Hilbert-Samuel function of
E; i.e., H^(k)=dim^ E / m ^ 4 - 1 < E, A: E N . TTz^ HE (^c) ^
r/z^ number of elements (j3, /) G N" x { 1 ,. . . , p } such that
03,/)^ ^(R) and | j3 |<fc.

Proo/ - By Remark 6.6. n

Remark 6.10. - (1) Let R and E be as in Corollary 6.9.
Let 3S denote the vertices of 91 (R). It follows from Corollary 6.9
that HE ( k ) coincides with a polynomial in k , for

k > ̂  max {^ : 0 ? , 7 ) ^ 3S, P == (^ , . . . , ̂ )}
< = i
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(the "Hilbert-Samuel polynomial").
(2) In particular, let f ( y ) ^ ^ [ [ y ] ] and let E = K [ [ y ]]/(/),

where (/) is the principal ideal generated by f(y). Let jn = \v(f) |.

Then Hp (A;)= ( n ) if 0<A:<^ i , andv n /

^(^(^"M^-^if^.( k -+- n \ ^ k + n - ̂
n / ^ nv ^7 / v n '

Thus, Hg ( k ) coincides with a polynomial of degree n — 1 in A:,
for k>ix, and the coefficient of ^-1 in this polynomial is
M/02-1)! .

7. Power series with meromorphic coefficients.

Let K = R or C. Let K [ [ y ] ] denote the ring of formal power
series in y = (^ , . . . ,^^) , and let in denote the maximal ideal of
K[M].

Let U be an open subset of K^" and let X be a closed analytic
subset of U. Let Z be a proper closed analytic subset of X.

Let ^(X;Z) denote the ring of meromorphic functions on
X with poles in Z (cf. § 5). It is easy to see that / z€^ (X;Z) if
and only if h G 0 (X — Z) and, locally in X, there exist finitely
many pairs of analytic functions f^, g/ such that H g ^ ~ l (0) C Z
and h = f,/g, outside Z U g^ l (0). If Z = 0, then M (X; Z)
is the ring ^(X) of analytic functions on X. Let ^ E X - Z .
There is an evaluation mapping h '—> h (a) of ^(X; Z) onto
K . If g = Z^y^e^X^nMP, we write ^ (x ;^)

^ , 7 )

= S ^3 f(x)y^J\ and g (^ ,^) = S ̂ 3 jWy^^ when the coefficients
are evaluated at x = a . Let ^ (^) G N" x { 1 , . . . , p} denote the
smallest (|3,/) such that gg y C E ^ ( X ; Z ) is non-zero. Put
mg = g^fWy0^, where (j8,/) == i /fe).
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Let P ,...,ff e j y ( X , Z ) [ [ y ] ] P . Let ^ denote the sub-
module of ^ (X;Z)[ [y] ]^ generated over ^(X;Z)[[^]] by
/ 1 , . . . , / 1 7 . Put ^ = { v ( g ) : g ^ ^ } . Clearly, 9^ 4-N" = 9^ .
If a G X - Z, let ^ denote the submodule of K [ [y ] ]P
generated by the f^a^y), put 9^=^( j^ ) and let H^ be
the Hilbert-Samuel function of K [ [y ] }P /^ .

LEMMA 7.1. - For all a^X -Z , 9^ < 9^

LEMMA 7.2. - Assume that O C X , /tor ^ ^wz o/ X ^
0 is irreducible, and that every connected component of the smooth
points of X is adherent to 0. Then there is a proper analytic subset
Y of X containing Z such that:

(1) 9^ = 9^ for all a E X - Y. /^ /acr, /or every vertex (j3, /')
o/ yi , r/zm? exiy^ ^^ 5-^c/z rtor i/(g) = (j8, /) = ̂ (g(^ ; .))
f o r a l l a C X - y .

(2) H^ is constant on X - Y.
(3) There exists X ̂  N ^c/z rtor

^ nrn^^. K[ [^ ] ]^ = m ^ . C ^ nm^ . K[ [^ ]p)
/OA-fl// £ E N and ^ C X - Y .

Proof of Lemma 7 J.-Lei a E X - Z . Let (c^.,^,), ; = 1, . . . , s
(respectively, (j3^ ^.), z = 1, . . . . 0 denote the vertices of 9^
(respectively, 9^ ) indexed in ascending order.

Consider h G ja^ such that ^ ( / z ) = (a^ 7^ ). Say
<7

h ( y ) = ^ ^(^)/c^^), ^ ( ^ ) G K [ [ ^ ] ] .
c= i

Define gE ^ by g(x , y) = S Cg (^)/f i (x , y). Then ^(g)<(a^/\)
since, in any case, the coefficient of y ^ l ' J l is nonzero. Thus (^ , k^)
< v{g) < (a, J,). If (^^ , k,) = (a, , 7^ ) , then v(g) = (^ ,/^)
=^(^;-)).

Now suppose that, for each ; == 1 , . . . , r , we have:

(0 (j3,, ̂ ) = (^-,/,), and (ii) there exists g1 (x \y) G ^ such that
v (g1) = (a, ,^.) = v (g'(a ; • )). If 5 = r , we are done. Otherwise,
consider h(y) == 2 c^{y)f^ (a , y ) G ̂  such that y( /0==(a^, /^) ;
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say in h = y^l ) / r+1 . Put g (x ;y) = 2 Cg QQ /£ (x ;jQ G ̂ . Then
^)<(o^,,/^). If vte)=(c^,,7^), then (^i,/^,)
<(",.+! ,;',.+1). If v (g) < (a,.,.; j,..̂ ), then either: (i) v (g) ̂

~r+ 1 i l r

J'r+l).

J"
r
^ (a;,/,) + N" and (^+1 , /^) < (c^, ,/^,), or (ii) v (g) e

U (",,/() + N" .
1= i

In the latter case, v(g) = (a, + 7, /,) for some } = I , . . . ,r
and some j C N " . Then in g =g^^(x) . ̂ /+T•/(. where

ga(+•y, / ( (a)= ;0 since ^ (a ;^ )= / ; (^ ) and in h =yar+l ' / ' •+ l . On
the other hand, ing' = ̂ ^. (x) . y 0 1 ' ' " , where ^.^,(a)^o since
^(^(a;-))=(a, . , / ,) . Let •

^' (̂  ;y) = 4,,̂  (x) • g (x ;y) - g^^,^ (x) • y^ ' g'(x •,y).

Then g ' (a ;y) = g'^ ^ (a) . g (a ; y ) , so that v (g1 (a;.)) = (a,+, , /^,)
and v (g) < v ( g ' ) < (a^ i ,/^,). The result follows by induction.

Proof of Lemma 7.2. - Let (ft., k,), i = 1 , . . . , / , denote the
vertices of 91 . For each ;•, choose g1 G 3S such that v (g ' ) = (ft, ̂ )
Put

Y = Z U . U ^ex:^(;c)=0}.

Let o G X - Y . Then ^(a;^)e^ and rte'(a;.))
=(^,k,). Thus % C 9^ . By Lemma 7.1, ^ = 9^ . (2) follows,
by Corollary 6.9.

Let a £ X - Y. Let h e ̂  . By (1) and Remark 6.6,
r

A O Q - S c,00^(a;>0,
<= i
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where, if h C m 6 . K [[y]]P , then each c/ E m fi-1^1 . Put
X = maxjj3j. Then each c, E m6"^ . m^"1^1 . Thus

j< U m8 . K [MR C m2-^ . « 0 m^ . K [MF).
The opposite inclusion is trivial.

D

Let U be an open subset of K" and let 0 = 0^ . Let
a € U. We identify ^ (respectively, 0^) with the ring of
convergent power series K{^} (respectively, the ring of formal power
series K[M]), where y = (^ , . . . , y ^ ) .

Remark 7.3. -Let ^ C Op be a coherent sheaf of ^-modules.
Suppose there are /1 , . . . ,/<? G 0 (U)P which generate ^ for
all a G U. For each / = 1 ,. . . , q ,

f(x + ^ ) = Z D^(;c).//<3!,
^

where D0 = Sy^^/Sy^ . .. Qy^ and /?! = j8i ! . . . ̂  !. Thus the
// induce elements of Q (U) \\y\f which, when evaluated at
a G U, generate ^ . In this case, Lemma 7.2 (1) holds with each
g (a ;y) €: K {y} . Let ^ ^ denote the completion of ^ ^ ;

^a = ^a • ^a •

THEOREM 7.4. - Î r U be an open subset of K" , and let
0 = ^\j • Jr/^ ^ c ^p be a coherent sheaf of 0-modules. Then:

(1 ) 77^ diagram of initial exponents 9^ = s^ (^) ^ Zariski
semicontinuous on U.

(2) 77^ Hilbert-Samuel function H^ o/ ^/.< ^ ZawA;/
semicontinuous on U.

(3) Uniform Artin-Rees theorem. For every compact subset
K of U, ^r^ ^•^5 X G N ^cft ^/zar

< n ̂ fi+x • ^^ = ̂  • (^a n m^ - ^)

/or a// £ € N ^d a// a E K.

Remark 7.5. - The Hilbert-Samuel function of ( P ^ l ^ a equals
H^ , by KrulFs therorem. Likewise, the formal and convergent versions
of the Artin-Rees theorem are equivalent. The uniform Artin-Rees
theorem, as stated in Remark 2.10, clearly follows from 7.4 (3).
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Remark 7.6. - Let A and B be submodules of K [[y^ and
K [Mf , respectively. Put F = K [[y]^ /A and G == K [MP/B.
Let $ : G —> F be a K [M]-homomorphism, and let H = Im ^ > ,
R = Ker ^. Let C , X G N . It is easy to see that the following
conditions are equivalent:

(1) (Artin-Rees estimate) H O m ^ . F C m 2 . H.
(2) (Chevalley estimate) ^-1 ( m6"^ . F) C R 4- rfi8 . G.

Proof of Theorem 7.4. - We can assume there are / 1 , . . . . /qr

G ̂  (Ljy which generate ^ for all a E U. Let X be a closed
analytic subset of U. Assume that 0 E X, that the germ of X at 0
is irreducible, and that every connected component of the smooth
points of X is adherent to 0. We apply Lemmas 7.1 and 7.2 with
Z = 0 , and ^ C (P (X) [h]f generated by the elements induced
by the f , as in Remark 7.3.

Let a E Y , where Y is given by Lemma 7.2. Let ^ denote
the submodule of ^ x ^ t t ^ l l ^ induced by the //. Then
^ = ^(^), by 7.2 (1), and 9l(^)< 9^, by Lemma 7.1.
The assertion (1) follows.

Since ^ is coherent, then H^ (k) is topologically upper-
semicontinuous, for each fixed k (cf. [37, 11.5.3]). Then (2) follows
from (1) and Corollary 6.9. Finally, (3) follows from 7.2 (3).

COROLLARY 7.7. -Let U and ^ be as in Theorem 7.4. Let
OQ E U. Then there is a neighborhood V of OQ and a filtration of
V by closed analytic subsets, V = X^ D X^ D . . . D \+^ == 0 ,
such that, for each k = 0, . . . , C :

(1) 9^ = 9U.<) is constant on X^ — X^+i .
(2) Let g\, / = 1 , . . . , r , denote the standard basis of

^a c K [Ml^ ^ H^^? ^ E X^ — X^^ . 77^ each g^ converges.

Write g[ (y) = H ^ .̂ (a) y ^ j . Then each g^ . is a meromorphic
<3 , 7 '

function on X^ w;Y/z poles in X^.^ .
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(3) There exist (p-tuples of) analytic functions g1 defined
in a neighborhood of X^ — X^ ̂  , whose power series expansions
at each a E Xj^ — ^-k+i are t^'e ^a •

Proof. -(1) and (2) follow from 7.4 (1), Remark 6.5 and
Corollary 6.8. For b in a sufficiently small neighborhood of
a in X ^ - X ^ ^ i , g\ (b - a + y ) E ̂  . If ing;=/1 '71 , then
supp (^ (& - a + y) - /l>7r) n ,̂ = 0 , since ^ = ^ and
supp (g; 0^) - /I)/I) H ^ = 0 . Hence in ̂  (6 - fl + >Q = /l>;l

and, by the uniqueness of formal division, g1^ (b — a + y ) = g\ ( y ) .
(3) follows.

Let U be an open subset of K^ , and let Z C X denote closed
analytic subsets of U. We conclude this section with some remarks
on relations among elements of ^ (X;Z) [[.y]^ , where
y = ( ^ i , . . . ,^).

Let /1 . . . . . /^^(XiZnM^. For each a C X - Z ,
let ^ C K [[y]F denote the module of relations among the
// (a , y ) ; i.e., ^ = {g (y) = (^ QQ,. . . , ̂  (y)) E K [[y]]^ such
that ^ ^ ( y ) / / t o ; ^ ) = 0 } .

PROPOSITION 7.8. - Let OQ E X . 77^ r/z^r^ /5 a neighborhood
V o/ ^o ^ U , and a filtration of X 0 V &^ closed analytic subsets,

x n v = Xo D Xi D ... D x^ ^ = z n v,
satisfying the following property : For each k = 0 , . . . , t , there
are finitely many elements g^ ^ ̂  (X^ ;X^^.^) [[y^ such that
the g^ (a \y) generate ^ , for all a E X^ — X^ ^ .

Proposition 7.8 can be proved by a straightforward modification
of the standard proof of Oka's theorem [32, Ch. IV, § 2]. It can also
be proved using the techniques of § 8 below ; see Proposition 9.4.

Proposition 7.8 has the usual functorial consequences. We will
need the following:
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COROLLARY 7.9.- Let /1,...,/^1,...,^ G^(X;Z) [Mf .
For 6?ac/z a C X - Z , Let ^ (respectively, y^) denote the
submodule of K [[.y]^ generated by the f; (a , y ) (respectively,
by the g ^ a ' ^ y ) ) . Let a ^ G X . Then there is a neighborhood V
of OQ in U , and a filtration of X 0 V 6^ closed analytic subsets,
X 0 V = Xo :) X^ D . . . :) X^ == Z 0 V, satisfying the following
property : For each k = 0, . . . , t , there are finitely many elements
h\ € ^r(X^;X^.n) [b^]^ such that the h\ (a \y) generate ^ n^
/or ^// f l C X ^ -X^i .

8. Local invariants of an analytic morphism.

The notation of this section will be used in the remainder of
the article.

8.1. A lemma in linear algebra.

Let R denote a commutative ring with identity. Consider a
diagram of R-modules and homomorphisms:

0 —> E' —> E -^ E" ——> 0

Dl A
v r 4'

0 —> F' —> F —^ F" —^ 0,

where the sequences are exact and the squares are commutative. We
regard E' and F' as submodules of E and F, respectively. Let
p E N . We define

Adp D E HOIUR (F, Hom^ (AP E', A? + 1 F))

by the formula

AdpD(cJ) (T^ A , . . A ^) == oj A D?7i A . . . A D7?p ,

where cj E F and 77, E E' , ; = 1 , . . . , p . (Ad° D means the identity
mapping of F .) Let ad? D G Hom^ (F', Hom^ (AP E', A? +! F'))
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denote the homomorphism obtained by restricting Adp D to F'
(ad^ D depends only on D).

If p > rank D, then Ad p D = 0. If p = rank D, then
A d F D o A vanishes on E', hence factors through E" ; say
A d p D o A = C o 7 ^ . (The rank of D means the least a such that
A^^O for all r>a) .

Suppose that B : G —> F is a homomorphism of R-modules.
Let p = rank D and let S = Adp D o B. Let a E N and let
T = ad° S o C, where Ad? D o A = C o TT. (If a = 0, then T = C.)
If a = rank S and A t; E Im B , where ^ E E, then Ad? D o A ^
E Im S, so that To 7^ = 0 . Thus Ker T D TT {^ E E : A ^ E Im B} .

LEMMA 8.1.1. — Let the notation be as above. Suppose that
R is a field K. / / p = r a n k D , then:

( 1 ) I m D = K e r A d p D = Ker ad? D.
( 2 ) K e r C = 7 r ( K e r A ) .

//, moreover, o = rank S, "where S = Adp D o B, then:
( 3 ) K e r T = 7 r { ^ G E : A ^ E I m B } .

Proof. - Since rank D = dim^ Im D, it follows that if
p = rank D and (^ E Ker Ad? D, then a? E Im D ; i.e., (1)
holds. (2) is (3) with B = 0 . To prove (3): Let a = rank S
and let ^ E E. Suppose ^" = ̂  E Ker T. Then C ̂  E Ker ad0 S
= I m S ; i.e., there exists 17 E G such that A d ^ ' D o A ^ C ^ '
== ST? = Ad? D o BT? . Therefore A$ - BT? E Ker Adp D = Im D , so
that AS - BT? = D? , where ? E E'. Hence A (^ - ?) = BT? and
r=7 rs=7ra -n .

8.2. Let K = R or C. Let M and N denote analytic manifolds
over K , and let 0 : M —> N be an analytic mapping. Let A
and B be p x q and p x r matrices, respectively, whose entries
are analytic functions on M.

Let a E M. We write 0^ = (P^ ^ , etc., when there is no
possibility of confusion. Then 0 determines homomorphisms of
local rings 0^ : 0^^ —> 0^ and 0^: 0 ̂ ^ ——> Q ̂  and A
(respectively, B) induces module homomorphisms A^ : 0^ —^ ^p
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and \ : 0^ —> 0^ (respectively, B^ : ̂  —> G)p and
B^ : ̂  —> e)pa)' Leat ^a : ^(a) —^ ^ denote the "module
homomorphism over 0^ defined by $a (^) = ^\i • ̂  (^)? where
^=(^ , . ; . , ^ )^ ^(,) and 0,*(^)=(0;(^),...,0;(^)).
Let $^ : ^ Q ^) ——^ Q^ be the analogous module homomorphism
over 0^.

Let 5 E N. Let W denote the fiber product
M ^ = { f l = ( f l l , . . . , ^ ) e M J : 0 ( ^ i ) = . . . = 0 ( ^ ) } ,

and let ^'.W ——^ N be the induced morphism.

Let f l = ( f l 1 , . . . , a ^ ) E M ^ . Let ^ : Q^^ ——> C ^ .̂

denote the composition of 0 0 , with the diagonal injection
/ = i f l /

^ < 7 , , —> C ^q , , and let<p(<) . <P(0) )

^ ^ j
By = e B : e ^r. —^ e .̂.

/=! a1 / = i a1 , = ^ a1

s
Likewise,^ : ( P q ^ ) ——> ^ 0 p. and<pv f = i a

B. : ^ ^/ —^ C ^^r
' a /=! fl /=! a

For each k € N, 0^ and B^ induce linear mappings

^. ^>. ^ ^k m^1)-^) .=-"71.^,

^ . ^p.
B (a): ® ———-—— —^ $ "'

< = i in^.-1-1 . <?"• (= i m^-1-1 . ( P P .
of a' a1 a'

respectively. If £ > fc , we get a commutative diagram
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"̂ )1 • ^oo"^ • <)

. m : /+ l•^
9 i <T»

» = i in8 4" ! . OP i+1
a* a/

Dg ^ (a)

'"9(») "M Wo)) <P,(,)

-4^ • ̂ ) •",(:)• • ̂

^i ^W S ^

111^1 . OP i^i mk+l .OP
a1 a1 a1 a1

Ac (a) A^ (a
I

(8.2.1)

where the rows are exact and 11̂  ^ (a), IIg ^ («P(a)) denote the
canonical projections. Likewise, 11̂  ^ (a) ° Bg (a) = B^ (a) ° n^ (a).

Put ^ = {G € ^^^ : ̂  (G) € Im B^ } . Write

J<p(»)W
^(»)

n . f c + l /nq
'"(pCa) • ^qKa)

,w^
2> -L t,,t+l <n<;
^ • mv(a) - ^^(a)

m$^l • ^W

Let Efc (a) = {$ e J^ (A;): A^ (a) ^ e Im B^ (a)}. If C > A:, let
£„„ (a) = IL^ (V(a)) (Eg (a)).

The following is a reformulation of Lemma 1.1 (Chevalley
estimate):

LEMMA 8.2.2. - Let a £ M^ , a = (a1 , . .. , a*). For each
k £ N , rterc ex ̂ 5 £ € N such that if G G ^^ and

6^ (G) G Im B, + * £+1
atm , 1 . ^P.,a1 a1

<=
then GG ̂  + m^. ̂ ^ .

Proof. - Let A; G N . If ^ > ^i > ^, then
^ W C E^ „ (a) C E^ ̂  (a)
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and the projection H Eg g (a) —> H Eg g (a) is onto. It
f i ^C^ ' c>fi!

follows that ^ (fc) = 0 Eg ^ (a). Since dim^ .L^) (k) < oo ,
£>fc '

there exists 6 E N such that ^ (fc) = Eg ^ (a).

D

DEFINITION 8.2.3. -Let a€M5^. For each k G N , fcr C ( ^ , f f )
denote the smallest £ G N satisfying the conclusion of Lemma 8.2.2.

If a C M^ , let U, denote the Hilbert-Samuel function of
^)/^ t^ ^ W = ̂ K J^) W/^ W. ^ k < JZ , define
rfg^(fl) by

^ (.) = dimK^^ .
^,k (fl)

Remark 8.2.4. - dg ^ (a) < H^ (k) and ^ (fc) C Eg ^ (a), with
equality in each case if and only if £ > C (fc ,a).

Our main theorem A can be reformulated as follows:

THEOREM 8.2.5. -Let 5 € N . Then the following conditions
are equivalent:

(1) Uniform Chevalley estimate. Let K be a compact subset
of M^. Then, for every f c E N , there exists e = = C ( A : , K ) e N such
that &(k,a) < £ for all a C K .

(2) H^ (k) is Zariski semicontinuous on M5 , for each fixed
ke N .

(3) The Hilbert-Samuel function H^ is Zariski semicontinuous
on M;.

Assume, moreover, that N is an open submanifold of K'2 .
Then each of the above conditions is equivalent to :

(4) The diagram of initial exponents ^ = 91 (^) is Zariski
semicontinuous on M^ •

Suppose that X is (a representative in a small neighborhood
of) an irreducible germ of a closed analytic subset of M5 , at some
point. Our proof of Theorem 8.2.5 will be based on a construction
which associates to X and k G N , a linear transformation T^(fl)
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defined on Jy^ (k), depending analytically on a and satisfying
the following condition : there are countably many proper analytic
subsets of X such that, for each a in their complement D. , ^ (k)
= KerT^(a).

Let do E M^ , OQ == (a^ , . . . , ̂ ). Let X denote a germ at
flo of a closed analytic subset of U5 .

s
Let 11=111^ be a product coordinate neighborhood of

(= i
OQ in M5, and let V be a coordinate neighborhood of 0 (dr.)
in N , such that 0 (U^) C V, z = 1 , . . . , s . Shrinking U if
necessary, we can assume that X is a closed analytic subset of U
such that each connected component of its smooth points is adherent
to OQ .

We use a (respectively, j3) to denote multiindices in N^
(respectively, N") . If g = (^ , . . . , ̂ ) e ^(V^ , write (D^),^ ̂  ,
for the vector whose components are the derivatives

D^-a'^/a^1 ...a^ e ^(V)
(with respect to the coordinates of V), | j3 | < £ , / = 1 , . .. ^ q ^
ordered by (j3,/, | |8|) lexicographically from the right.

For each / = ! , . . . , 5, define ^ ' ' . ^(V)^ ——^ ^(U'V by
^< (g) = A . (g o 0), where g G ^ (V)^ , and

B': ^(U'V——> ^(UT
by B' (/z) = B . / z , where /z E ^(U1/ . Let £ G N . By the chain
rule, there is a commutative diagram

^yy? ——^ ^ ^(U^)^
l ^ l < e j

^! 1^

^(u^^ —> e ^(u11^ ,
|a|<£

where the upper horizontal arrow is g '——> (D^g o (01^)),.,^.,
the lower is / »—> (D0 ' /)^^^, and A[ is a matrix with entries
in (U1). Likewise, there is a commutative diagram
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i\r^(U7—> e (pw1)'
|a|<£

B1 B^

(P(V1)̂P . e ^ (uy,
|a|<C

where the upper horizontal arrow is h '—> (D^) .a i< g , etc.
For each i = 1 ,. . . , s , the composition X ^ U —> V1

of inclusion and projection induces a mapping (P(V1) —> (P(X),
where (P(X) denotes the ring of analytic functions on X. Let
f f G X . We write A^ ̂  (respectively, B^) for the matrix of
elements of ^x.<? induced by A^ (respectively, B'g), and for the
induced (p^ ^-homomorphism 9 0\ ̂  — ^ ^X,.

I^Kfi |a|<fi

(respectively, ^ ^x ^
|a|<fi

diagrams

e ^ ^ f l ) - We get commutative
|a|<£

(pQ

s s s s
e ^ ^ —> e e e^ ^ e ^p. —> $ e ^p

'=1 a < = 1 I t t K C ' /=! a1 / = i | a |<f i ^^

v ^

Ha) ®
I P K S

^

'̂x.< e
e ; = i

Y»

^"•; —>- e
" /=! |Q

B.

^ ^
« | < S '

^.a

(8.2.6)

where Ag ^ (respectively, Bg ^) is the matrix with vertical blocks
A^ (respectively, diagonal blocks B^), i = 1 , . . . , s . If S. > k ,
there is a commutative diagram
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n^.

e °\ a —————' e °\ a ————> 0
U?1<C ' |<3|<fc •

e (P^ ^ ——> e
k<\0\<& ' I^KC

^...a A, Ac,^ jk-.o

o —> e e (RP
i=l k< |a|<C

C ^ (PP.
/=! |a|<e xfa

e e ^^ —^ o
/=! \a\<k

(8.2.7)

Let Ag Q , B f i ^ , D g ^ ^ , IIg^ ^ denote the morphisms of the
completions induced by Ag ^ , etc.

Let 111^ ^ denote the maximal ideal of 0^ ^ . Let

^x.<, ——' ^x^/"^^ = i<
be the canonical projection ("evaluation at a"). The horizontal
arrows in (8.2.6) induce identifications

^) "X . t f
C + 1 q

^(fl) • ^<p(fl)

^,

l j3KC 111 X,fl

^X,ff

/= ! C + l <
I I I i . 0 ia a

/=! |a|<e L"^^

where t = r , p . Using these identifications, evaluation at a
transforms the diagram (8.2.7) (or the analogous diagram of
completions) into the diagram (8.2.1).

8.3. The Hilbert-Samuel function and the Chevalley estimate.
Let £ , k E N , &>k. Let a E M^ . We apply the formalism of
8.1 to the diagram (8.2.1) and the linear mapping Bg (a). Put

p ^ ̂  (a)== rank Dg ^ (a).

Then M^' k (fl) Dg ^ (a) o Ag (o) factors as

Ad p e' ̂ ( a ) D^ ^ (fl) o A, (a) = C^ ^ (a) o 11̂  ^ (<p (a)).
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Put Og ^ (a) = rank Sg ^ (a), where

S, ^a)=Adp^k(a)D^ ,(a)oB,(a),

and put Tg ^ (a) = ad0^ fc(fl) S^ ^ (a) o Cg ^ (fl).

Remark 8.3,1. - By Lemma 8.1.1, Eg ^ (a) ^ Ker Tg ^ (a)
and dg ^ (a) = rank Tg ^ (a).

Let OQ E M^ and let X, etc., be as in 8.2 above. Let

pg ^ (X)= max pg ^ (a).
f fCX

I f f l E X , then Adp e^ ( x ) Dg ^ (a) o Ag rff) factors as

Ad" ̂ ^^ ) D^ ^ (a) o A, (a) = C^ ^ (a) o n^ ^ (<p (a)).

Put a^ ^ (a) = rank S^ ^ (a), where

S^^^Ad^'^^D.^^oB,^),

and let On . (X) = max a^ . (ar). Put
-•" flGX ' i f k

T^(a)=ado^ ( x )S^(a)oC^(a).

Let
d^ ^ (a) = rank T^ ^ (a) and dg ^ (X) = max rf^ ^ (a).

' aex

Let
Yg^ = {a€X:p^(a)<p^(X)},

z^..=^ex:<,W<^,.,(X)},

^ fc = \ * u \ k u ̂  E x : d^, k <fl) <rfs. k .<x)^ •
Then Yg ^ , Zg ^ and Xg ^ are closed analytic subsets of X. If
X is irreducible, then Xg ^ is a proper analytic subset of X and,
for all a £ X - Xg ^ , a^ ^ (a) = o^ (a) = Og ^ (X) and

rfg ̂  (a) = cf^ (a) = c?e^ (X).

Let f c £ N . Put

D ^ = X - U Xg ^ (8.3.2)
E> fc

If K = C and X is irreducible, then D^ is dense in X.
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LEMMA 8.3.3. - For all a , A G D^ , H^(fe) == H^(fe) and
i ( k , a ) = 9 . ( k , b ) .

Proof. - Let a G D^ . Then rfg ^ (a) = rf^ (X), £ > f e . If
C > £ ( ^ , f l ) , then, by Remark 8.2.4, H ^ ( f c ) = r f f i ^ ( X ) . Let
o,6ED^. Choosing &>K(k,a), i>K(k,b), we get H^(fc)=H^).
The second assertion follows from Remark 8.2.4.

DEFINITION 8.3.4. - We wife H^ (k) = H^(fe) and £ (fc, X)
= £ (k ,a), /or a^ a G D^ . (H^ (fc) ^ rA^ "generic Hilbert'Samuel
functions9 f).

Remark 83.5. - ( l ) I f £ > £ ( A : , X ) , then H x W = d g ^ ( X ) .
(2) If fl e X and fi > k , then, by Remarks 8.2.4. and 8.3.1,

^ W C Eg ^ (fl) = Ker Tg ^ (a) C Ker T^ (a). Suppose o G D^ .
Then Tg ^ (a) = Tj^ (fl). If, moreover, £ > £ ( A : , X ) , then

^W = Kfi . fc^) = KerT^(a).

PROPOSITION 8.3.6.-Z/^ flo E M^ , fl^rf let X , ^c., &e fl5
above. Let A: E N . 77z^;

(1) // £ > C ( f c , f l ) /bra// f l G X , r/z^ H^(A:) is constant
on X -Xg^ .

(2) Suppose X ^ irreducible. Let £ = C (fc, X). Z^r Y 6^
a proper analytic subset of X . // H^ (fc) /5 constant on X — Y,
r/z^ £ > £ ( A ; , f l ) /era// a E X- (Xg^ U Y ) .

Proof. - ( l ) I f OC(^ ,a ) for all f l G X , then.by Remark 8.2.4,
H^ W = rfg ^ (a) = rfg^ (X) for all a G X - Xg^ .

(2) By Remark 8.3.5, H^ (fc) = d^ (X) for all a E D^ . Since
U, (/^) is constant on X - Y and rfg ^ (a) = rfg ^ (X) on
X - Xg ^ , then H^ W = rfg^ (a) on X - (Xg ^ U Y). By
Remark 8.2.4, £ > £ ( A ; , a ) for all a E X - (Xg ^ U Y).

D

Let & > k . Let fl G X . Clearly, rank Dg ̂  < pg ^ (X), with
equality if D^ is adherent to a . Hence Ad^'^^ Dg ^ ^ o Ag ^
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factors as Cg ^ a o rig ^ ^ (cf- (8.2.7)). Put

T - ^A°^^W o ^
^fi,*,^ ~ du ^£,fc,fl -fi,fc,fl ?

where Sg ̂  = Ad^'^ Dg ̂  o B^ . Let Cg^ and tg^
denote the analogous homomorphisms of the completions. If X is
irreducible, then Og ^ (X) = rank Sg ^ ^ . Evaluation at a transforms
Cfi ^ ^ and Cfi ^ ^ (respectively, T g ^ ^ and t g ^ ^ ) into C^ (a)
(respectively, T^ ^ (a)).

PROPOSITION 8.3.7. -Suppose that X is irreducible. Let k ^ N.
77? ,̂ /or a// o e X , H^ W > Hx (fc).

Remark 8.3.8. - Suppose that, for all a G M^ ,
Ker 6^ = ^^) • Ker®^

(cf. Remarks 2.11). It is easy to see, then, that Hy (k) is topologically
semicontinuous for each fixed k (cf. [37, 11.5.3]). In this case,
Proposition 8.3.7 is immediate.

Proof of Proposition 8.3,7. -We can assume that K = C. Let
£ = 9. (k ,X). Let a C X and let ^ , . . . , ^ denote a basis of
^ (fc). For each ; = 1 , . . . , t , choose a representative G .̂ of
.̂ in ^, and let H ^ . = ( H ^ ) ^ ^ f i denote the image of G .̂ in
0 ^^ (i.e., the image by the upper horizontal arrow in the

\01<£
left-hand diagram of (8.2.6), for the completions). Then

A£^(H,)G I m B g ^ ,

so that rig^(H,) G Ker tg ^ ^ , z = 1 , . . . , t .

By Krull's theorem, there exist convergent generators 7^ , . . . , rf^
EKerTg^ of Ker fg ^ ̂  . Since the ^ = n e ^ ( H , ) ( f l ) are
linearly independent, then the i?y (a) E Ker T^ (fl) span a linear
subspace of dimension > t . If x G X is close enough to a , then
the 7 .̂ can be evaluated at x , and the 7?y(;c) G Ker T^ (.X-) span
a linear subspace of dimension > t . Taking x ^ D^, we have
H^ (fc) = H^(fc) < H^(A;), by Remark 8.3.5.

D
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8.4. The Hilbert-Samuel function and the diagram of initial
exponents. Assume that N == V is an open submanifold of K" . If
a C M^ , let ^ C 1ST x { 1 , . . . , q} denote the diagram of initial
exponents ^ = ^(^). We continue to use the notation of 8.2
and 8.3. Assume that X is irreducible. We introduce a "generic
diagram of initial exponents" 92^ :

DEFINITION 8.4.1. -Let k(X) denote the smallest k E N such
that Hx W coincides with a polynomial in £ , if i> k.

Suppose k > k ( X ) . Put C = £ ( f c , X ) . Let a E X . Let
^ C C ^ ^ ; say H = (^m^ , where each

I ^ K A ;

^=(^,. . . ,^)^ ^x,..
Let ^ (^) denote the smallest (j3,/) G N" x {1 , . . . , q} such that
.̂ ̂  0 . If 7 G 1ST , define S7 ^ E 0 ^^ by

I^Kfc

( »!(T-^T^. -f -^<»
(S7 ?) =

0 , otherwise.

LEMMA 8.4.2. -Let a €X such that D^ is adherent to a
(i.e., any a G X if K = C). Let ^ G Ker TQ j, a and 7 G Nn

Then S7 ^ G Ker Tg ^ ^ .

^oo/. - Consider the evaluation (S7^)^) of S7^ at ^ - C X
a . If Ker T^ (x) = ^ (^), then (S7 ^) (^) G Ker T^ (x):
dentifies with

^ ^(^)^/^ ! G ^, + m^^ . 0^ c K [h]]" ,

and (S'1'^)^) identifies with

^ • ( I ^ (x) y^/P ! ) G ̂  + >n ̂ +^ . ̂ ^ .
|j3 |< fc

In particular T^ (.t) . (S7 ̂ )(x) = 0 for all x £ D^ near a. Thus
IM,.(S^)=O'.
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DEFINITION AND REMARK 8.4.3. -Set

^x -M^^KerT,^} + 1ST .

According to Lemma 8.4.2,
^x n { 0 ? , / ) : 1 ^ 1 < ^ } = {v ( { ) : $ € Ker T^^} .

77z^ definition of 9^ is independent of k > k (X).

Remark 8.4.4. - Suppose that A: > k (X). Put £ = C (A;, X).
It is easy to see that there is a proper closed analytic subset Z' of
X such that, for all a E X - Z' ,

Ker T^ (a) = ^ (a) : ̂  Ker T^ ^} .

Let (j3,,^.), ?' = 1 , . . . , t-^ , denote the vertices of 9^ . For each
z , let ^ E K e r T g ^ such that v ̂ ) = (^, k,) ;

S = (^,7) \0\<k, K j < q ' ^u^

^Xz = z'u u {^ e x: ̂ .Oc) = 0}.
/=i

Since X is irreducible, Z is a proper closed analytic subset of X.
From Remark 8.3.5, we obtain :

LEMMA 8.4.5. - ̂  = ^x for all a E D^ n (X - Z) .

PROPOSITION 8.4.6. - (1) For all a E X , 9^ < ̂  .
(2) Z^r Z 6^ ^ m Remark 8.4.4. If a ^ X - Z , ^^

^ C ̂  .

Pwo/. - We can assume that K = C. Let a E X . Let
(^,/,), ^ = 1 , . . . , ^ (respectively, (|3,,^), ^ == 1 , . . . , ^) denote
the vertices of ^ (respectively, ^), indexed in ascending order.
Let k E N such that k > k (X) and H^ (C) coincides with a
polynomial for £ > fc . Let £ = C (A;, X).

The arguments will be similar to those for Lemma 7.1. To
prove (1), first consider G €E ^ such that (/ (G) = (c^ , /^) . Then
G induces an element ^ G Ker Tg ^ ^ such that ? (a) E Ker T^ (ff)
is the projection of G to ^ ( k ) C Ker T^ ^ (ff). Since

K e r f , , - ̂ , . K e r T , . , ,
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there exists 77 G Ker Tg ̂  such that 7 7 ( 0 ) = = ? 00. Let Z be
as in Remark 8.4.4. Evaluate 17 at x E D^ H (X - Z) near a :
7?(A:)eKerT^ (A:) and v ( r ] ( x ) ) < (04, /\ ). 0/(7?0)) makes
sense when 77 ( x ) G J<p^ (fc) is not zero). By Lemma 8.4.5,
(^i .k,) < ^ (T? (^)) < (^i , / , ) . If (^ , ̂  ) = (^, /^ ), then
v (17 (.y)) = (o^ , /\ ) for all x E X near a.

Now suppose that, for each i = 1 , . . . , t , we have:
(i) (j3,, ^) = (^, /,); (ii) there exists r]1 G Ker Tg ^ ^ such that
^(T^CX:)) = (a., j\.) for A - E X near a. If ^ =/, we are done.
Otherwise, consider G E ̂  such that v (G) = (c^ ^ , /^,). As
above, there exists 77 E Ker Tg ^ ^ such that r ] ( a ) ^ . ^ ( k ) is the
image of G. Evaluate 17 at ;c G D^ 0 (X — Z) near a :
77 (x) G Ker T^ W and v (77 00) < (.a^ i , /^ i ) . If </ (77 (x))
= (^+1 . / r + i ) . then (^+ i . ^+1)^ (^+1 . / r + i ) . ^ v(ri(x))
< ( a ^ i , / , + i ) , then either: (i) v (T? (^)) ^ U (^.,7,) + N^ and

<= i
(^+1 ^r+iXC^+iJr+i). or(ii) ^(7?(^))G U (a,,/,) + N" .

i= i

In the latter case, v ( r ] ( x ) ) = (c^. + 7, ^.), for some f = 1 , . . . , t
and some 7 E N " ; thus r ] ^ ^ ^ ^ ( a ) = 0 and 77^ + ^ ^ (x) ^ 0 .
On the other hand, 77^ ^ (a) ̂  0. Let

^'^^^"(c^^^'^-'^

Then 77'e Ker T g ^ ^ , - ^ ' ( a ) = T?^^^ (fl) . 77 (fl), and
^ (r? (A: )) < v (T? ' (x)) < (a^ ̂  /, ̂  ).

(1) follows by induction.

To prove (2), consider y and Z from Remark 8.4.4. Let
a E X - Z. Consider G E ̂  such that (/ (G) = (o^, /^), where
\<t<ty. As before, there exists 77 E Ker Tg ^ ^ such that
T? (a) E ̂  (A;) is the image of G. Evaluate 77 at xe. D^ 0 (X - Z)
near a : 77 (x) E Ker T^ (A:) and v { r ] ( x ) ) < (a,, j\) . If
^ (77 (x)) = (o^), then (a^j\) G ^^ , by Lemma 8.4.5. Otherwise,

^ ( r ? ( A : ) ) = ( ^ + 7 , ^ X ( ^ - A ) .
for some i = 1 , . . . , t^ and some 7Gl\T ' Thus 77^..^ ^.(a) = 0
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and 7^^(A-)^0. On the other hand, ^.(fl)^O, since
a C X - Z . Let

^=^,.^^^^^^^^

Then r/(a) == ̂ (a) • r? (ff) and (/ (77 (x)) < v (T/ (x)) < (^,/,).
(2) follows by induction.

D

PROPOSITION 8.4.7. -Suppose that k > k (X). Let Y be a
closed analytic subset of X. Suppose that Hg (k) == H^ (k) for
all a E X - Y. Let 9. = 9. {k ,X) anrf /^ Z 6^ ̂  m Remark 8.4.4.
Then ^ = 9^ for all a G X - (Y U Z) .

Proo/ - Let fl G X - (Y U Z). Then ^ C 9^ , by
Proposition 8.4.6 (2). Since H^ (fc) = H^ (fc), s^ = 9^ •

8.5. Pwo/ o/ Theorem 8.2:5. -(1) and (2) are equivalent, by
Propositions 8.3.6 and 8.3.7. (3) trivially implies (2). (2) implies (4)
by Propositions 8.4.6 (1) and 8.4.7. (4) implies (3) by Corollary 6.9
and Proposition 8.3.7.

Example 8.5.1. -We show that condition (4) of Theorem 8.2.5
is satisfied in Example 4.5. The notation is from 4.5. Let a E M^.
We will prove that the vertices of ^ C isr^x { 1 , . . . , d} are
(j3p /,) = (0 , d — i 4- 1), / = 1 , . . . , d — m , where m = m (a) :
Write ^(x0 ,^, . . . ,^^, . . .^0^) and <P (a) = (x° ,X°) ,
where \° = (X^ , . . . , X^) . It is enough to show :

(1) If ( R ^ , . . . , ^-m+i , 0 , . . . , 0 ) G ^, then each
R , -0 .

(2) There exist analytic functions S/ (^), 7 = 1 ? • • • ? m ?
defined near X° , such that, for each i = 1 , . . . , d — m,

( 0 , . . . , 0 , S , , , . . . , S ^ l , 0 , . . . , 0 ) e ^

(where 1 is in the i'th place from the right).
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We use the following observation [29]: Let

P <i
g (z ,jn) = ^ + I ^ zP-1 and h (z ,^) = ^ + H .̂ z^-7 ,

/= i /= i

where M = (Mi , . . . , M p ) , ^ = (^i , . . • , ^). Write
p+<?

^(Z,JLI). /Z(Z^)=Z^ + ̂  ^(M,^^-7.
/=1

Then the Jacobian determinant det (3X/3 (JLI , v)) is the resultant
of g and /z.

Let [t°} denote the distinct t° , and let m^ denote the
multiplicity of the root r? of p ( z , a ) . Then I, m^ = m and
^(z^^Cz^mz-y^, where g ( r ? )^0^ '= l , . . . , r f . By

a

the preceding observation and the implicit function theorem,

z^ + v x.z^-^gcz^.n^cz.x),
,̂ 1 /

where m^
, ^ ^ W fl( , ^L-\ /^ ^ ^ ( X /

^(Z,X) = Z a 4- ^ fla/(x)z .
/=!

d—m

g(z ,X)=z c / - w + ^ ^(X)z r f-w- /,
7 = 1

and
(i) each a^ (X) and &y (X) is analytic near X° ;

(ii) g ( z ) = g ( z , X ° ) ;
(iii) each (z-y^^Cz^0).

Define Sy (X), / = 1 , . . . , m , by
w

z'" + S Ŝ . (X) z'" -/ = n ̂  (z , X) .
/=! a

Then the S^(X) satisfy (2).
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To prove (1), consider analytic functions R^(x,\) near
(x° ,X° ) , / = d -m 4- 1 , . . . , d , such that

( R ^ , . . . , R ^ _ ^ ^ i , 0 , . . . , 0 ) E ^.
d

Let G ( x , r , X ) = ]L ^R/x.X). Then for each a, G
/ = d — m + 1

d

is divisible by ^4- ^ \^, and thus by ^0 ,X) , in the ring

of formal power series centered at ( x 0 , ^ 0 , ^ 0 ) . By (iii) and
uniqueness in the formal Weierstrass division theorem, the quotient
of G by q^(t,\) belongs to R [ t ] , where R denotes the ring of
formal power series centered at (x°,X°). Therefore, G is divisible
by n ^ ( r , X ) in R [ r ] . Since degree G < m = degree H q^ ( t , \),

Ot

then G = 0 ; i.e., each R^ = 0, as required.

9. Special generators.

Let M , N , 0, A and B be as in 8.2. Let ^ G N . Let
f lo-(^ , . . . , ^ )^ M^ and let ^ = < p ( ^ ) . Let X denote an
irreducible germ at a^ of a closed analytic subset of M3 . Let
U ^ n U7 be a product coordinate neighborhood of a^ in Nf ,

and let V be a coordinate neighborhood of bo in N , such that
0 (U7) C V , / = 1 , . . . , j-. Shrinking U if necessary, we can assume
that X is a closed analytic subset of U such that each connected
component of its smooth points is adherent to a

We continue to use the notation of 8.2-8.4. Assume that V
is an open subset of K" . Let 9^ denote the generic diagram of
initial exponents (cf. 8.4.3), and let Q3^.),/= 1 , . . . , ^ , denote
the vertices of 9^ . Our main theorem B and Remark 2.11 (2) are
consequences of the following :

THEOREM 9 A.-Assume there is a proper analytic subset Y
of X such that ^ = 9^ f^^ a G X - Y. For each fl'G X - Y ,
let G^ (y) = y^1^1 - ̂  ( y ) , ; = 1 , . . . , ^ , denote the standard
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basis of ^, where, for each f, in G1 =^^ and

supp r^ n ̂  = 0

r^ Cow/to^ d.S>». H/r̂  ^ (y) = ̂  r^ .̂ (a)y^i. Then:
ftj

(1) For each i = 1 ,. . . , t and (j3,7) ^ N" x { 1 , . . . , q},
r^.e^(x;Y).

(2) Suppose that Y == 0 a^d that ^ f5 generated by

^o n ^ ^ o - rA^- /or each l = 1 » • • • ? r> ^ = G^ e ^^ ^^
^(^)=G^ for a ex sufficiently close to a^. In particular ^
is generated by ^ 0 0^^ in some neighborhood of a^ in X.

Proof. — We can assume that K = C. For each i = 1 , . . ., r,
put /^OS^AOO. (t>(x)fiitki (in local coordinates, where (|)(x)0ifki

denotes the composition of y ifki with y = 0(x)). Let a G X — Y.
Put

H^ O/) = (<p(ff) + ̂ / / 'ki - y^ ki ^ r ^ ( y ) .

Then, for each i = 1 , . . . , t ,

s u p p H ^ O Q U ^ x =0 (9.2)

and f ( x ) - A , ( j c ) . ( H J _ o 0 ) O c ) G I m B ,, 7 = 1 , . . . , 5 ; i.e.,fl7 tf/ fl7 a/
^Kf^-^W^^^'

For each £ E N , let ^F^ (respectively, W^) denote the image
of ( /^) i<,<, (respectively, of H^) by the lower (respectively,
upper) horizontal arrow in the completion of the left-hand diagram
(8.2.6); thus,

^ -A^.^GImB^. (9.3)

Recall that ^J^ is the element of ® (P^ induced by
l<3|<fi

(^H;0^),^- w^ ^^^^K^^.^^I^.K/^'
where each H ^ ^ G <9^, and H^=(H^)^.^. It follows
from (9.2) that H^ ^ = 0 for all (ft, f) <= %x •
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Let kGN and let £ = C ( ^ , X ) . From (9.3), it follows that

adaa•k(x)s^o^s•kw\.^^-^.^,

where S = Ad^-^ D o R
''•*t•fl »,*,<» 8 ,a '

Let e (A:) denote the number of exponents (j3,/)
£ N" x {1 , . . . , q} such that Q3 ,7) ̂  %^ and | ^ | < fc
Suppose that a € X - (X, , U Y). By the formal division theorem
6.2 and Corollary 6.9, Remarks 8.2.4 and 8.3.1, and Proposition
8.3.6(2), rankT^(a)=e(A:); moreover, if W^O) denotes the
subspace {H = OV,),^.^.^ e $ ^x . / ' " x . - ^x )^

l(3|<k ' ' -'a

H^/^O if 0? , / )e9^} , thenrankT^(a)|W,(A:)=e(AO.Then
by Cramer's rule, for all j3£ IM" , |j3| <A:, and all / •= ! , . q
we obtain ^ ^., ̂ . e ^ (U) such that ^ ,(a)^o"i f

This gives (1) . a e X - (\ u Y), and H' . = $' ' /.
''' • ft,i,a '0,/,a' ' ' f t , i , a :

Now suppose Y = 0 and ^ is generated by ^ n fi><?
Then g' = G^ G ^^, / = l , . . . ,°,, by Corollary 6.8 (°2). For0 a

sufficiently close to a, in X, g^ (y) = g' (,(„) _ ̂  +^)e^.

But supp (î ^ - /'••/c') n ̂  = 0. By uniqueness of the standard

basis, G^ QQ = g^ (y). We have proved (2). a

PROPOSITION 9.4. - Let M ^e a« aKafyrtc manifold over K,
anrf /er Z C X denote closed analytic subsets of M. Let f 1 , . . . f
£ ̂  (X ; Z) [[^]p, where y = (y ^ , . . . , y ^ ) . For each a£X -' Z ,
let ^ C K [[>/]]"' rfenore fAe module of relations among the f'\a ;y).'
Let fly G X. 772CT2 /Ae/'e K a neighborhood V of a^ in M, 'and
a filtration of X n U by closed analytic subsets,

xnu=x<,3X, D.. .DX^, =znu,
such that, for each k = 0, . . . , r :

(1 ) 9?(^) is constant on X^-X^.

(2)^ G;GO=/^'-,^),/=1,...,/, denote the
standard basis of ̂  (as in 9.1), where a ^ X ^ - X ^ , . Write

r\ (y) = ̂  r^- (a) ̂ •/. rA^ each r^, £ ̂  (X, ; X,^ ,).
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Proof. - If a C X - Z , let ^ : K [Mf —^ K [[y}^ denote
the homomorphism given by the p x q matrix whose columns are
/1 (a ; ̂ ), . . . , /g (a ;^), and let < C K [Mf denote the image
of <t>^ . By Lemma 7.2 (3), there exist a neighborhood U of OQ
and X G N such that ^ 0 lii &+x . K [Mf C m8 . ̂  , for all
£ E N and fl G (X — Z) H U (where in denotes the maximal ideal
of K[M]) . Then, by Remark 7.6,

^(m^.KlMnc ^4- n^.KlMr,

for all £ G N and a E (X - Z) H U. With this uniform Chevalley
estimate, the arguments used to prove Theorems 8.2.5 and 9.1 can
be repeated to obtain the result.

D

We conclude this section with two "glueing" results, which
provide alternative reductions of the problem of verifying the
conditions of Theorem 8.2.5. The first reduces the problem to the case
that the source M is connected, and the second to the case s = 1 .
We use the notation of 8.2.

LEMMA 9.5.- Suppose that M is a disjoint union
M = Mi U M^ .

Let (f>i = 0 | M^., / = 1 , 2 . Let s ^ N. Suppose that, for each
t G N , t < s , one of the conditions of Theorem 8.2.5 is satisfied
when 0 is replaced by 0^ or 0^ and s is replaced by t. Then
the conditions of Theorem 8.2.5 are satisfied.

Proof. - Let t G N , t < s . Suppose that I is an ordered subset
of {1 , . . . , 5'} containing t elements (perhaps 1 = 0 ) . Put

'M^ = {a = (a1 , . . . , a5) e M^ : a1 e Mi if and only if ; G 1} .
Then lM5 identifies with the fiber product

M\ ̂  x^M^ = {(a, ,a,) E M^ ̂  x M5^ : ^ (ff,) = ̂  (^ .

Clearly, M5 is the disjoint union U ^M^ over all ordered subsets
I of { ! , . . . , s } .

Suppose I = (1 , . . . , t) (I = 0 if t = 0). Then it is enough
to show that 8.2.5 (4) holds in I]^ = M^^ x^M;^ . Let
a E ̂  ; say a = (a1 , . . . , a5), where a, = (a1 , . . . , a ' ) G M^ ^
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and a^ = (a^ 1 , . . . , a5) € M^ . Let s^ = t , s^ == s — t . Then
^a = ^a n ̂  » where for each z == 1 , 2 , ^. is the module
of formal relations at a^ e Mj^. associated to the mapping
0^.: M, —^ N and the matrices of analytic functions A and B
restricted to M, . Therefore, the result follows from Theorem 9.1,
Corollary 7.9, Lemma 7.2 (1) and Proposition 8.4.6 (1) (cf. the proof
of 9.6 below).

PROPOSITION 9.6. -Assume that N is an open subset of K" .
Then the diagram of initial exponents 9^ = 9^(^) is Zariski
semicontinuous on M^, for a given positive integer s , if and only
if it is Zariski semicontinuous in the case s = 1 .

Proof. - Let s be a positive integer. Since M = M1 is embedded
in M^ by the diagonal mapping, Zariski semicontinuity of 9^ on
M^ implies semicontinuity in the case s = 1 . On the other hand,
suppose that 9^(^a) is Zariski semicontinuous on M, where
^a = ^G E ^(a) : ̂ a (G) C Im B,} , a C M. Let ^ C M^ , and
let OQ E X C U as at the beginning of this section. By Proposition
8.4.6 (1), it suffices to find a proper analytic subset Y of X such
that 9^ is constant on X — Y . Let ^l: M^ —> M denote the
projection onto the i'th coordinate; i.e., fi1 (a) = a1, where
a = (a1 , . . . , 0s) E M^ , / = 1 , . . . , s . Then ^ = H ^. By

i~=-1
the hypothesis and Theorem 9.1, there is a proper closed analytic
subset Z of X such that, for each / = 1 , . . . , s. 9Z( . ) is

M'(ff)

constant on X — Z , and the coefficients of the standard^asis of
^ , , as functions of f f G X — Z , belong to ^(X;Z). The
result follows from Corollary 7.9 and Lemma 7.2.

Remark 9.7. -It follows from Theorem 8.2.5 that the same
assertion is true with M a (possibly singular) analytic space. The
proofs of Lemma 9.5 and Proposition 9.6 apply also to the case that
M is singular.
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