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NEW EXAMPLES OF NON-LOCALLY
EMBEDDABLE CR STRUCTURES

(WITH NO NON-CONSTANT
CR DISTRIBUTIONS)

by Jean-Pierre ROSAY^*)

Several years ago, L. Nirenberg gave a famous example of a strictly
pseudoconvex, non-locally embeddable, CR structure on a manifold of
dimension 3, ([7], [8] see also [4]).

This phenomenon of non-embeddability is important enough in order
that it may be worthwhile to give new examples which may shed a new
light and seem to present some improvement. In the previous examples it
seems that only the existence of C1 CR function could be investiged. We
can just as well handle the case of CR distributions. There may be more
than just a theoretical interest to it, since, for example, L°° functions arise
quite naturally as weak limits.

Our example has the possible additional feature that it can be adapted
so that the CR stucture that we construct can be extended to a complex
structure on the concave side of the manifold. This relates to a theorem
by D. Catlin [14], and an example (in dimension 5, with degenerate Levi
form) by D. Hill, who conjectured that such one sided extensions to the
concave side always exist, and asked explicitly the question for Nirenberg's
example [2]. Full details will not be provided, but some indications (that
we hope to be sufficient) are given in a remark at the end of the paper. It
seems also that our examples complete some examples by Jacobowitz [3],
concerning the canonical bundle.

^ Research partly supported by NSF grant DMS 8800610.
Key-word : CR structure.
A.M.S. Classification : 53B25 - 32E20.
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In part I, we describe a simple "basic construction" from which
everything follows easily. This is the main part of the paper. In II, we
get immediately an example of a strictly pseudo convex CR structure on
a manifold of dimension 3 (arbitrarily close to any given structure, as in
[4]), for which there is a point so that every CR distribution defined in a
connected neighborhood of this point, must be constant.

We get also examples of structures with only one "independant
solution" (see further, for more details).

In III, we give a new approach to results by Jacobowitz and Treves
[4]. Jacobowitz and Treves were the first to show that the phenomenon
of non-embeddability occurs too in higher dimension for stuctures whose
Levi form is non-degenerate and has only one positive eigenvalue. Then
all CR functions, or distributions, must be smooth, if the CR structure is
smooth ([12] page 493- , or [10]). In III we give examples of non-embeddable
CR structure on manifolds of dimension 2m — 1, whose Levi form has one
positive and (m — 2) negative eigenvalue (arbitrarily close to any given
embedded stucture), with locally, no non-constant CR functions. Or with
only k "independent solutions" {k arbitrary k 6 { 0 , . . . , m}) : z\^..., z^
which satisfy dz\ A . . . A dz/c 7^ 0 and so that every CR function is a
function of (^ i , . . . , ̂ ). By CR structure we will always mean CR structure
of hypersurface type, and we will consider only smooth (C°°) structure.

Let us remind the reader that it is still an open question whether any
strictly pseudoconvex CR structure of dimension 5 can be locally embedded
(for dimension > 7, this is known to be true [I], [5], [13]). Our example sheds
some light on the difficulty to build a counterexample, from the point of
view of function theory.

I. BASIC CONSTRUCTION

1. Lupacciolu's theorem.

Although very simple, our construction relies entirely on a very nice
result by G. Lupacciolu [6]. We are using only a very particular case, but is
seems much more pleasant to state the result in some generality. A different
and simple proof of Lupacciolu's theorem is given in the appendix in [9].

"Let n be bounded domain in C71 and K a polynomially convex
compact set in bfl (the boundary of ^). If bfl is smooth and strictly
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pseudoconvex off K, then every CR distribution denned on bH — K has
a holomorphic extension to ^l (i.e. in some sense K is negligible).^

Since every CR distribution on bQ — K has a local holomorphic
extension inside to 0 (due to strict pseudoconvexity), the case of CR
distributions reduces easily to the case of smooth CR functions.

2. Construction of a CR structure.

We start with S a smooth strictly convex hypersurface defined in
^, an open neighborhood of 0 in C2. We assume that 0 € S and that
Re ^2 > 0 on S (therefore > 0 on S - {0}). We fix /? > 0, small enough in
order that Sr\ {Re z^ < /3} is a compact set in Q, and that the line segment
from (0,0) to (O,/?) does not intersect S except at (0,0). For 0 < a < f3 we
set :

E=6'n{Re^ </?}
S- = 5n{Rez2 < a}

S+ =5n{a <Rez2 < f3}
5^ = Sn{Rez2 =a}.

Then, we consider zf a smooth function defined on E with the following
properties :

(i) 9b zf vanishes to infinite order along Sa'

(ii) zf is sufficiently close to z\ (say in the C2 topology) in order
that the map r : (^i, z^) i—^ (^(^1,^2)5^2) maps S into a strictly convex
surface (diffeomorphically).

(hi) For | 2/2 I small zf(z\^a + iy^) = z^ + — for some positive 6,

(fi
e < ,«, where d is the distance from (0,a) to S.2o

(iv) For Rez-2 < -^- zf(z^,z^) = z^.

To construct such a function zf is extremely easy. One can set

^(^15^2) = ^i + —x(^2)- For \ one picks a smooth cut-off function,
defined in C, which is identifically 1 in a neighborhood of a, but has small
support around a, and such that 9\ vanishes to infinite order along the
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real line {Rez = a}. Notice, as a crucial fact, that for z^ close to a, z^ / 0
if (^1,^2) e 5. Once \ is chosen, it is enough to take e small enough.
Observe that one can therefore take zf as close as wanted to z\ (in the
C°° topology).

It follows from (ii) that there is a unique CR structure on E~ such
that zf and z^ are CR functions. It is the pullback of the structure induced
from C2 on T(E~) and it is therefore a strictly pseudoconvex structure. It
follows from (i) that this structure patches smoothly with the standard
CR structure along Sa- On E+ we use the standard CR structure (induced
from C2).

This finally gives rise to a smooth CR structure on E which is strictly
pseudoconvex, and for which we have as independant CR functions :

f (a) on E~, zf and z^
\ (b) on E"^, zi and z^.

As a last piece of notation, let E7 = En {Re 2^2 > °-}. For some applications

we will need to consider functions defined only on E'. The only idea in our
construction is in the following claim.

CLAIM — It follows from (Hi) that every CR function denned on E or
E', (equipped with the above CR structure) is a function of z^ only. The
same holds for CR distributions. In addition, any CR distribution on E (or
E'^, that is constant on E'^, is constant.

3. Proof of the claim.

3.1. For simplicity let us first treat the case of continuous CR function
on E (or S'). The restriction of / to E+ is a CR function (for the usual
structure). By 1, it extends to a holomorphic function on the open set
bounded by E and the hyperplanes {Re 3:2 = o; or /?}.

Let 7 be the curve in the z\ plane constituted by the points z\
such that (^1,0;) e S. We conclude from what precedes that the function
z\ ^ /(zi,o;), defined on 7, extends holomorphically inside the convex
curve 7, and is therefore the uniform limit on 7 of a sequence of polynomials
in z\.

The same holds, for | y^ \ small, on the corresponding curve
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{(^i € C, (^1,0+^2) € 5}), for the function z^ ̂  f(z^,a + ̂ 2).

Together with T(E~), the hyperplane {Re ^2 = a} (or the hyperplanes
cy

{Re ^2 = a or -}) bounds a domain to which we can again apply

Lupacciolu's theorem, since CR functions on S~ for our structure are usual
CR functions on T(S~).

The conclusion is that on the curve 7 the function z\ ^-> /(^i,a) is

a uniform limit of polynomials in z-i + — (= zf). And , again, the same

holds, for [ 1/2 | small, on the corresponding curves. Notice that 0 is inside
7-

It now follows from the above facts and from the Lemma below (which
we immediately state for distributions), that for | y^ | small /(^i,a + iy^)
does not depend on z\. So the holomorphic extensions of /, from S"^ and
T(S~) respectively, do not depend on z\. Hence / depends only on z^, as
claimed. And it is also clear that if / is constant on S^ then / is constant.

It remains to state and prove the following Lemma.

3.2. LEMMA. — Let 7 be a smooth closed curve in C, so that 0 ^ 7
and 0 does not belong to the unbounded component of C—7. Let d be
the distance from 0 to 7 (or any smaller positive number). Let 6 € C,

0 <| e |< —. Then no non-constant distribution on 7 can be both theZo
limit in the sence of distributions of :

(a) a sequence of polynomials in z

(b) a sequence of polynomials in z -h -.

Proof of the Lemma. — We can assume c to be real and positive. Let

TI be the mapping defined on C-{0} by r^(z) = z + €-. If z E 7 | r^(z) |>

^ — , > 7 . and T is 1—1 on 7. Indeed r(z) == r ( z ' ) implies z = z1 or z ' = —-,u z ^

but | z z ' |> d2 for z and z1 e 7. Set I\ = {z e C, | z \= v6}. r maps I\ toz

r^ the ellipse with vertices at ± (2^/0 + —6) and ± (2^/e - v 6) z, which

lies inside the curve 7-1(7), since -̂ - < -. But a crucial fact is that as a
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map from I\ to r^, r\ reverses orientation. If / is a distribution on 7 which
is on 7 the limit of a sequence of polynomials, / extends holomorphically
inside 7. Set g = (r\)^f(z.e. f o r^~1 if / is a function) on Ti(7). If / is

a limit of polynomials in z + -, g extends holomorphically inside Ti(7).

Denote by / and g the above holomorphic extensions. By unique analytic
continuation, we have g o r\ = / on the region of the plane delimited by 7
and I\ (which is indeed mapped, by TI, inside Ti(7)).

If g were not constant, by adding a constant we could assume that
g does not vanish on 1̂  but vanishes at some point inside 1 .̂ Since r\
reverses orientation (from I\ to 1^), the variation of the argument of /
along I\ would be 27rk for some k < 0, a contradiction.

Remark. — The bound | e \< — should not be taken seriously. In
Zo

fact if 7 is a circle it is easy to see that the, proof above gives the result for
every e -f- 0. In case of functions (instead of distributions) one clearly does
not need the curve to be smooth.

3.3. The distributional case. — The basic fact to be used is the follo-
wing : if 7 is a curve in a CR manifold, which is not "complex tangential"
(i.e. 7 does not belong to the span of the Cauchy Riemann vector fields
and their conjugates) then the restriction of any CR distribution to the
curve 7 makes sense as a distribution ( and in the space of distribution
varies smoothly as the curve varies smoothly). This does not require the
CR structure to be embedded. On the contrary, it comes from a much more
general theory, see [11] Proposition 5.2, page 39. To extend the proof given
in 3.1 is then easy. To avoid any difficulty on S^, one can take advantage
of the fact the structure on E'^ is embedded, the one on S~ is embeddable
(by r). Then any CR distribution has local holomorphic extensions to the
convex side.

4. Remarks.

4.1. For the next paragraph it will be useful to indicate how to
reformulate our claim, to lead obviously to an "invariant" formulation :

Let N = (0,1). This is a normal vector to S at the point p, j)=0, poin-
ting towards the convex side of S. Then {Re z^ = a} = {Re((z -p) ' N) =
a}. And the conclusion has been that CR functions were depending
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only on (z • N).

4.2. It is not hard to see that the canonical bundle of the structure
constructed in 2, cannot have on S (or even S') a non-zero closed section.
For definitions, and interesting related results, see [3]. Indeed such a section
could be written h(z^,z^)dz^ A dz^ on ̂  and k(z^,z^}dzf A dz^ on E~,
where h and k should be CR (for our structure) on E^ On Rez^ = a

one must then have /i^i,^) = fl - 4- x(^)) k (2:1, ^2). Let 7 be as in 3,v ^i /

and let us use again the notations in the proof of the Lemma. For z^ = a,
fixed, the function z\ »->• /i(^i,a) extends holomorphically inside 7, while
the function z\ i-̂  k^r^l(zi),a) defined on Ti(7) extends holomorphically
inside the curve Ti(7). Denote these holomorphic extensions, by k and h.
By unique analytic continuation one must have :

^h(zi) , , , ,—^—— = koTi(zi), for z^
z! ~ e

inside 7, | z^ \> —. The singularities of the left-hand side, at z\ = ^v^

are therefore removable. By the Lemma, -^— must be constant, which
2 : 1 — 6

can happen only if h is identically 0. Again, the same must happen for
Re ^2 = ^? ^2 close to a, on the corresponding curves. And one gets that
the canonical bundle has only the zero section, on S.

II. EXAMPLES

1. We consider a strictly convex surface S and f3 > 0 as in 1.2. Let

Sj = [ ^ j ^ ^ j ) be a sequence of points in S (converging to 0). Denote

by Nj the unit normal to S at Sj, pointing towards the convex side. Set
Fj = {z 6 5, Re{{z — Sj) • Nj) < o^}, where the a'^s are positive numbers,

chosen small enough in order that on Tj ' - ' 3 - < Re^ < -^ + -p^'

The convex hulls of the Yj are disjoint. On each Tj make a small pertubation
of the CR structure induced from C2, following the basic construction with
0 replaced by <^, so that every CR function on 1̂  depends only on (z • Nj).
One gets a CR structure on 5, arbitrarily close to the original one, for
which :
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PROPOSITION 1. — If f is any CR distribution defined on a connected
neighborhood ofOin S (for the CR structure just denned), then f must be
constant.

Proof. — Set A = -^ + y^ for r > 1, r large enough in order that

/ be denned on S D {Re^ < A}. Notice that our choice of A makes sure
that the hyperplane {Re ^2 = A} does not intersect any Fj. Let cj be the
open set bounded by S and the hyperplane {Re 2^2 = A}. Set Tj to be the
convex hull of Fj. Due to Lupacciolu's theorem, / extends holomorphically
to (j - U, Fj. Indeed one can show that buj n |Y N r^) u {Re ^2 = A}1 is
polynomially convex, or more easily one can take care of each Fj, separately.
And our structure is just the usual one off the r/s. Due to what we have
seen before, for infinitely many indices j (therefore for at least two distinct),
this holomorphic extension must depend only on {z ' Nj). So it must be
constant. Then, as seen in 1.2, / must be constant on S H {Re 2^2 < A} (by
the last part of the claim). If one desires, it is not hard to prove that in
fact / must be constant on the whole connected neighborhood on which it
is denned, by reasoning as in I.

2. Going back to the construction given in I, for j = 1,2,. . . set

Oj = .j. For each Oj, we can do a small pertubation of the standard CR

structure exactly as described in I (just take a = aj). This pertubation

takes place in this region ^ —— < Re 2^2 < aj \. One ends with a CR
I <J J

stucture on 5, arbitrarily close to the standard one. From the claim in I (this
why we introduced S'), we get immediately that, for this CR structure :

PROPOSITION 2. — Z2 is a CR function, and every CR function or
distribution, defined in a connected neighborhood of 0 in S , depends only
on 2^2.

3. Remarks. — A variant of the construction done in 1 will be presen-
ted in III. Somewhat "closer" to the construction in 2, this construction will
lead more easily to a CR structure which extends to a complex structure
on the concave side.

Every CR structure on a 3-dimensional manifold can be approximated
by a real analytic one (since there is no integrability condition in dimension
3), and therefore a locally embeddable one. So we can obtain examples
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of non-embeddable CR structure with no non-constant CR distribution
arbitrarily close to any given CR structure.

From 1.4.2, one sees that in our examples the canonical bundles has
no non-zero section in any connected neighborhood of 0.

III. HIGHER DIMENSIONS

1. Let us make some comments on the situation. To carry out our
construction in higher dimensions, with extra variables ^3 , . . . , Zm, we meet

n ^

the following problem. We would like to set again z{ = z^ + —^, where \
^i

is a cut off function which must be 0 when z\ = 0.

And we wish to keep 9bzf = 0 on {Re ^2 = ^}- This is clearly
impossible rf, as in general, \ has to depend effectively on the extra variables
^3, • • • ? ^m- Things however can be worked out in case of concavity (in the
extra variables). Another way to see an obstruction is the following : if for
z\ = a the trace of S on {^2 = Oi} were a bounded domain in C71"1, the
matching of the CR structures of ̂ ± along {Re z^ = a} would require that
the (lower dimensional) CR structures induced on 5' H {^2 = a} coincide.
Then Hartogs extension phenomenon would go precisely in the opposite
direction to the Lemma given in I, by imposing some matching of the CR
functions on S^.

2. In the remaining part of this paper we will consider S an hyper-
surface defined in a neighborhood of 0 in C771, 0 C S. And we assume that
S is defined by

Re ^2 =| z, |2 + | ̂ 2 I2 -^ I z, I2 +0(1 z I3).
J==3

This covers (after holomorphic change of variables) the case of hypersur-
faces with non-degenerate Levi form with only one positive eigenvalue. If
we fix a > 0 (small) the key fact is that, on S D {^2 = o^L ^i ^oes not

vanish. This allows to adapt immediately the construction done in 11.2
(treating ^3,...,^ as mere parameters on which \ would not depend)
to give an example of a non-embeddable CR structure arbitrarily close to
the standard CR structure induced from C771 on 5, with following pro-
perties. The functions z ^ , . . . , Z m are CR functions. Every CR function /
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depends only on (^2 , . . . ,Zm)i n^ on ^i? and therefore, being CR, satisfies
df A dz^ A . . . A cbyn = 0.

To work with several sets of coordinates allows one to strengthen the
conclusion. This is what is just sketched in the next paragraph.

3. Let k > 2. We want to get, for a perturbed CR structure on
5, that 2^4-1, . . . , Zm are CR functions and that, in a neighborhood of
0, any CR function can depend only on ^+1,...,^ (in particular is
constant if k > m). Here, there is a change of notations with respect to the
introduction.

All the perturbations which follow will be made small enough to
keep the signature of the Levi form, and therefore the smoothness of CR
functions. We pick "small" disjoint open neighborhoods Vj of the complex
hyperplanes {z^ = 2-7}, for j large. Set Sj = SHVj and 6" = S- (\J^ Vj\.
On a neighborhood of 6" in S we keep the standard structure for which, in
a neighborhood of 0, the Levi form has one positive eigenvalue and (m — 2)
negative eigenvalues. We assume, as one can, that S" is connected, and
locally connected, and that each Sj is connected. On each 5j we modify
the structure in such a way that :

(i) Every CR function on Sj satisfies

df A dz^ A . . . A dz[^ A dzk+i A . . . A dzm = 0,

where each zy is some linear combination (depending on j) of the
coordinates functions / z i , . . . , ^ , very close in the C°° topology to Zp
( ^ = 2 , . . . , k).

(ii) Every CR function / on 5j, which on some non empty open
subset of Sj satisfies the equation df A dzk-\-^ A . . . A dzm = 0, satisfies the
same equation on Sj.

We assume the z^ to be closed enough to z^ so that for f^ a fixed
neighborhood of 0, in which the construction will be carried, {;4 =
2-^}nnc^.

To achieve (i) one proceeds as already done several times. Ones mo-
difies the standard structure in a neighborhood of the complex hyperplane
{z^ = 2"-7}, by patching along the real hyperplane {Rez^ = 2-•7} the
standard structure with the structure defined by prescribing the functions

y# ___ y , ^___^(^U)\ M) yU)

Z^ — Z\ -r- \\^ )^ze2. i ' • • 5 ^k i ^k-^l-s ' ' • •> ^m
^1
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to be CjR [one can apply Lupacciolu's theorem "slicewise" for z^\..., z^\
2^4-1,.. . , Zm fixed and small]. The function \ is a smooth cut off function
with small support around 2~3 and 9 flat on the real line {Rez = 2-•7}, e
is a small positive number.

Let us turn to (ii). For 8 > 0, small enough the set Sj — {z €
C^Re^ = 2"7, | Im z^ |< 6} is connected. If the support of \ has
been chosen small enough (that for simplicity of the proof we will assume)
our CR structure is locally embeddable at each point of this set (by

z ̂  ( C i , . . . , Cfc^+i, • • . , ^m), tor Cp = ^p or z^ p = 2 , . . . , k and Ci = ^i
or zf). Then (ii) follows immediately from the fact that a holomorphic
function denned on a connected open set cannot vanish on a nonempty
open subset of an hypersurface without being identically 0, since on Sj the
functions /, 2^+1, ' - ' i ^m are CR functions.

The same argument shows the following. Let 0 be an open neighbo-
rhood of 0 in 5, assume 0 D 6" to be connected. Let / be a CR function
denned on 0. For large j, Sj C 0. From (i) we have

df A dz^ A . . . A dz^ A dz^i A . . . A dzm = 0, on Sj

but, on a neighborhood of 5" z^\..., ̂ \ 2^+1, . . . , Zm are CR functions
and we then get that

df A dz^ A . . . A dz^ A dz^i A . . . A dzm = 0, on S ' .

We do not immediately get this on S^ for £ / j, since on S^ the Zp are
not CR, for our structure.

By using, for different indices j, different linear combinaisons z '^ \ . . . ,
z^ of the functions 2:1,2:2, . . . , ̂ , (it is crucial that z\ appears!) we can
get that on a neighborhood of 0 H 5" : df A dz^i A . . . A dzm = 0.

Then according to (ii) df A dzk-\-i A . . . A dzm = 0 on S and this yields
the desired conclusion.

5. Remark. — We wish to present some remarks about the possibility
to do our construction in such a way that the CR structure extends to one
side of S to a complex structure.

The perturbation of the CR structure that we did on 5j leads to
a corresponding perturbation on Vj — {z\ == 0}. While one keeps the
usual complex structure on one side of the real hyperplane {Rez^ =
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2~7}, one imposes on the other side the functions zf (same definition),
ze/ ? • • • 5 ̂  5 zk+l ? . • . , ^m to be holomorphic to define the complex struc-
ture.

On a neighborhood of the boundary of Vj, this is still (in a fixed
neighborhood of 0) the standard structure. Finally, this gives an extension
of the CR structure to a complex structure on the side of S towards which
(0, -1,0,..., 0) is pointing out (but not on the other side). The following
figure, for (^3 , . . . , Zm) = 0, may help :

V,

For Re z^ < 0, the complex structure to be considered is just the usual
one.

Added in proof : Hill's conjecture has been recently proved by D.
Catlin (communication at the AMS summer Institute at Santa Cruz, July
89).
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