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THE TRIVIAL LOCUS
OF AN ANALYTIC MAP GERM

by H. HAUSER and G. MULLER

1. Statement of results.

In this paper we shall prove :

THEOREM 1. — Let n: X —> S be a morphism of analytic space germs.
For a e X denote by X(a) the germ in a of the fiber of n through a.
There exist analytic space germs Y c: X and T c: S with the following
properties :

(i) The germ of points a e X for which X(a) is isomorphic to the
special fiber X(0) equals the reduction of Y (and is hence analytic).
The reduction of T is the image of the reduction of Y under TT
(which is hence analytic).

(ii) The restriction ofn to Y is a submersion T iy : Y —> T, i.e., its
special fiber 7(0) is smooth and Y ^ Y(0) x T over T.

(in) The special fiber X(0) of n is isomorphic to Y(0) x Z for some
germ Z.

(iv) For any cartesian square

X ' -> X

n'[ In

s' -> s
the morphism n' is trivial (ie., X ' ^ X(0) x S ' over S ' ) if and
only if the base change S ' —> S factors through T.

Key-words : Morphisms of analytic space germs - Cartesian products - Deformations.
A.M.S. Classification : 14 - 32.
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We shall call T .the trivial locus of n. By (iv) it is uniquely
determined. Note that the germ Y is only determined up to isomorphism.

Example. - ' Let A"i, X^ c (C^O) be defined by ideals
A = (x?-x^ri), /2 = (x?-(x2+r?)-x^2) and let A" = X^ u X^ with
ideal / = /i n ^ = (^-(xz+rD-xi, ^2). Furthermore let 5 c: (C^O)
be defined by r^. The projection (C^O)-^ (C^O) restricts to a
morphismji: ^-^5. The trivial locus of n is then defined in (C^O)
by (^,^2) (cf. the proof of Theorem 1).

i^

1^

;Let us state some consequences and special cases of the Theorem.

COROLLARY 1 (Ephraim, [E, Thm. 0.2]). - Let X be an analytic
space, germ. For ae X denote by X{a) the germ in a of X. Then the
germ Y of points a e X mth X(a) ^ X is a smooth analytic germ and
X ̂  Y x Z for some germ Z (case S = 0 in the Theorem).

COROLLARY 2 (Economy of the semi-universal deformation, Teissier,
[T, Thm. 4.8.4]). - Let X(0) be an isolated singularity mth semi-
universal deformation n: X -> S. Then no fiber X(a) is isomorphic to the

.special fiber X(0).
Indeed, the trivial deformation X(0) x T -> T can be obtained from

n by the base changes T c-̂  S and T -> 0 c: S. The uniqueness of the
derivative of the base change gives T = 0. Since X(0) is an isolated
singularity thjs implies Y == 0.

COROLLARY 3. — Let n: S -> y be a morphism of analytic spaces.
For a e S ^ denote by °£(a) the germ in a of the fiber of n through a.
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Then °K (a) ^ ^(b) defines an equivalence relation on ^ whose equivalence
classes are locally closed analytic subsets of°K.

Remark. — For flat morphisms n: X -> S the existence of a germ
T c- S with the universal property (iv) of Theorem 1 was also proven
by Greuel and Karras [GrK, Lemma 1.4] in case r(0) is an isolated
singularity and by Flenner and Kosarew [F1K, Cor.r 0.2] for X(0)
arbitrary.

Theorem 1 will be derived from :

THEOREM 2. — Let n; X -> S be a morphism of analytic space germs
with section CT : S -> X. For t e S denote by X^ = X((j(t)) the germ in
a(t) of the fiber of K over t. There is a unique analytic space germ
T <=. S with the following properties :

(i) The germ of points t e S for which Xt is isomorphic to^the special
fiber Xo equals the reduction of T {and is hence analytic).

(ii) For any cartesian square

X ' -> X

n'[ [n

S 1 -^ S-

with induced section a' : S ' -> X ' of K ' the morphism n' can be
trivialized by an isomorphism X ' ^ Xo x 5" mapping a'(5") onto
0 x 5" if and only if the base change S 1 —> S factors through T.

We shall call T the trivial locus of the pair (7i,a).

Example. — In the example following Theorem 1 the embedding
(C^O) c-, 0 x (C^O) c (C^O) restricts to a section a : S -> X of
7i: X -> S. The trivial locus of (7t,cr) is then defined in (C\0) by
(^,^2).

COROLLARY 4. — Let n: X -> T be a morphism with section and
assume that T is reduced. If all fibers Xi are isomorphic to the special
fiber Xo then n is trivial.

Remarks. — (a) Corollary 4 can be interpreted as follows: The
fibers of n form a local analytic family {X^eT °t analytic space germs.
By assumption there is for every t e T an isomorphism (j)^: Xt ^ "Xo.--
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which, of course, is far from being unique. For bad choices <^t won't
be even continuous in t. But also if there were some canonical choice
for (j)^ it is a priori not at all clear that this (()^ will be analytic in t.
Corollary 4 asserts that one can always choose a family {(()J<e'r which
is analytic in t.

(b) Our proof will show that the assertions of Theorems 1 and 2
(except parts (i)) hold true for algebroid spaces (defined by formal
power series) in place of analytic space germs. The algebroid counterpart
of Corollary 4 was proven by Seidenberg [Se, Thm. 3] in the special
case T smooth.

(c) Also, our proof will show that if the given data are algebraic
then the trivial locus in Theorem 1 as well as in Theorem 2 is algebraic.

(d) The statement in Corollary 4 is a local analogon of a result of
Fischer and Grauert [FiG, Satz] and Schuster [Sc, Satz 4.9]: Let
K : ̂  -> ^ be a proper flat morphism of analytic spaces and assume
that (F is reduced. If the fibers of n are pairwise (globally) isomorphic
then n is trivial locally around any point of<F.

(e) Proposition 1 of [GaH] is an incorrect quotation of Ephraim's
result stated as Corollary 1 above and anticipates the assertion of
Corollary 4. We thank G.-M. Greuel for pointing out this error and for
stimulating us to prove the present result. Also we are indebted to
H. Flenner for valuable suggestions concerning the proof of Theorem 1
(iv).

2. Infinitesimal neighbourhoods
and isomorphisms of analytic space germs.

Let us recall the following Approximation Theorem :

THEOREM 3 (Artin [A, Thm. 6.1] in the polynomial case, Pfister,
Popescu [PfPo, Thm. 2.5] and Wavrik [W, Thm. 1] in the general case). -
For given £ e ^J and convergent fe C{x,y}p there exists k e ̂  such that :
If y ( x ) e CUxjr with y(0) == 0 is a formal solution of f(x,y) == 0 up to
order k :

/(xJOc))=0 modM^1,

then there exists a convergent solution y(x)eC{x}m approximating y(x)
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up to order ^ :

/(x^(x))=0

y(x) =-y(x) mod(xr1.

Remarks. — (a) I f /e C^,^ is polynomial then the integer k can
be chosen to depend only on ^f, the numbers n and m of x- and
^-variables, and the degree of/, {A, Thm. 6.1]. We do not know whether
in the general case there is an integer k only depending on <f, n, m,
and some numerical invariants of/.

(b) If /e C^x,^ is formal then the analogous statement holds
yielding a formal solution y ( x ) e C^x]]171, [PfPo, Thm. 2.5], [W, Thm. IJ.

Theorem 3 will allow us to reduce the problem of checking isomorphy
of space germs to the comparison of infinitesimal neighbour-
hoods of their special points and thus to the comparison of finite
dimensional C-algebras. This can also be applied to the case of relative
space germs X -> T: Let X be an analytic space germ with local ring
Ox and Z c= X a germ with ideal Iz c Ox- For k e N denote by Z^
the fe-th infinitesimal neighbourhood of Z in X with local ring
^//^+1. If Z is the special point 0 of X we write Z^ = 0^. For a
morphism 71: X —> T with section a : T -> X we shall identify T with
(7<T) c X and then write T^ instead of 0(7)^. The composition
a^ : T -> 0(7) c: T^ gives a section of the restriction n^ : T^ -> T
of K.

THEOREM 4. — Let n : X -> T and T : Y -> T be morphisms with
sections a : T -> X and p : T -> Y. Then X and Y are isomorphic over
T and the sections a, p ;/ and only if for all k e ^ the infinitesimal
neighbourhoods T^ ^d T^ are isomorphic over T and the sections a^,
p^. (Here, isomorphic over T and a, p means that there is an isomorphism
X ̂  Y over T mapping a(T) onto p(7).)

In particular, two absolute analytic space germs X and Y are
isomorphic if and only if for all k the fat points 0^ and O^ are
isomorphic.

Remark. — The following version of Theorem 4 seems, at first view,
to be stronger but is actually equivalent: For given 71, T, a, p there is
k e ̂  such that X and Y are isomorphic over T and a, p if and only
if r^ and T^ are isomorphic over T and a^, p^. As the proof will
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show the integer k is obtained by an application of Theorem 3. Hence
this second version would be useful if we could explicitly calculate k
from the given data (cf. remark (a) after Theorem 3).

Proof of Theorem 4. - Choose embeddings X, Y c: (C",0) x T over
F, [Fi, 0.35]. Composing with an automorphism of (C",0) x T we can
assume a(T) = 0 x T == p(7). Choose an embedding T a (C^O) and
let (x,t) be coordinates on (Cn+m,0). Moreover choose map germs G, H :
(C^O)-^ (C^O) such that G defines JT in (C^O) x r by
X = (r-^O) n ((C",0) x T), and analogously for Y and .̂

One implication in Theorem 4 being obvious, let us suppose that
\|/^: T^ ^ T^ is an isomorphism over T and the sections. By an
argument similar to [D, Prop. 1.2] \|//, can be extended to an automorphism
(j^ of (C^O) over (C^O) and the sections. Write (|^(x,0 = (}^0^),0
with some j^^+m- Since (|)^ maps T^ onto T^ there is a
p x p-matrix Uk(x,t) with entries in fi^+^ such that

H{y^t\t) = £/,(x,O.G(x,0 mod^)^1 + /(C",O).T.

By a standard trick (cf. [M, 2.3]) Uk(x,t) can be chosen to be invertible:
Uk(x,t) e GLp^n+m)- Since (^k maps Ox^^O) onto itself there is
V^t) e GL,(^+J such that

3^,0 =" r,(x,0.^.

If k was sufficiently large Theorem 3 with f = 1 yields .y(x,0 e < P ^ + ^
and'matrices U(x,t) e GLp(^^+J, F(^r)eGL^^»+J such that

7^(x,0,0 =^(x,0-G'(x,0 mod/^ox'r

y(x,t) == F(x,Q.x.

Then ^: (C^^O) ̂  (C^'O) given by (()(x,0 = (y(x,0,0 is an auto-
morphism of (C^^Q) over (C^O) and the sections. Its restriction to
X is an isomorphism X ^ Y over T and the sections. This concludes
the proof.

In the sequel we shall need a more explicit version of Theorem 4.
Suppose that we are in the situation established at the beginning of
the preceding proof. Define maps y, T| : ((^,0)-^ 6^ by j(t)(x)
== G(x,t) and Ti(t)(x) == H(x^t). Composition with the natural map
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^ ̂  (^/^y = V, gives analytic map germs

Y,: (C-O) -^ (V,,^) and i^: (C"0) ̂  (V,,h,).

Now consider the semi-direct product

K ,= GL,(^) x Aut(O^o))

where ^, == ^/^+1 is the local ring of O^,Q). This is an algebraic
group acting rationally on the finite dimensional vector space V^.
Finally set K^ = (K^ 1), the germ of K^ in l .

COROLLARY 5. - The space germs X and Y are isomorphic over T
and the sections if and only if for all k e N there is a morphism of space
germs ^ : T -> K^ such that the diagram

T (^ YJT) ^ x (v^)

^l77^^ • (V.,^)

commutes. Here the vertical arro^ is induced by the action of K^ on V^.

Proof. - Every analytic map germ B: (C^^O) -^ C induces a map
germp: (C^O) -^ (9, by P(r)(x) = B(x,t), hence an analytic map germ
(3/c: (C^O) -^ ^^^+1 = ̂ . Conversely, every analytic map germ
(C^O) -»^4^ is obtained in this way. A given B is contained in
OO^1 + I<c",o)xr if and only if the coefficients of p^ (considered as a
polynomial in x) are contained in I T , i.e., P JT=0 . Using these
observations, similar arguments as in the proof of Theorem 4 yield the
assertion.

3. Proof of Theorem 2.

We need a simple result on algebraic group actions:

PROPOSITION 1. - Let V be a finite dimensional complex vector space
with germ V = (V,u) in a fixed point v, G c= GL(V) an algebraic
subgroup mth germ G = (G,l). Let y : S -> V be a morphism of analytic
space germs.

(i) !The orbit G ' v is a smooth algebraic subvariety of V. Let G ' v be
its germ in v and T = y'^G-i;) c: S the inverse image (mth possibly
non-reduced structure).
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(ii) There is a morphism 0: T -> G such that the diagram

G
^^ I

commutes. Here the vertical arrow denotes the orbit map.

Proof. - Consider the homogeneous manifold G/Gy where Gy
denotes the stabilizer of v in G, [V, Thm. 2.9.4]. By [H, 8.3] the orbit
G-v is a smooth locally closed algebraic sub variety of V. The orbit
map G / G y - ^ G - y is an isomorphism of analytic manifols, [V, Thm.
2.9.7]. By [V, Thm. 2.9.5] there is a germ of an analytic section

y\T

( G / G y , l - G y ) - ^ ( G , l ) = G. Composition with T—^G'v = (G -v,v) ^
(G /Gy , l -Gy) yields the desired morphism T -> G.

Let us now turn to the situation of Theorem 2. First observe that
the uniqueness of T is clear by the universal property. As in the proof
of Theorem 4 we choose embeddings X <= (C",0) x S over S with
a ( S ) = Q x S and S c: (C^O). Choose G: (C^O)-^^) such that
G defines X in (C^O) x S by X = G~\0) n ((C^O) x S). Consider the
map germ y : (C^O) -^ (O^g) given by Y(OOO = G(x,t). Composition
with the natural map from (9^ to V^ = (Onl-m^^ gives a morphism
of space germs y^: (C^O) -^ (V^,^) == ^. Consider again ^ =
^P,/^^1 and K, = G4(^l^)X]Aut (O^n.o)) acting on V,. Set ̂  = (K,, 1).

We now define a sequence 7^ of space germs in S by
^ == y k ' ^ k ' g k ) r\ S. Obviously T^+i c T^. As 6?s is Noetherian the
sequence becomes stationary, say 7\ = T for k » 0. We shall show
that T has the properties stated in Theorem 2. Let T° denote the germ
of points t e S with X^ ^ Xo. For t e 5' the fiber X^ is defined in (C",0)
by y(r). Hence by Corollary 5 applied to the absolute space germs X^
and Xo we have T° c= red 7\ for all fe, hence T° <= red T. Consider
the cartesian square

X' -. X
[n1 [n
T -^ S

and let a ' : T -> X ' be the induced section of K ' . By Proposition 1
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there are morphisms ^: T -^ K^ such that the diagrams

^

839

T~^Kk9gk

commute. Corollary 5 yields an isomorphism X ' ^ Xo x T over T and
the sections. This implies red T c: T° and « i f » in (ii).

To prove «only i f» assume that X ' and Xo x S ' are isomorphic
over S ' and the sections. By Corollary 5 the morphisms S ' - >

S—^Vk factor through K^-g^- Hence the base change S ' -> S factors
through Tk = y ^ ^ k ' g k ) ' This completes the proof of Theorem 2.

4. Proof of Theorem 1.

(a) It is not possible to deduce Theorem 1 directly from Theorem 2,
for, in general, n does not admit a Section. Instead, we shall associate
to 7i a morphism °K -> X which does admit a section, apply Theorem 2
to it and then transfer the obtained assertions back to n.

Choose embeddings X cz (C",0) x X over S and S c: (C^O). Also
choose H\ (C^^O) -> (C^,0) such that H defines X in (C",0) x S by
X = 7^--^n ((€",())>< 5). For a = ( a ^ a ^ e X the fiber Z(a) of n
through a is defined by the morphism y(a): (C",0) -^ (C^,0) given by
y(d)(x) == ^(x+fli,^). Consider G: (C^O) x (C^^O) -^ (C^O),
G(x,d) = 7^(x+ai,^) and let ^ = G'-^O) n ((C^O)^^). As 0 x X
<=. G'"1^) we get a commutative diagram

0 x X c ^ c (C",0) x X

In particular, the inclusion X c: 0 x ̂  <= ^ defines a section a : X -> ^
of T. For a e ̂  let °K a denote the germ in (0,a) = 0(0) of the fiber of
T over a. It is defined in (C",0) by y(a). Thus we have constructed a
morphism T with section a such that the fibers of K (taken as germs
in points varying over whole X) are just the fibers of T along the
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section cj. Let Y c= X be the trivial locus of the pair (r,a) as described
in Theorem 2. Then its reduction red Y satisfies part (i) of Theorem 1.

(b) We now show that there is a germ T c S such that n induces
a submersion K y ' . Y -> T. This is the most technical part of the proof.
By [Fi, 2.19] it is equivalent to say that T ( Y / S ) is a vector bundle
over 7. Here T ( Y / S ) is the relative tangent space of Y over S considered
as a linear fiber space over F, [Fi, 1.4 and 2.7].

Look at the map germ y : (C^O) -^ ((9^g\ y(a)(x) =
G(x,a) = H(x+a^a^. By composition with the natural maps ;\:
V = (9^ -> Vf, = (^nl^ y we obtain morphisms of space germs
Y ^ : (C^.O) -. ( V k . g k ) = Vk- The construction of Y c X in the proof
of Theorem 2 yields Y = y^C^-^) n X for fe» 0. Here again
K k ' g k denotes the germ of the orbit of Kj, through g ^ . Thus
T ( Y / S ) = A,^T(K^g^ where T ( K , ' g , ) c K^g, x V, is the
tangent space of K ^ ' g k , Y? denotes the pull back of linear fiber spaces
via the base change y ^ : Y -> K ^ - g ^ and A ^ : Y x C" -> Y x V^
is the homomorphism of linear fiber spaces over Y defined by
A^(a,w) = (Aw-^y^))- For w e C" consider the map w-5^ : V -^ V.
Since \v' Q ̂ (^+2) <= ^+1 it induces a commutative diagram

V w^ V

7^i A

v^i w>^ v,

The equality 8a^G(x,a) = S^H (x+ 01,03) = 8^G(x,a) implies

w-^iT^) = 7'A(w-a^(y(a))) = w-a^y^i(a)).
Therefore

T(F/5)=y?^V^jTr(^.^)

where we have used the base changes jj,;: ^+1*^+1 -^ K^gk (induced
by the natural map V^i-^ Vk) and y^-n : Y -> K^^gk+i as well as
the homomorphism of linear fiber spaces

V^i:^+r^i x (Cy1-^^.^! x v,
(f/c+i,w) ^ (^+i,w.a^(f^,)).
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Hence it will be sufficient to show that the linear fiber space

Lk^ = ̂ JlST(Kk'gk)

is actually a vector bundle over K k + ^ ' g k + r But K k + i ' g k + i is smooth
and so it is enough to show that jL^+i has constant fiber dimension,
[Fi, Prop. 1.8]. For this purpose fix an fk+i^ Kk+i'gk+r We can write
fk+i = J k + i ( ^ ' g ) with <I> eK = GLp((^) x Aut (C",0), the contact group
acting on V = 0^. A vector w e C" is contained in the fiber of L/,+i
over fk+i if and only if

7\(w^(0.^)) = w.B,(/^0 e T^.^(K,'gk) = r^.,)(^.7\((D.g)).

By [M, Prop. 7.4] the tangent space to the K/c-orbit equals for fe V :

T,^(Kk'Jk(f) == JklW^'n + ^n'J(f)},

where /(/) is the ideal of (9^ generated by the components of / and
./(/) c: 0^ is the 6^-submodule generated by the partial derivatives of
/. Thus we see that the fiber of Z^+i over^+i equals the vector space

WW = {weCn,w•^(0^)e/(e>•^)•6?S+^•^(^•^)+^+l^^.

Write 0 = (u,([)). Chain and product rule give : w e W(<S>) if and only
if w.^cH)-1)^ W(^^ the fiber of L,^ over g^,. As (SM-1)^)
is an invertible matrix, Lk+i has constant fiber dimension. This proves
(ii) of Theorem 1.

(c) Since the description of red T in part (i) is obvious we are left
to show (iii) and (iv). We already know that V(0) ^ (C^O) where d
is the fiber dimension of T( Y / S ) which is the dimension of

{weC^w•a^)e7^).•^+^•J(g)+^+ l•^^

for fe » 0. Krull's Intersection Theorem gives

d = dimc{w e C", w. Q^g) e I ( g ) • 01+ ^.-J(g)}.

As ^ defines X(0) in (C",0) there are thus d vectorfields ^i, . , . , ̂  on
^(0) with ^i(O), . . . , ^(0) linearly independant. A theorem of Rossi
[Fi, 2.12] gives X(0) ^ (C^O) x Z for some germ Z. This proves (iii).

(d) We finally show the universal property of the trivial locus T of

TC. As in part (a) of the proof consider SC—>X with section cr together



842 H. HAUSER AND G. MCLLER

with the trivial locus Y <= X of the pair (T,(J) as given by Theorem 2.
Let

X' -^ X

[n' [ K

s- ^ s
be a cartesian square and assume that n' is trivial. Choose a
section p 7 : 5" -^ X ' of n' along which n' is trivial. By the claim below
the composition a'p': S ' -^ X factors through Y. Therefore a = Tia'p'
factors through n(Y) = T.

Conversely, consider the cartesian square

X'^——^X

In' [ n

T ^—^S

As 7i y : Y -> T is a submersion there is a section p': T -> X ' which
factors through Y c: X\ The claim implies the triviality of n' and
concludes the proof of Theorem 1.

Claim. - Let K : X -> S, T : °K -> X, a and Y be as before. For
any cartesian square

X' -^-X

i n' I K

s' -°- s
with section p': 5" -> X ' of n ' , n' is trivial along p' if and only if
aV : S ' -^ X factors through F.

Proof. — One checks that the square

^ ^-X

IT [ n

X ^S
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with %(x,fl) = (x+a^,a^ is cartesian (notation as in (a)). Combining
with the cartesian square

3:' -^ S

^' IT

s' ^x
induced from the base change o^p7 gives a cartesian square

X-^ X

K I K

s ' ^^s.
Since Ttoc'p' = a the uniqueness of the fiber product allows to assume
that S" = X ' , T' = it' and %? = a'. As p': S ' -r X ' is the section of
TI' induced from a, Theorem 2 applies to the cartesian square

X ' -^ 3C

K i x

s- ^x
proving the claim and (iv) of Theorem 1.
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