Annales de l'institut Fourier

M. Gabriella Kuhn

 Random walks on free products

 Random walks on free products}

Annales de l'institut Fourier, tome 41, no 2 (1991), p. 467-491
http://www.numdam.org/item?id=AIF_1991__41_2_467_0

© Annales de l'institut Fourier, 1991, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

RANDOM WALKS ON FREE PRODUCTS

by M. Gabriella KUHN

1. Introduction.

Let $\mathrm{G}=*_{j=1}^{q+1} G_{n_{j}+1}$ be the free product of $q+1(q+1)>3$ finite groups each of order $n_{j}+1$ and let \mathscr{G} be the Cayley graph of G with respect to the generators $\left\{a_{j} ; a_{j} \in G_{n_{j}+1}\right\}_{j=1}^{q+1}$.

We recall that \mathscr{G} is a connected graph with the property that at each vertex V there meet exactly $q+1$ polygons $P_{j}(V)$ with $n_{j}+1$ sides, and any two vertices belonging to the same polygon are connected by an edge.

Identify G (as a set) with \mathscr{G} and consider G acting on the «homogeneous space» \mathscr{G} by left multiplication.

Choose $q+1$ positive numbers p_{1}, \ldots, p_{q+1} satisfying the condition $\sum_{j=1}^{q+1} p_{j}=1$. Let μ be a probability measure which assigns the probability p_{j} to each copy of $G_{n_{j}+1} \backslash e$. If we look at \mathscr{G}, it is natural to consider equal all the vertices belonging to the same polygon. This suggests to make the simplest possible choice for the measure μ.

Set $\mu(x)=\frac{p_{j}}{n_{j}}$ if $x \in G_{n_{j}+1} \backslash e(j=1, \ldots, q+1)$ and zero otherwise.
Consider the random walk on \mathscr{G} with law μ. Then the transition probability $p(V) \rightarrow\left(V^{\prime}\right)$ of moving from a vertex V^{\prime} to a vertex V is $\frac{p_{j}}{n_{j}}$ if both V and V^{\prime} belong to the same polygon P_{j} and $V \neq V^{\prime}$.

[^0]Observe that the structure of each factor group $G_{n_{j}+1}$ is really unimportant for the description of the random walk on \mathscr{G} and the associated Green function G_{γ}.

On the other hand, G_{γ} plays a central role in order to understand the operator of right convolution with μ on $\ell^{2}(G)$ and has been considered by many authors [AK] [CS2] [CT][T2].

We know that G_{γ} can be described by means of «elementary» functions, and sometimes this is enough to understand completely its behaviour. Nevertheless the cases which are completely described are still very few :
$q+1=2$ by [CS1] and [T2]; $n_{j}+1=2 \quad \forall j \quad$ and $p_{q+1} \leqslant p_{q}, \cdots \leqslant p_{1}$ by [F-TS]; $p_{1}=p_{2}=\cdots p_{q+1}$ and $n_{j}+1=\mathrm{N} \forall j$ by [IP] [T1] (see also [CT]). The last case, $n_{j}+1=N \forall j$, is also described in [K] with several choices of the p_{j} with $p_{q+1} \leqslant p_{q} \leqslant$ $\cdots \leqslant p_{1}$.

In this paper we shall give a complete description of the point spectrum of μ in $C_{\text {reg }}^{*}(G)$ by means of the numbers n_{j}.

The continuous spectrum sp_{c} (in $\left.C_{\mathrm{reg}}^{*}(G)\right)$ will be computed in several cases. In spite of the point spectrum, sp_{c} depends on the p_{j} as well as on the numbers n_{j}. We shall give a necessary condition for sp_{c} to be connected.

Finally following the aim of [IP] and [F-TS] we shall produce a decomposition of the regular representation of G by means of μ. We shall also prove that this decomposition is into irreducibles exactly when there are not true eigenspaces of μ.

Notation.

G will always denote the free product of $q+1$ finite groups $G_{n_{j}+1}$ each of order $n_{j}+1$.

Let e denote the group identity. It is convenient to set, for every j

$$
\widetilde{G}_{n_{j}+1}=G_{n_{j}+1} \backslash e .
$$

Each x in $G, x \neq e$, may be uniquely represented as a reduced word, as $x=a_{j_{1}} a_{j_{2}}, \ldots, a_{j_{m}}$ where $a_{j} \in \widetilde{G}_{n_{j}+1}$ and $j_{k} \neq j_{k+1}$ for $1 \leqslant k \leqslant m-1$. The length of x, that we shall denote by $|x|$, is the minimum number of elements $a_{j} \in\left\{\widetilde{G}_{n_{j}+1}\right\}_{j=1}^{q+1}$ needed to represent x.

Path distance on \mathscr{G} corresponds to this notion of length.
Let δ_{x} denote the Kronecker delta at x. Set

$$
\mu(x)=\sum_{j=1}^{q+1} p_{j} \mu_{j}(x)
$$

where

$$
\mu_{j}(x)=\sum \frac{1}{n_{j}} \delta_{a_{j}}, \quad a_{j} \in \tilde{G}_{n_{j}+1} \quad \text { and } \quad p_{j} \geqslant 0, \sum_{j=1}^{q+1} p_{j}=1
$$

Arrange the n_{j} so that $n_{1} \leqslant n_{2} \leqslant n_{3} \cdots \leqslant n_{q+1}$.
Let $C_{\text {reg }}^{*}$ denote the C^{*}-algebra generated by the left regular representation of G. Since G is discrete the Kronecker delta $\delta_{e}(x)$ is an identity (with respect to convolution) in $\ell^{2}(G)$.

As a consequence, any element T of $C_{\text {reg }}^{*}(G)$ can be identified with an operator of right convolution on $\ell^{2}(G)$ by the formula

$$
T(f)=T\left(f * \delta_{e}\right)=f * T\left(\delta_{e}\right)=f * t
$$

being $t(x)=T\left(\delta_{e}\right)(x)$. Identify μ with the operator T_{μ} on $\ell^{2}(G)$ given by

$$
T_{\mu}(f)=f * \mu
$$

and let $\mathrm{sp}(\mu), \operatorname{sp}_{c}(\mu)$, res (μ) denote (respectively) the spectrum, the continuous spectrum, the resolvent of T_{μ}.

Since the walk is symmetric, meaning that $\mu\left(x^{-1}\right)=\mu(x)$ for every x in G, the corresponding operator T_{μ} is self adjoint. Hence we may use the functional calculus to produce the resolution of the identity for T_{μ} by means of the resolvent $R_{\mu}(\gamma)=(\gamma-\mu)^{-1}$ of T_{μ}.

We refer to [DS], Chapter X , for standard facts concernig the functional calculus. Since $R_{\mu}(\gamma)$ itself is an element of $C_{\text {reg }}^{*}(G)$, there exists an ℓ^{2}-function $g_{\gamma}(x)$ called the resolvent, or Green function $G_{\gamma}(e, x)$ of μ such that

$$
R_{\mu}(\gamma)(f)=f * g_{\gamma}
$$

For large values of γ, say $|\gamma|>1, g_{\gamma}(x)$ is given by

$$
\begin{equation*}
g_{\gamma}(x)=\sum_{n=0}^{\infty} \frac{\mu^{* n}(x)}{\gamma^{n+1}} \tag{2.1}
\end{equation*}
$$

We shall also write $(\gamma-\mu)^{-1}(x)$ for $g_{\gamma}(x)=R_{\mu}(\gamma)\left(\delta_{e}\right)(x)$. In general, see [W2] (see also [A] and [S] in the case of a finitely generated free group) we know that $G_{\gamma}(e, x)$ is an algebraic function of γ for any walk whose law measure μ is finitely supported. In this case however the algebricity of the Green function follows readly from the formulas (3.1), (3.2) and (3.3) of Section 3. If $G_{\gamma}(e, x)$ satisfies some functional equation, we shall think of taking the analytic continuation $g_{\gamma}(x)$ to satisfy the analogue equation, whenever this is possible. Keeping this in mind, we shall calculate the spectral measure $E(\sigma)\left(\delta_{e}, \delta_{e}\right)$ associated with T_{μ}. Fix $x \in G$ and integrate 2.1 term by term to get

$$
\frac{1}{2 \pi i} \int_{\Gamma} g_{\gamma}(x) d \gamma=\delta_{e}(x)
$$

whenever Γ is a smooth curve around all the singularities of the analytic function $R_{\mu}(\gamma)\left(\delta_{e}\right)(x)$.

If we let now Γ shrink around $\operatorname{sp}(\mu)$ we get
(2.2) $\quad \delta_{e}(x)=-\frac{1}{\pi} \int_{\operatorname{sp}_{c}(\mu)} \operatorname{Im} g_{\sigma}(x) d \sigma+\sum_{j \in \operatorname{sp}(\mu) \backslash \operatorname{sp}_{c}(\mu)} P_{j}(x)$
where

$$
\operatorname{Im} g_{\sigma}(x)=\lim _{\varepsilon \rightarrow 0^{+}}\left\{(\sigma+i \varepsilon-\mu)^{-1}(x)-(\sigma-i \varepsilon-\mu)^{-1}(x)\right\}
$$

and $P_{j}(x)$ are mutually orthogonal projections onto the ℓ^{2} eigenspaces of μ (corresponding to the poles m_{j} of $\left.g_{\gamma}(x)\right)$. We refer to section 4 for a more detailed description of $g_{\sigma}(x)$.

The spectral measure $E(\sigma)\left(\delta_{e}, \delta_{e}\right)$ is nothing but the positive measure obtained by letting $x=e$ in (2.2). Let us simply write $d m(\sigma)$ for it, then

$$
d m(\sigma)=-\frac{1}{\pi} \operatorname{Im} g_{\sigma}(e) d \sigma+\sum_{j \in \operatorname{sp}(\mu) \backslash \operatorname{sp}_{c}(\mu)} \operatorname{Res}_{\gamma=m_{j}} g_{\gamma}(e) \delta_{m_{j}}
$$

In the next section we shall see that the poles of $g_{\gamma}(x)$ are the same as the poles of $g_{\gamma}(e)$ and we shall compute the continuous and the discrete spectrum of μ.

3. Computation of $\mathbf{s p}(\boldsymbol{\mu})$.

Identify \mathscr{G}, as a set, with G and think of G as a state space. The random walk on G with law μ is exactly the walk described in the introduction, if we let $\left\{p(x, y)=\mu\left(x^{-1} y\right)\right\}_{x, y \in G}$ assign the one-step transition probabilities. The geometry of \mathscr{G} leads to the following considerations. Suppose that $\left\{x_{0}, x_{1}, \ldots, x_{n}\right)$ is a path from e to x, that is, a sequence of points $x_{0}, x_{1}, \ldots, x_{n}$ with $x_{0}=e, x_{n}=x$ and $p\left(x_{j}, x_{j+1}\right)>0$ for $0 \leqslant j \leqslant n-1$. Suppose that $x=a_{j_{1}} a_{j_{2}}, \ldots, a_{j_{m}}$ is the reduced expression for x. Then at least one of the x_{j} must be equal to $a_{j_{1}}$. Keeping in mind that the walk is also invariant with respect to the left action of G, one can describe more precisely the Green function $g_{\gamma}(x)$. The earliest description was given in [DM] in the case of G equal to the free group, later, independently, many people discovered analogue formulas for free products of finite groups (see [CS2] [T2] and also [AK] [ML] [F-TS] [W1]). Hence we may assume that it is well known that $g_{\gamma}(x)$ may be written as a scalar multiple of a function $h_{\gamma}(x)$ satisfying

$$
\begin{array}{ll}
h_{\gamma}(e)=1 & \\
h_{\gamma}(x y)=h_{\gamma}(x) \cdot h_{\gamma}(y) & \text { whenever }|x y|=|x|+|y| \tag{3.1}\\
h_{\gamma}\left(z_{1}\right)=h_{\gamma}\left(z_{2}\right) & \text { if both } z_{1} \text { and } z_{2} \text { belong to } \tilde{G}_{n_{j}+1}
\end{array}
$$

We recall that, for any function satisfiing (3.1), we can easily compute the ℓ^{p} norm (see [F-TS] or [T2]). In fact, if $h_{\gamma}\left(a_{j}\right)$ denotes the (constant) value of h_{γ} on $\widetilde{G}_{n_{j}+1}$, then h_{γ} belongs to ℓ^{p} if and only if

$$
\sum_{j=1}^{q+1} \frac{n_{j}\left|h_{\gamma}\left(a_{j}\right)\right|^{p}}{1+n_{j}\left|h_{\gamma}\left(a_{j}\right)\right|^{p}}<1 .
$$

When this happens we have

$$
\left\|h_{\gamma}\right\|_{p}^{-p}=1-\sum_{j=1}^{q+1} \frac{n_{j}\left|h_{\gamma}\left(a_{j}\right)\right|^{p}}{1+n_{j}\left|h_{\gamma}\left(a_{j}\right)\right|^{p}}
$$

If we set

$$
g_{\gamma}(e)=\frac{1}{2 w}
$$

then $h_{\gamma}(x)$ may be written as an analytic function of w. In particular,
if $a_{j} \in \widetilde{G}_{n_{j}+1}$, then

$$
\begin{equation*}
h\left(a_{j}\right)=\xi_{j}^{ \pm}=\frac{\left\{ \pm \sqrt{z_{j}^{2}+\frac{4 p_{j}^{2}}{n_{j}}}-z_{j}\right\}}{2 p_{j}} \tag{3.2}
\end{equation*}
$$

being

$$
z=z_{j}(w)=2 w-p_{j}\left(\frac{n_{j}-1}{n_{j}}\right)
$$

for a suitable choice of the sign in the above square root.
We shall simply write ξ_{j} whenever the choice of the sign of the square root is not specified. We recall that, for any fixed x, the function $\gamma: \rightarrow g_{\gamma}(x)$ is analytic, and equal to the Green function $G_{\gamma}(e, x)$ for large values of γ. Taking the analytic continuation of (3.2), after some calculations we get

$$
\gamma=2 w+\sum_{j=1}^{q+1} p_{j} \xi_{j}
$$

ii)

$$
p_{j}\left(\xi_{j}-\frac{\xi_{j}^{-1}}{n_{j}}\right)=p_{j}\left(\frac{n_{j}-1}{n_{j}}\right)-2 w
$$

iii)

$$
\begin{equation*}
\left\|g_{\gamma}\right\|_{p}^{-p}=|2 w|^{p} \cdot\left\{1-\sum_{j=1}^{q+1} \frac{n_{j}\left|\xi_{j}\right|^{p}}{1+n_{j}\left|\xi_{j}\right|^{p}}\right\} . \tag{3.3}
\end{equation*}
$$

Furthermore, if we turn γ into a function of w, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d \gamma}{d w}=1-\sum_{j=1}^{q+1} \frac{n_{j}\left|\xi_{j}\right|^{2}}{1+n_{j}\left|\xi_{j}\right|^{2}}=\left\|g_{\gamma}\right\|_{2}^{-2} \tag{3.4}
\end{equation*}
$$

whenever w is real, different from 0 , and such that the corresponding value of γ belongs to $R \backslash \operatorname{sp}(\mu)$.

Formulas above can be found in [T2] but can also be deduced directly from the results of [F-TS].

Let us consider first the poles of $g_{\gamma}(x)$. The following quantity will play a central role in the description of $\mathrm{sp}(\mu)$.

Call

$$
\frac{p_{m}^{2}}{n_{m}}=\max _{1 \leqslant j \leqslant q+1} \frac{p_{j}^{2}}{n_{j}}
$$

and let ξ_{m} be the corresponding value for $h\left(a_{m}\right)$.

Theorem. - Let μ as above. Then the function $g_{\gamma}(x)$ has a pole if and only if μ has a nontrivial ℓ^{2} eigenspace and this happens if and only if at least one of the following conditions hold:

$$
\begin{gather*}
\sum_{j=1}^{q+1} \frac{1}{n_{j}+1}<1 \tag{1}\\
\frac{1}{n_{1}+1}>\sum_{j=2}^{q+1} \frac{1}{n_{j}+1} . \tag{2}
\end{gather*}
$$

Proof. - The ℓ^{2} eigenspaces of μ are in one to one correspondence with the poles of $g_{\gamma}(e)$, which are the same as the poles of $g_{\gamma}(x)$. In fact, suppose that $g_{\gamma}(x)$ has a pole for $w=w_{0}$.

Suppose first that $w_{0} \neq 0$. Then $w_{0}=\infty$. We shall consider only the case $w_{0}=+\infty$, being the other virtually the same.

By (3.3) exactly one of the ξ_{j} must have a pole too. Also, the choice of the sign for ξ_{j} in (3.2) must be "-» while, for $k \neq j$, must be «+». Suppose that $j \neq m$. Then we have

$$
\lim _{w \rightarrow+\infty}\left|\xi_{m}^{+} \xi_{j}^{-}\right|=\frac{p_{m}}{n_{m}} \frac{1}{p_{j}}
$$

Let us consider now the subgroup G_{m} generated by $G_{n_{m}+1}$ and $G_{n_{j}+1}$. It can be easily seen that the above condition implies that

$$
\sum_{x \in G_{m}}\left\|g_{\gamma}(x)\right\|^{2}=+\infty
$$

for w sufficently large and this a contradiction, since for these values of $w g_{\gamma}(x)$ must be in ℓ^{2}. So that the only possibility is that ξ_{m} has a pole. In this case, write a_{m} (respectively a_{j}) to denote any element of $\widetilde{G}_{n_{m}}+1$ (respectively of $\widetilde{G}_{n_{j}+1}$), then a limit argument shows that

$$
\begin{align*}
g_{\gamma}(x)= & -\frac{1}{p_{m}} \cdot \prod_{i=1}^{s}\left(\frac{-p_{j_{i}}}{n_{j_{i}} p_{m}}\right) \tag{3.5}\\
& \text { if } x=a_{m}\left(a_{j_{1}} a_{m}\right)\left(a_{j_{2}} a_{m}\right), \ldots,\left(a_{j_{s}} a_{m}\right) \text { and }|x|=2 s+1 \\
& 0 \text { otherwise. }
\end{align*}
$$

In particular, $g_{\gamma}(x)$ is finite for every x.

Hence the only possibility to get a pole for $g_{\gamma}(x)$ is $w=0$. Since for complex values of $\gamma=\gamma(w), g_{\gamma}(x)$ belongs to ℓ^{2}, by (3.4) we must have

$$
\begin{equation*}
1-\sum_{j=1}^{q+1} \frac{n_{j}\left|\xi_{j}(0)\right|^{2}}{1+n_{j}\left|\xi_{j}(0)\right|^{2}} \geqslant 0 \tag{3.6}
\end{equation*}
$$

Now, $\left|\xi_{j}(0)\right|=1$ or $\left|\xi_{j}(0)\right|=\frac{1}{n_{j}}$ according with the choice $«+»$ or « - » in (3.2).

Looking at formula (3.6), a moment's reflection shows that no more then one sign + is allowed for the ξ_{j}. Since $n_{1} \leqslant n_{2} \cdots \leqslant n_{q+1}$, this choice is possible only for ξ_{1}. Suppose first that ξ_{1} has been chosen with the sign « + ». The corresponding curve $\gamma(w)$ is given by

$$
\begin{align*}
\gamma_{1}(w) & =2 w+\sum_{j=2}^{q+1} p_{j} \xi_{j}^{-}+p_{1} \xi_{1}^{+} \tag{3.7}\\
& =p_{1}\left(\frac{n_{1}-1}{n_{1}}\right)+\sum_{j=2}^{q+1} p_{j} \xi_{j}^{-}-p_{1} \xi_{1}^{-}
\end{align*}
$$

and

$$
\begin{aligned}
& \gamma_{1}(0)=p_{1}-\sum_{j=2}^{q+1} \frac{p_{j}}{n_{j}}=\gamma_{1} \\
& \frac{1}{2} \gamma^{\prime}(0)=\frac{1}{n_{1}+1}-\sum_{j=2}^{q+1} \frac{1}{n_{j}+1} .
\end{aligned}
$$

Suppose now that condition 2) holds. Then, in a neighbourhood of $w=0$, the function above, associated with the choice of signs « + », ..., « - » gives a resolvent set for γ.

Again, the functional calculus says that

$$
d m\left(\gamma_{1}\right)=\lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon g_{\gamma_{1}+i \varepsilon}(e) .
$$

Looking at w as a function of γ we can see that

$$
\begin{gather*}
\operatorname{Res}_{\gamma=\gamma_{1}} g(e)=\lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon g_{\gamma_{1}+i \varepsilon}(e)=d m\left(\gamma_{1}\right) \tag{3.8}\\
\lim _{\varepsilon \rightarrow 0^{+}} \frac{i \varepsilon}{2 w\left(\gamma_{1}+i \varepsilon\right)}=\frac{1}{2} \gamma_{1}^{\prime}(0)=\frac{1}{n_{1}+1}-\sum_{j=2}^{q+1} \frac{1}{n_{j}+1}>0
\end{gather*}
$$

hence μ has a nontrivial eigenspace that will be described in the next section. If condition 2 does not hold, suppose first that

$$
\frac{1}{n_{1}+1}<\sum_{j=2}^{q+1} \frac{1}{n_{j}+1}
$$

then it is clear that the function $\gamma_{1}(w)$ cannot give rise to a resolvent set in a neighbourhood of $w=0$ so that we can ignore this case.

Finally, suppose that

$$
\frac{1}{n_{1}+1}=\sum_{j=2}^{q+1} \frac{1}{n_{j}+1}
$$

In this case the limit in (3.8) is zero, hence there are no ℓ^{2} eigenspaces corresponding to γ_{1}.

Let us turn to the choice of signs in (3.6). Suppose now that all the ξ_{j} have been chosen with the same sign " - ».

Corresponding to this choice we have $\gamma(w)$ given by

$$
\begin{aligned}
\gamma_{0}(w) & =2 w+\sum_{j=1}^{q+1} p_{j} \xi_{j}^{-} \\
\gamma(0) & =-\sum_{j=1}^{q+1} \frac{p_{j}}{n_{j}}=\gamma_{0} \\
\frac{1}{2} \gamma^{\prime}(0) & =1-\sum_{j=1}^{q+1} \frac{1}{n_{j}+1} .
\end{aligned}
$$

Arguing as before we can see that, if condition 1 holds then μ has a nontrivial ℓ^{2} eigenspace, while, when condition 1 does not hold then $d m\left(\gamma_{0}\right)=0$. (Actually, a quick check of the behaviour of $\gamma_{0}(w)$ shows that, when $\gamma_{0}^{\prime}(0)<0$, then γ_{0} belongs to res (μ).)

Conversely, if μ has an ℓ^{2} eigenspace, then $g_{\gamma}(e)$ must have a pole. We have seen that, in this case, either $\gamma(w)=\gamma_{1}(w)$ or $\gamma(w)=\gamma_{0}(w)$ and a pole may exist if and only if at least condition 1 or 2 hold.

We shall now investigate the continuous spectrum of μ.
It is clear from (3.3) and (3.4) that, if we want to investigate the ℓ^{2} spectrum of μ, we have to consider γ as a function of w and we must check the derivative for all the possible choices of signs for the ξ_{j}. This will be done in Theorem 3 and Theorem 4 for some special choices of the p_{j} and of the n_{j}.

We want to consider first the case $g_{\gamma}(e) \neq 0$ and let $\gamma=$ $\tilde{\gamma} \in \operatorname{res}(\mu)$.

Then there exists a choice of signs in (3.2) and $w=w_{0} \in R$ such that $\gamma\left(w_{0}\right)=\tilde{\gamma}$ and, for w in a neighbourhood of $w_{0}, \gamma(w) \in$ res (μ) and

$$
\begin{gathered}
\gamma(w)=2 w+\sum_{j} p_{j} \xi_{j}(w) \\
\gamma^{\prime}\left(w_{0}\right)>0 .
\end{gathered}
$$

For these values of γ, we have

$$
g_{\gamma}(x)=g_{\gamma}(e) \cdot h_{\gamma}(x)=\frac{1}{2 w} \cdot h_{\gamma}(x)
$$

Suppose now

$$
\gamma_{p} \in \operatorname{res}(\mu) \quad \text { and } \quad g_{\gamma_{p}}(e)=0
$$

By definition, this may happen only if there exists w_{0} such that, for $w=w_{0}$ the function $w(\gamma)$ has a pole at $\gamma=\gamma_{p}$. Arguing as in the first part of the proof of Theorem 1, we can conclude that, in this case, exactly ξ_{m} has a pole and $g_{\gamma_{p}}(x)$ has the expression given in (3.5).

Furthermore, since for any $a \in \widetilde{G}_{n_{n}^{+1_{1}}}+1$ we have

$$
g_{\gamma_{p}} *\left(\gamma_{p}-\mu\right)(a)=0
$$

condition 3.3 i) becomes

$$
\gamma_{p}-p_{m}\left(\frac{n_{m}-1}{n_{m}}\right)=\frac{p_{m}}{n_{m}} \cdot \frac{1}{\xi_{m}}+\sum_{. j \neq m} p_{j} \xi_{j}
$$

thus, letting $w \rightarrow w_{0}$, we can see that

$$
\gamma_{p}=p_{m}\left(\frac{n_{m}-1}{n_{m}}\right)
$$

Observe that, in this case, we have

$$
\left\|g_{\gamma_{p}}\right\|_{2}^{2}=n_{m} p_{m}^{2} \sum_{s=0}^{\infty}\left(\sum_{j=2}^{q+1} \frac{p_{j}^{2}}{n_{j}} \frac{n_{m}}{p_{m}^{2}}\right)^{s} .
$$

Hence $\gamma_{p} \in \operatorname{res}(\mu)$ and $g_{\gamma_{p}}(e)=0$ implies that

$$
\frac{p_{m}^{2}}{n_{m}}>\sum_{j \neq m} \frac{p_{j}^{2}}{n_{j}}
$$

Conversely, a quick calculation shows that, if the above condition holds, then the function given in (3.5) satisfies the condition

$$
g_{\gamma} *\left(p_{m}\left(\frac{n_{m}-1}{n_{m}}\right)-\mu\right)=\delta_{e}
$$

and hence $\gamma=p_{m}\left(\frac{n_{m}-1}{n_{m}}\right)$ belongs to res (μ) and $g_{\gamma}(e)=0$.
We are now ready to state a necessary condition for sp_{c} to be connected.

Theorem 2. - Suppose that continuous spectrum of μ is connected then

$$
\begin{equation*}
\frac{p_{m}^{2}}{n_{m}}<\sum_{j \neq m} \frac{p_{j}^{2}}{n_{j}} \tag{3.9}
\end{equation*}
$$

Proof. - It is clear that, for $w \rightarrow+\infty$, the best possible choice in order to have $\gamma^{\prime}(w)$ positive is

$$
\gamma_{+}(w)=2 w+\sum_{j=1}^{q+1} p_{j} \xi_{j}^{+}
$$

while, for $w \rightarrow-\infty$, it turns into

$$
\gamma_{0}=2 w+\sum_{j=1}^{q+1} p_{j} \xi_{j}^{-}
$$

The behaviour of the two above curves is very easy to check: γ_{+}is convex and has a positive minimum, say ρ_{+}, while γ_{0} is concave and has a maximum, say ρ_{0}, which is surely negative when $\gamma_{0}^{\prime}(0)$ is not positive. As noted in Theorem 1, this occurs when

$$
\sum_{j=1}^{q+1} \frac{1}{n_{j}+1} \geqslant 1
$$

In general, we cannot ensure that ρ_{0} is a negative number. In any case, the continuous spectrum of μ is contained in the interval $\left[\rho_{0}, \rho_{+}\right.$]. Any other curve $\gamma(w)$ having positive derivative for some w, gives rise to a «hole» in the above interval, which disconnects sp (μ).

Since condition (3.9) ensures that the curves

$$
\begin{aligned}
& \gamma_{m}(w)=2 w+\sum_{j \neq m} p_{j} \xi_{j}^{-}+p_{m} \xi_{m}^{+} \text {for } w<0 \\
& \gamma_{m}(w)=2 w+\sum_{j \neq m} p_{j} \xi_{j}^{+}+p_{m} \xi_{m}^{-} \text {for } w>0
\end{aligned}
$$

have positive derivative for $|w|$ sufficiently large, we get the result.

The next theorem provides a sufficient condition for the connectedness of $\operatorname{sp}(\mu)$ when the probabilities are choosen in a reasonable way with respect to the orders of the groups: the following condition says essentially that we must assign small probabilities to small groups.

Recall that $n_{1} \leqslant n_{2} \leqslant \cdots \leqslant n_{q+1}$. Choose the numbers p_{j} in such a way that

$$
\begin{equation*}
\frac{p_{k}^{2}}{n_{k}}=\frac{p_{j}^{2}}{n_{j}} \quad \text { for every } k \text { and } j \tag{3.10}
\end{equation*}
$$

then we have the following
Theorem 3. - Suppose that the above condition (3.10) holds. Then, if

$$
n_{q+1} \leqslant q
$$

$\operatorname{sp}(\mu)$ consists of exactly one interval.
Proof. - Observe first that, since $n_{q+1} \leqslant q$, the point spectrum does not occur. Hence we have to prove that the curves γ_{+}and γ_{0} considered in Theorem 2 are the only possible choices in order to have $\gamma^{\prime}(w)$ positive. Recall that condition (3.10) implies that

$$
p\left(\frac{n_{1}-1}{n_{1}}\right) \leqslant p_{2}\left(\frac{n_{2}-1}{n_{2}}\right) \leqslant \cdots \leqslant p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)
$$

and set

$$
\begin{aligned}
& \mathbf{I}_{0}=\left(-\infty, \frac{p_{1}}{2}\left(\frac{n_{1}-1}{n_{1}}\right)\right] \\
& \mathbf{I}_{k}=\left(\frac{p_{k}}{2}\left(\frac{n_{k}-1}{n_{k}}\right), \frac{p_{k+1}}{2}\left(\frac{n_{k+1}-1}{n_{k+1}}\right)\right], \quad 1 \leqslant k \leqslant q \\
& \mathbf{I}_{q+1}=\left(\frac{p_{q+1}}{2}\left(\frac{n_{q+1}-1}{n_{q+1}}\right),+\infty\right) .
\end{aligned}
$$

We have

$$
\begin{equation*}
\gamma^{\prime}(w)=-(q-1)+\sum_{j=1}^{q+1} \frac{ \pm z_{j}}{\sqrt{z_{j}^{2}+\frac{4 p_{j}^{2}}{n_{j}}}} \tag{3.11}
\end{equation*}
$$

so that $\gamma^{\prime}(w)$ is negative whenever at least two terms in the above summation are negative. We shall consider first the best possible choice
of sign in every $I_{k} 0 \leqslant k \leqslant q+1$. Hence we have to consider first
$\gamma_{0}(w)=2 w-\frac{1}{2} \sum_{j=1}^{q+1}\left(\sqrt{z_{j}^{2}+\frac{4 p_{j}^{2}}{n_{j}}}+z_{j}\right)=2 w+\sum_{j=1}^{q+1} p_{j} \xi_{j}^{-} \quad$ when $w \in I_{0}$
$\gamma_{k}(w)=2 w-\frac{1}{2} \sum_{j=k+1}^{q+1}\left(\sqrt{z_{j}^{2}+\frac{4 p_{j}^{2}}{n_{j}}}+z_{j}\right)+\frac{1}{2} \sum_{j=1}^{k}\left(\sqrt{z_{j}^{2}+\frac{4 p_{j}^{2}}{n_{j}}}-z_{j}\right)$
$=2 w+\sum_{j=1}^{k-1} p_{j} \xi_{j}^{+}+\sum_{j=k}^{q+1} p_{j} \xi_{j}^{-} \quad$ when $w \in \mathrm{I}_{k}$
$\gamma_{1}(w)=2 w+\frac{1}{2} \sum_{j=1}^{q+1}\left(\sqrt{z_{j}^{2}+\frac{4 p_{j}^{2}}{n_{j}}}-z_{j}\right)=2 w+\sum_{j=1}^{q+1} p_{j} \xi_{j}^{+} \quad$ when $w \in I_{q+1}$.
It is clear that, whenever $\gamma_{k}^{\prime}(w)$ is negative in I_{k}, no other curve may give rise to a resolvent set for $w \in I_{k}$.

Let us start with I_{0}.
We know that $\gamma_{0}(w)$ gives a resolvent set for w sufficiently small. Furthermore, since $n_{q+1} \leqslant q, \gamma_{0}^{\prime}(0)$ is negative and this implies that no curve can give a resolvent set for $0 \leqslant w \leqslant p_{1}\left(\frac{n_{1}-1}{n_{1}}\right)$. Also, since $\left|z_{j}\right| \geqslant\left|z_{1}\right|$ for $w \leqslant p_{1}\left(\frac{n_{1}-1}{n_{1}}\right)$, we can see by (3.11) that the only possible choice, different from γ_{0}, is given by

$$
\gamma^{1}=2 w+\sum_{j=2}^{q+1} p_{j} \xi_{j}^{-}+p_{1} \xi_{1}^{+}
$$

A quick check of $\frac{d}{d w}\left|\xi_{1}^{+} \xi_{j}^{-}\right|$shows that $\left|\xi_{1}^{+} \xi_{j}^{-}\right|$is decreasing for negative values of w. In particular

$$
\begin{equation*}
\left|\xi_{1}^{+} \xi_{j}^{-}(w)\right| \geqslant\left|\xi_{1}^{+} \xi_{j}^{-}(0)\right|=\frac{1}{n_{j}} \text { for } w \leqslant 0 . \tag{3.12}
\end{equation*}
$$

Consider now the subset A of G consisting of all words of the type

$$
\begin{equation*}
x=\left(a_{1} a_{j_{1}}\right)\left(a_{1} a_{j_{2}}\right), \ldots,\left(a_{1} a_{j_{s}}\right) \tag{3.13}
\end{equation*}
$$

where a_{j} denotes any element of $G_{n_{j}+1}$ and $|x|=2 s$.

Since

$$
\sum_{x \in A}\left|g_{\gamma}(x)\right|^{2}=\frac{1}{4 w^{2}} \sum_{s=0}^{+\infty}\left(\sum_{j=2}^{q+1} n_{1} n_{j}\left|\xi_{1}^{+} \xi_{j}^{-}\right|^{2}\right)^{s}
$$

we see that condition (3.12) and the choice of n_{q+1} greater then q, imply that, for $w \leqslant 0$, the above sum is infinite being

$$
\sum_{j=2}^{q+1} n_{1} n_{j}\left|\xi_{1}^{+} \xi_{j}^{-}\right|^{2} \geqslant \sum_{j=2}^{q+1} \frac{n_{1}}{n_{j}} \geqslant 1 .
$$

Hence γ_{0} is the only curve giving a resolvent set in I_{0}.
Let us consider now γ_{k} in I_{k} for $1 \leqslant k \leqslant q$. It is obvious that, in I_{k}, the largest possible value for the quantity $\left|z_{j}\right|$ is $p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)$.

Hence, since the quantities $\frac{p_{j}^{2}}{n_{j}}$ are all equal, for $w \in I_{k}$ we get
$\gamma_{k}^{\prime}(w)=-(q-1)+\sum_{j=1}^{q+1} \frac{\left|z_{j}\right|}{\sqrt{z_{j}^{2}+4 \frac{p_{j}^{2}}{n_{j}}}} \leqslant-(q-1)+(q+1) \frac{p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)}{p_{q+1}\left(\frac{n_{q+1}+1}{n_{q+1}}\right)}$
again, the choice of n_{q+1} implies that the right hand side of the above inequality is negative. Finally, let us consider I_{q+1}. This time we have that the smallest of the $\left|z_{j}\right|$ is $\left|z_{q+1}\right|=z_{q+1}$. Hence we must consider again the curve γ_{q}. Observe that $\left|\xi_{j}^{+} \xi_{q+1}^{-}\right|$is increasing for $w \geqslant p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)$ and
$\left|\xi_{j}^{+} \xi_{q+1}^{-}\left(\frac{p_{q+1}}{2}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)\right)\right|=\frac{1}{\sqrt{n_{q+1}}} \xi_{j}^{+}\left(\frac{p_{q+1}}{2}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)\right)$

$$
\begin{aligned}
& =\frac{\sqrt{\left(p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)-p_{j}\left(\frac{n_{j}-1}{n_{j}}\right)\right)^{2}+\frac{4 p_{j}^{2}}{n_{j}}}-\left(p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)-p_{j}\left(\frac{n_{j}-1}{n_{j}}\right)\right)}{2 p_{j} \sqrt{n_{q+1}}} \\
& \geqslant \frac{\sqrt{\left(p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)\right)^{2}+\frac{4 p_{j}^{2}}{n_{j}}}-p_{q+1}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)}{2 p_{j} \sqrt{n_{q+1}}}=\frac{1}{\sqrt{n_{q+1}}} \frac{p_{q+1}}{p_{j} n_{q+1}}
\end{aligned}
$$

being $\frac{p^{2}}{n_{j}}=\frac{p_{q+1}^{2}}{n_{q+1}}$ for every j.

If we replace a_{1} with a_{q+1} in (3.13), a similar argument shows that

$$
\left\|g_{\gamma}(x)\right\|_{2}^{2} \geqslant \sum_{s=0}^{\infty}\left(\sum_{j=1}^{q} \frac{1}{n_{q+1}}\right)^{s}=+\infty
$$

under our assumption.
The last theorem of this section considers a sort of unreasonable situation, completely opposite to that of Theorem 3.

Theorem 4. - Suppose that $p_{1}=p_{2}=\cdots=p_{q+1}=p$.
Suppose also that
(3.14) $n_{1}=n_{2}$ and, for every k, with $3 \leqslant k \leqslant q+1, \quad n_{k} \leqslant \sum_{j<k} n_{j}$.

Then the continuous spectrum of μ consists of exactly one component.
Proof. - It is convenient to denote by $x_{i, k, s}$ any word having the reduced form similar to that of condition (3.13) : set

$$
x_{j, k, s}=\left(a_{j} a_{k}\right)\left(a_{j} a_{k}\right), \ldots,\left(a_{j} a_{k}\right) \quad \text { and }|x|=2 s
$$

where a_{j} (respectively a_{k}) denotes any element of $\tilde{G}_{n_{j}+1}$ (respectively $\tilde{G}_{n_{k}+1}$). As before, we shall show that only two of the curves of 3.3 i) have positive derivative.

Suppose now that $w \leqslant 0$ and set

$$
\gamma^{k}(w)=2 w+\sum_{j \neq k} p \xi_{j}^{-}+p \xi_{k}^{+}
$$

It is obvious that, being $n_{1}=n_{2}$, both γ^{1} and γ^{2} cannot give rise to a resolvent set. Let us consider now γ^{k} with $k \geqslant 2$.

A short calculation shows that the derivative of $n_{k}\left|\xi_{k}^{+}\right|^{2}$ with respect to n_{k} is positive when $2 w$ is less then $p\left(\frac{n_{k}+1}{n_{k}}\right)$. Recall that $\left(\frac{n_{1}-1}{n_{1}}\right) \leqslant\left(\frac{n_{2}-1}{n_{2}}\right) \leqslant \cdots \leqslant\left(\frac{n_{q+1}}{n_{q+1}}\right)$. Hence, for $w \leqslant \frac{p}{2} \frac{n_{1}+1}{n_{1}}$, we have

$$
n_{1}\left|\xi_{1}^{-}\right|^{2} n_{k}\left|\xi_{j}^{+}\right|^{2} \geqslant n_{1}\left|\xi_{1}^{-}\right|^{2} n_{1}\left|\xi_{1}^{+}\right|^{2}=1
$$

which implies that

$$
\sum_{s=0}^{\infty}\left|g_{\gamma}\left(x_{1, k, s}\right)\right|^{2}=+\infty
$$

Observe that it is essential to have $n_{1}=n_{2}$. We shall produce an example where γ^{1} gives rise to a resolvent set for negative w, providing that n_{1} and n_{2} are far enough apart.

From the above considerations it is also clear, that, for

$$
0 \leqslant w \leqslant \frac{p}{2}\left(\frac{n_{1}-1}{n_{1}}\right)
$$

no curve give a resolvent set for γ. So that the first curves to be considerd are, as well as in Theorem 3, the

$$
\gamma_{k}=2 w+\sum_{j \leqslant k} p \xi_{j}^{+}+\sum_{j \geqslant k+1} p \xi_{j}^{-}
$$

for $w \in\left(\frac{p}{2}\left(\frac{n_{k}-1}{n_{k}}\right), \frac{p}{2}\left(\frac{n_{k+1}-1}{n_{k+1}}\right)\right]=I_{k},(1 \leqslant k \leqslant q)$.
Again nor γ_{1} or γ_{2} can give a resolvent set. If we look at the derivative of $\left|\xi_{j}^{ \pm}\right|$with respect to n_{j}, we see that, for positive values of $w,\left|\xi_{j}^{ \pm}\right|$is a decreasing function of n_{j}.

Hence, for $k \geqslant 2$ and $w \in I_{k}$ we have:

$$
\begin{equation*}
\left|\xi_{\bar{k}+1}^{-} \xi_{j}^{+}\right| \geqslant\left|\xi_{\bar{k}+1}^{-} \xi_{k+1}^{+}\right|=\frac{1}{n_{k+1}} \quad \text { for every } j \leqslant k+1 \tag{3.15}
\end{equation*}
$$

If we restrict our attention to the words $x_{1, k+1, s}, x_{2, k+1, s}, \ldots,\left(x_{k, k+1, s}\right.$ we see that the ℓ^{2} norm of $g_{\gamma}(x)$ is greater or equal to

$$
\sum_{l=0}^{\infty}\left(\sum_{j=1}^{k} \frac{n_{j}}{n_{k+1}}\right)^{l}
$$

which is infinite under our assumptions.
Finally, the above considerations show that, also for

$$
x \geqslant \frac{p}{2}\left(\frac{n_{q+1}-1}{n_{q+1}}\right)
$$

the only curve giving a resolvent set is $\gamma^{+}=2 w+\sum_{j=1}^{q+1} p \xi_{j}^{+}$.
Remark. - Observe that, if $n_{1}=1<q \leqslant n_{2} \leqslant n_{3}, \ldots, n_{q+1}$, the continuous spectrum of μ consists of at least two components. The curve disconnecting $\operatorname{sp}(\mu)$ is γ^{1} which has positive derivative at the point $2 w_{q}=-\frac{3 q+1}{2 q(q+1)}$.

3. The representations.

This section is devoted to the description of the measure $d m(\sigma)$ and of the unitary irreducible representations.

We shall first describe the eigenspaces corresponding to the points $\gamma_{0}\left(\right.$ when $\left.\sum_{j=1}^{q+1} \frac{1}{n_{j}+1}<1\right)$ and $\gamma_{1}\left(\right.$ when $\left.\frac{1}{n_{1}+1}>\sum_{j=2}^{q+1} \frac{1}{n_{j}+1}\right)$.

The corresponding representations will be square integrable and hence reducible see [CF-T].

Identify functions defined on G with functions defined on \mathscr{G}. Say that a polygon P is of type j if it corresponds to a left coset of $G_{n_{j}+1}$ in G. We shall also write \mathscr{P}_{j} for these polygons. Let \mathscr{N}^{0} consist of all complex valued functions f, defined on \mathscr{G}, which have zero average over each polygon. It is easy to verify that \mathscr{N}^{0} is an eigenspace for the operator induced on \mathscr{G} by right convolution with μ. If f is such a function we have $f * \mu=\gamma_{0} f$.

Let $\mathscr{N}_{0}=\mathscr{N}^{0} \cap \ell^{2}(G)$.
Let $\mathscr{N}^{j}(j=1, \ldots, q+1)$ consist of all complex valued functions on \mathscr{G} which are constant on the polygons of type j and have zero average over all the other polygons. Analogously, \mathscr{N}^{j} are all eigenspaces of μ.

Set $\mathcal{N}_{j}=\mathscr{N}^{j} \cap \ell^{2}(G)$.
We have the following

Theorem 5.

$$
\begin{align*}
& \mathscr{N}_{0} \neq\{0\} \text { if and only if } \sum_{j=1}^{q+1} \frac{1}{n_{j}+1}<1 \\
& \mathscr{N}_{1} \neq\{0\} \text { if and only if } \sum_{j=2}^{q+1} \frac{1}{n_{j}+1}<\frac{1}{n_{1}+1} \tag{4.1}
\end{align*}
$$

$$
\mathscr{N}_{j}=\{0\} \text { for all the other values of } j
$$

Moreover, if we think of $\mathscr{N}_{j}(j=0,1)$ as subrepresentation of the regular representation of G, their continuous dimension is respectively $1-\sum_{j=1}^{q+1} \frac{1}{n_{j}+1}$ and $\frac{1}{n_{1}+1}-\sum_{j=2}^{q+1} \frac{1}{n_{j}+1}$.

Proof. - Let us consider first \mathscr{N}_{0}. Suppose that $f \neq 0$ is an element of \mathscr{N}_{0}. Since $\mathscr{N}_{j}(j=0, \ldots, q+1)$ are all invariant by the G action on \mathscr{G}, we may always suppose that $f(e) \neq 0$.

We shall take averages of the values of f in order to obtain another element f_{0} of \mathscr{N}_{0} whose ℓ^{2} norm can be easily computed. Start from the polygons leaving from the identity.

Let $f_{0}\left(a_{j}\right)$ be the average of the values of f over all the vertices of \mathscr{P}_{j} different from the identity. Hence $f_{0}\left(a_{j}\right)=-\frac{f(e)}{n_{j}}$. Let now $f_{0}\left(a_{j} a_{k}\right)$ be the average of the values of f over all the verteces at distance two from e which belong to a polygon of type k meeting \mathscr{P}_{j}.

Hence

$$
\begin{aligned}
f_{0}\left(a_{j} a_{k}\right) & =\frac{1}{n_{j}} \frac{1}{n_{k}} \sum_{\left\{a_{j} \in \tilde{G}_{n_{j}+1}\right\}} \sum_{\left\{a_{k} \in \tilde{\sigma}_{n_{k}+1}\right\}} f\left(a_{j} a_{k}\right) \\
& =\frac{1}{n_{j}} \frac{1}{n_{k}} \sum_{\left\{a_{j} \in \tilde{G}_{\left.n_{j}+1\right\}}\right\}}-f\left(a_{j}\right)=+\frac{f(e)}{n_{j} n_{k}} .
\end{aligned}
$$

Repeat the same reasoning for the verteces at distance $n \geqslant 3$ from the identity: then

$$
\begin{aligned}
f_{0}\left(a_{i_{1}} a_{i_{2}}, \ldots, a_{i_{k}}\right)=\frac{1}{\left(n_{i_{1}} n_{i_{2}}, \ldots, n_{i_{k}}\right)} \sum_{\left\{a_{i_{1}} \in \tilde{G}_{n_{i_{1}}+1}\right\}\left\{a_{i_{2}} \in \tilde{G}_{n_{i_{2}}+1}\right\}} & \sum_{\left\{a_{i_{k}} \in \tilde{G}_{n_{i_{k}}+1}\right\}} \\
& \ldots\left(a_{i_{1}} a_{i_{2}, \ldots,}, a_{\left.i_{i_{k}}\right)} .\right.
\end{aligned}
$$

If we define

$$
\begin{align*}
& \Phi(e)=1 \\
& \Phi\left(a_{j}\right)=-\frac{1}{n_{j}} \quad \text { for every } a_{j} \in \widetilde{G}_{n_{j}+1} \tag{4.2}\\
& \Phi(x y)=\Phi(x) \Phi(y) \quad \text { whenever }|x y|=|x|+|y|
\end{align*}
$$

then $f_{0}(x)=f(e) \Phi(x)$. By Schwartz inequality Φ belongs to $\ell^{2}(G)$. On the other hand, Φ satisfies a resolvent-like condition so that we have:

$$
\|\Phi\|_{2}^{2}=\left(1-\sum_{j=1}^{q+1} \frac{n_{j}\left|\Phi\left(a_{j}\right)\right|^{2}}{1+n_{j}\left|\Phi\left(a_{j}\right)\right|^{2}}\right)^{-1}=\left(1-\sum_{j=1}^{q+1} \frac{1}{n_{j}+1}\right)^{-1}
$$

Hence Φ belongs to ℓ^{2} if and only if $\sum_{j=1}^{q+1} \frac{1}{n_{j}+1}<1$. We shall now see that, when this occurs, \mathscr{N}_{0} is the whole eigenspace corresponding to γ_{0}. Let

$$
\varphi_{0}=\left(1-\sum_{j=1}^{q+1} \frac{n}{n_{j}+1}\right) \Phi
$$

The functional calculus allows us to recover the orthogonal projection F onto the subspace corresponding to γ_{0} by means of $g_{\gamma}(x)$. In particular $F(g)=g * \Phi_{F}$ for a suitable positive definite function Φ_{F} and

$$
\left\langle F\left(\delta_{e}\right), \delta_{x}\right\rangle=\Phi_{F}(x)=\frac{1}{2 \pi i} \int_{C} g_{\gamma}(x) d \gamma
$$

where C is a smooth curve around the point γ_{0}. Observe that γ, as a function of w, is given by the curve $\gamma_{0}(w)$ considered in Theorem 1 and hence $g_{\gamma}\left(a_{j}\right)=\xi_{j}^{-}$for every j. If we let C shrink around γ_{0}, we get :

$$
\begin{aligned}
& \Phi_{F}(x)=\frac{1}{2 \pi i} \operatorname{Res}_{\gamma=\gamma_{0}} g_{\gamma}(e) \Phi(x) \\
&= \lim _{\gamma \rightarrow \gamma_{0}}\left(\gamma-\gamma_{0}\right) \frac{1}{2 w(\gamma)} \Phi(x)=\left.\frac{1}{2} \quad \frac{1}{\frac{d w}{d \gamma}}\right|_{\gamma=\gamma_{0}} \Phi(x) \\
&= \frac{1}{2}\left(\frac{d \gamma_{0}(w)}{d w}\right)_{w=0} \Phi(x)=\left(1-\sum_{j=1}^{q+1} \frac{n}{n_{j}+1}\right) \Phi(x)=\varphi_{0}(x)
\end{aligned}
$$

So that, when $\sum_{j=1}^{q+1} \frac{1}{n_{j}+1}<1, \varphi_{0}$ is an idempotent of $C_{\mathrm{reg}}^{*}(G)$.

On the other hand, it is obvious that φ_{0} is an element of \mathscr{N}_{0} and hence any other γ_{0}-eigenfunction of μ must also lie in \mathscr{N}_{0}.

Let us turn to the \mathscr{N}_{j} for $j \geqslant 1$. Suppose that $f \neq 0 \in \mathscr{N}_{j}$. Then f is not identically zero on the polygons $\left\{\mathscr{P}_{j}\right\}$. As before, we may assume that $f(e) \neq 0$.

If we repeat the construction above, again we get a new function f_{j} which is still in \mathscr{N}_{j}.

Again, the ℓ^{2} norm of f_{j} can be easily computed. Consider the functions defined by the rule:

$$
\begin{array}{ll}
\Phi_{j}(e)=1 & \\
\Phi_{j}\left(a_{j}\right)=1 & \text { where } a_{j} \in G_{n_{j}+1} \\
\Phi_{j}\left(a_{k}\right)=-\frac{1}{n_{k}} & \text { if } a_{k} \in \widetilde{G}_{n_{k}+1} \text { and } k \neq j \\
\Phi_{j}(x y)=\Phi_{j}(x) \Phi_{j}(y) & \text { if }|x y|=|x|+|y|
\end{array}
$$

then $f_{j}=f(e) \Phi_{j}$.
If we compute now the ℓ^{2} norm of Φ_{j}, we see that this is infinite unless $j=1$. In other words, the constant value is possible only on the smallest polygons. Arguing as before, we can also see that \mathscr{N}_{1} is nonzero if and only if

$$
\sum_{j=2}^{q+1} \frac{1}{n_{j}+1}<\frac{1}{n_{1}+1} .
$$

In this case the orthogonal projection φ_{1} onto \mathscr{N}_{1} is recovered by considering the function $\gamma_{1}(w)$ and has the following expression:

$$
\varphi_{1}=\left(\frac{1}{n_{1}+1}-\sum_{j=2}^{q+1} \frac{1}{n_{j}+1}\right) \Phi_{1}
$$

The final assertion (see e.g. [KS] for the definition of continuous dimension) is a consequence of fact that the continuous dimension of the representations corresponding to $\gamma_{j}(j=0,1)$ is nothing but the value that the functions $\varphi_{j}(j=0,1)$ take at the identity.

Let us consider now $\sigma \in \operatorname{sp}_{c}(\mu)$. Let γ be a complex number with $\operatorname{Re} \gamma=\sigma$. Suppose that σ is not a branch point for $g_{\gamma}(x)$: we have seen in Theorem 1 that $w(\gamma)$ is far from zero when γ tends to σ. Also, $g_{\sigma \pm i_{0}}(x)$ is finite for every x and, being $g_{\gamma}(x)$ analytic in the upper half plane, we may ensure that $g_{\sigma \pm i_{0}}(x)$ are continuous functions of σ when σ is an interior point of $\operatorname{sp}_{c}(\mu)$. Finally, arguing as in [S], we may deduce that $g_{\sigma+i_{0}}(e)=g_{\sigma-i_{0}}(e)$ implies tha σ is a branch point for $g_{\gamma}(e)$.

Let S denote the set of branch points of $g_{\gamma}(e)$. Since $g_{\gamma}(e)$ is an algebraic function, S is finite.

For any $\sigma \in \operatorname{sp}_{c}(\mu) \backslash S$ define

$$
\varphi_{\sigma}(x)=\frac{g_{\sigma+i 0}(x)-g_{\sigma-i 0}(x)}{g_{\sigma+i 0}(e)-g_{\sigma-i 0}(e)}
$$

and

$$
d m(\sigma)=-\frac{1}{\pi}\left(g_{\sigma+i 0}(e)-g_{\sigma-i 0}(e)\right) d \sigma
$$

Then the functional calculus says that

$$
\delta_{e}(x)=\varphi_{0}(x)+\varphi_{1}(x)+\int_{\mathrm{sp}_{c}(\mu)} \varphi_{\sigma}(x) d m(\sigma)
$$

where $\varphi_{0}\left(\right.$ respectively $\left.\varphi_{1}\right)$ is identically zero if γ_{0} (respectively γ_{1}) does not belong to the point spectrum of μ.

In fact, all the functions φ_{σ} involved, are two sided eigenfunctions of μ (with eigenvalue σ) and the above sum is an orthogonal sum.

Using the functional calculus again one can argue as in [S] to see that $-\frac{1}{\pi}\left\{g_{\sigma+i 0}(x)-g_{\sigma-i 0}(x)\right\}$ is positive definite for $\sigma \in \operatorname{sp}_{c}(\mu)$, hence $\varphi_{\sigma}(x)$ is positive definite for $\sigma \in \operatorname{sp}_{c}(\mu) \backslash S$.

Corresponding to any $\varphi_{\sigma}\left(\sigma \in \operatorname{sp}_{c}(\mu) \backslash S\right)$ we may associate a continuous unitary representation of G, say π_{σ}.

When $\sigma \neq \gamma_{i} i=0,1$ then the corresponding π_{σ} is realized in a standard Hilbert space \mathscr{H}_{σ}, which can be thought to be completion of the space of left translates of φ_{σ}. For any finitely supported functions f and g we have :

$$
\begin{gathered}
f \mapsto f_{\sigma}=f * \varphi_{\sigma}, \quad \pi_{\sigma}(x) f_{\sigma}=\left(\delta_{x} * f\right)_{\sigma} \\
\left(f_{\sigma}, g_{\sigma}\right)_{\sigma}=\left(f * \varphi_{\sigma}, g\right)
\end{gathered}
$$

(,) denotes the inner product in $\ell^{2}(G)$ and $(,)_{\sigma}$ the one in H_{σ}. Also, we have

$$
\begin{aligned}
(f, g)=\int_{\mathrm{sp}(\mu)}\left(f * \varphi_{\sigma}, g\right) d m \sigma=(f, g)=\left(f * \varphi_{0}, g\right) & +\left(f * \varphi_{1}, g\right) \\
& +\int_{\mathrm{sp}_{c}(\mu)}\left(f_{\sigma}, g_{\sigma}\right)_{\sigma} d m \sigma
\end{aligned}
$$

Let $\sigma \in \operatorname{sp}(\mu) \backslash\left\{\gamma_{0}, \gamma_{1}\right\}$ and let $g_{\gamma}(x)$ be equal to $(\gamma-\mu)^{-1}(x)$ at $\gamma=\sigma+i \varepsilon$, so that $g_{\gamma}(e)=\frac{1}{2 w(\gamma)}$. In [S] it is proved that if $\lim _{\varepsilon \rightarrow 0^{+}} w(\gamma) \neq \lim _{\varepsilon \rightarrow 0^{-}} w(\gamma) \neq 0 \neq \infty$ then the corresponding representation π_{σ} is irreducible.

The same arguments used in [S] also apply to our case. Namely, we have the following

Theorem 6. - Suppose that $\sigma \in \operatorname{sp}(\mu) \backslash\left\{S \cup\left\{\gamma_{0}, \gamma_{1}\right\}\right\}$. Then the corresponding representation π_{σ} on H_{σ} is irreducible.

Sketch of the proof. - 1) Let $Q(\sigma)=\left\{\psi \in H_{\sigma}: \pi_{\sigma}(\mu) \psi=\sigma \psi\right\}$. Observe that φ_{σ} belongs to $Q(\sigma)$ and recall that, if $Q(\sigma)$ is one dimensional, then π_{σ} is irreducible.
2) Let Q_{σ} be the orthogonal projection onto H_{σ}, the functional calculus says that

$$
Q_{\sigma}=\lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon\left(\sigma+i \varepsilon-\pi_{\sigma}(\mu)\right)^{-1}
$$

3) Observe that Q_{σ} can be computed for large values of ε and then take the analytic continuation.

Let $\sigma^{\prime}=\sigma+i \varepsilon$ and $g_{\sigma^{\prime}}=(\sigma+i \varepsilon-\mu)^{-1}$. Then for large values of ε we have

$$
\left[\sigma+i \varepsilon-\pi_{\sigma}(\mu)\right]^{-1}=\pi_{\sigma}\left\{(\sigma+i \varepsilon-\mu)^{-1}\right\}
$$

hence

$$
\begin{align*}
\left(Q_{\sigma}\left(\delta_{x} * \dot{\varphi}_{\sigma}\right), \delta_{y} * \varphi_{\sigma}\right)_{\sigma} & =\lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon\left(\pi_{\sigma}\left\{\left(\sigma^{\prime}-\mu\right)^{-1}\right\}\left[\delta_{x} * \varphi_{\sigma}\right], \delta_{y} * \varphi_{\sigma}\right)_{\sigma} \tag{4.3}\\
& =\lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon\left(g_{\sigma^{\prime}} * \delta_{x} * \varphi_{\sigma}, \delta_{y}\right)
\end{align*}
$$

In order to compute the above limit observe that the right hand side of 4.3 is given by $i \varepsilon \sum_{z \in G} g_{\sigma^{\prime}}(x z) \varphi_{\sigma}(z y)$. Since $g_{\sigma^{\prime}}$ a multiplicative function of ($x z$) we can use this property providing that $|z| \geqslant|x|+2$. Hence we shall estimate $\sum_{|z| \geqslant|x|+|y|+3} g_{\sigma^{\prime}}(x z) \varphi_{\sigma}(z y)$.
4) Write $\frac{g_{\sigma+i 0}(x)-g_{\sigma-i 0}(x)}{g_{\sigma+i 0}(e)-g_{\sigma-i 0}(e)}$ for $\varphi_{\sigma}(x)$ and compute first $\lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon\left(g_{\sigma^{\prime}} * \delta_{x} * g_{\sigma-i 0}, \delta_{y}\right)$.

Define vectors $u(x)=\left(u_{1}(x), \ldots, u_{q+1}(x)\right) v(x)=\left(v_{1}(x), \ldots, v_{q+1}(x)\right)$ as follows :

$$
u_{j}(x)=\sum_{t} g_{\sigma^{\prime}}\left(t x^{-1}\right) g_{\sigma-i 0}\left(t_{0}^{-1}\right)
$$

where the sum is taken over all elements $t \in G$ such that $|t|=|x|+1$ and the first letter of t does not belong to $\tilde{G}_{n_{j}+1}$.

$$
v_{j}(x)=\sum_{s} g_{\sigma-i 0}\left(s^{-1} y\right) g_{\sigma^{\prime}}(s)
$$

where the sum is taken over all s in G such that $|s|=|y|+1$ and the last letter of s does not belong to $\widetilde{G}_{n_{j}+1}$.

Recall that $g_{\sigma^{\prime}}(x)=\frac{1}{2 w\left(\sigma^{\prime}\right)} \cdot h_{\sigma^{\prime}}(x), g_{\sigma-i 0}(x)=\frac{1}{2 w(\sigma-i 0)} h_{\sigma-i 0}(x)$ and define, for $n=1,2, \ldots,(q+1)$ by $(q+1)$ matrices $A^{(n)}$ by the rule $A_{j, k}^{(n)}=\sum_{|t|=n} h_{\sigma^{\prime}}(t) h_{\sigma-i 0}(t)$ where the sum is taken over all elements t of length n such that the first letter is an element of $\widetilde{G}_{n_{j}+1}$ the last is an element of $\tilde{G}_{n_{k}+1}$. Define also a transition matrix T letting

$$
T_{j, k}= \begin{cases}0 & \text { if } \quad j=k \\ n_{j} \xi_{j}^{\prime} \xi_{j} & \text { if } \quad j \neq k, \quad j, k=1, \ldots, q+1\end{cases}
$$

where $\xi_{j}^{\prime}=\xi_{j}\left(w\left(\sigma^{\prime}\right)\right)$ and $\xi_{j}=\xi_{j}(w(\sigma-i 0))$.
Since $A^{(n+1)}=T A^{(n)}$, one can prove that

$$
\begin{align*}
\left(g_{\sigma^{\prime}} * \delta_{x} * g_{\sigma-i 0}, \delta_{y}\right)=\sum_{|t|<3+|x|+|y|} g_{\sigma^{\prime}}(& \left.t x^{-1}\right) g_{\sigma-i 0}\left(t^{-1} y\right) \tag{4.4}\\
& +\sum_{n=1}^{\infty} v(y)\left(T^{n-1} A^{(1)}\right) u(x)
\end{align*}
$$

5) In order to compute the limit in 4 , observe that the first term in the above equality remains bounded as $\varepsilon \rightarrow 0^{+}$, while the second terms is nothing but

$$
v(y)(I-T)^{-1} A^{(1)} u(x)
$$

The caracteristic polynomial $P_{\varepsilon}(\alpha)$ of T is given by

$$
P_{\varepsilon}(\alpha)=\left(\prod_{j=1}^{q+1}\left(\alpha+n_{j} \xi_{j}^{\prime} \xi_{j}\right)\right) \cdot\left(1-\sum_{j=1}^{q+1} \frac{n_{j} \xi_{j}^{\prime} \xi_{j}}{\alpha+n_{j} \xi_{j}^{\prime} \xi_{j}}\right)
$$

Therefore, as $\varepsilon \rightarrow 0^{+} P_{\varepsilon}$ tends to a polynomial which has 1 as a simple root and this implies that, as $\varepsilon \rightarrow 0^{+}$, limit 4.6 is a product of the form $C(x) \cdot \varphi_{\sigma}(y)$.

As for the limit of $i \varepsilon\left(g_{\sigma+i \varepsilon} * \delta_{x} * g_{\sigma+i 0}, \delta_{-y}\right)$ repeat the same reasoning, finding a matrix T which, as $\varepsilon \rightarrow 0^{+}$, converges to a matrix which does not have the eigenvalue one. This implies that

$$
\lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon\left(g_{\sigma+i \varepsilon} * \delta_{x} * g_{\sigma+i 0}, \delta_{y}\right)=0
$$

BIBLIOGRAPHY

[A] K. Аомото, Spectral theory on a free group and algebraic curves, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 31 (1984), 297-317.
[AK] K. Аомото, Y. Kato, Green functions and spectra on free products of cyclic groups, Annales Inst. Fourier, 38-1 (1988), 59-85.
[CF-T] C. Cecchini, A. Figá-Talamanca, Projections of uniqueness for $L^{p}(G)$, Pacific J. of Math., 51 (1974), 34-37.
[CS1] D. I. Cartwright, P. M. Soardi, Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal., 65 (1986), 147-171.
[CS2] D. I. Cartwright, P. M. Soardi, Random walks on free products, quotient and amalgams, Nagoya Math. J., 102 (1986), 163-180.
[CT] J. M. Cohen, A. R. Trenholme, Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal., 59 (1984), 175-184.
[DM] E. D. Dynkin, M. B. Malyutov, Random walk on groups with a finite number of generators, Sov. Math. Dokl., 2 (1961), 399-402.
[DS] N. Dunford, J. T. Schwartz, Linear Operators, Interscience, New York, 1963.
[F-TS] A. Figá-Talamanca, T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, to appear in Memoirs A.M.S.
[IP] A. Iozzi, M. Picardello, Spherical functions on symmetrical graphs, Harmonic Analysis, Proceedings Cortona, Italy, Springer Lecture Notes in Math.
[K] G. Kuhn, Anisotropic random walks on the free product of cyclic groups, irreducible representations and indempotents of $C_{\text {reg }}^{*}(G)$, preprint.
[K-S] G. Kuhn, T. Steger, Restrictions of the special representation of Aut (Tree_{3}) to two cocompact subgroups, to appear in Rocky Moutain J.
[M-L] McLaughlin, Random walks and convolution operators on free products, Doctoral Dissertation, New York University.
[S] T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, Doctoral Dissertation, Washington University, St. Louis.
[T1] A. R. Trenholme, Maximal abelian subalgebras of function algebras associated with free products, J. Funct. Anal., 79 (1988), 342-350.
[T2] A. R. Trenholme, A Green's function for non-homogeneous random walks on free products, Math. Z., 199 (1989), 425-441.
[W1] W. Woess, Nearest neighbour random walks on free products of discrete groups, Boll. U.M.I., 65 B (1986), 961-982.
[W2] W. Woess, Context-free language and random walks on groups, Discrete Math., 64 (1987), 81-87.

Manuscrit reçu le 22 mai 1990, révisé le 16 avril 1991.
M. Gabriella Kuhn,

Dipartimento di Matematica
Università degli Studi di Milano
Via C. Saldini 50
20133 Milano (Italie).

[^0]: Key-words : Free products - Random walks - Spectrum - Representations.
 A.M.S. Classification: 43A65-60B15.

