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RANDOM WALKS ON FREE PRODUCTS

by M. Gabriella KUHN

1. Introduction.

Let G = *J=YG^.+i be the free product of q -r- 1 (g+1) > 3 finite
groups each of order rij + 1 and let ^ be the Cayley graph of G with
respect to the generators {flj;; a^E Gn-+i?J^i1-

We recall that ^ is a connected graph with the property that at
each vertex V there meet exactly q + 1 polygons Pj(V) with n, + 1
sides, and any two vertices belonging to the same polygon are connected
by an edge.

Identify G (as a set) with ^ and consider G acting on the
« homogeneous space » ^ by left multiplication.

Choose q 4- 1 positive numbers pi, . . . , pg+i satisfying the condition
9+1

^ pj == 1. Let H be a probability measure which assigns the probability
j'-i
pj to each copy of Gn.+i\e. If we look at ^, it is natural to consider
equal all the vertices belonging to the same polygon. This suggests to
make the simplest possible choice for the measure |x.

Set n(x) = -/ if x e Gn.+^\e(j= 1, . . . ,^+1) and zero otherwise.

Consider the random walk on ^ with law u. Then the transition
probability p(V) -> (V) of moving from a vertex V to a vertex F is

-/ if both I7 and V belong to the same polygon Pj and V + V .
"j

^^-won^s ; Free products - Random walks - Spectrum - Representations.
A.M.S. Classification : 43A65 - 60B15.



468 M. GABRIELLA KUHN

Observe that the structure of each factor group G^.+i is really
unimportant for the description of the random walk on ^ and the
associated Green function Gy.

On the other hand, Gy plays a central role in order to understand
the operator of right convolution with [i on ^\G) and has been
considered by many authors [AK] [CS2] [CT] [T2].

We know that Gy can be described by means of «elementary»
functions, and sometimes this is enough to understand completely its
behaviour. Nevertheless the cases which are completely described are
still very few :

q + 1 = 2 by [CS1] and [T2]; n, + 1 = 2 V/' and
Pg+i ^ P q , • ' • ^ Pi by [F-TS]; pi = p2 = • " Pq+i and n, + 1 = N V '̂
by [IP] [Tl] (see also [CT]). The last case, n, + 1 = A^V/, is also
described in [K] with several choices of the pj with pg+i ^ pg ^
• • • ^Pr

In this paper we shall give a complete description of the point
spectrum of ^ in C*eg(G') by means of the numbers n,.

The continuous spectrum spc (in C*eg(G')) will be computed in several
cases. In spite of the point spectrum, spc depends on the pj as well as
on the numbers rij. We shall give a necessary condition for spc to be
connected.

Finally following the aim of [IP] and [F-TS] we shall produce a
decomposition of the regular representation of G by means of ^. We
shall also prove that this decomposition is into irreducibles exactly
when there are not true eigenspaces of p.

Notation.

G will always denote the free product of q + 1 finite groups G^.+i
each of order n, + 1.

Let e denote the group identity. It is convenient to set, for every j
Gnj+i == G^+i\e.

Each x in G, x ^ e, may be uniquely represented as a reduced word,
as x = o,^, . . . , a^ where a, e G^+i and ;\ + J /c+ifor 1 ̂  k ^ m - 1.
The length of x, that we shall denote by | x \, is the minimum number
of elements ^{G^.+JjLY needed to represent x.
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Path distance on ^ corresponds to this notion of length.

Let 8,. denote the Kronecker delta at x . Set

Q+l

^oo = E pj^jW7-1
where

g+l

^(x) = S -6^ ^e ̂ +i and pj^ °. S ̂  = 1 •
^J 7=1

Arrange the rij so that n^ < ^2^ ^s • ' ' ^ nq+l'

Let C*eg denote the C*-algebra generated by the left regular
representation of G. Since G is discrete the Kronecker delta 8g(x) is
an identity (with respect to convolution) in ^(G^).

As a consequence, any element T of C*eg(G') can be identified with
an operator of right convolution on ^2(G) by the formula

T(f)= r ( /*8,)=/*T(8,)=/*r

being t(x) = T(8e)(x). Identify [i with the operator T^ on ^\G) given
by

W)=/*^

and let sp (u), spc (a), res (a) denote (respectively) the spectrum, the
continuous spectrum, the resolvent of 7^.

Since the walk is symmetric, meaning that u(x~1) = u(x) for every
x in G, the corresponding operator 7^ is self adjoint. Hence we may
use the functional calculus to produce the resolution of the identity for
7^ by means of the resolvent ^(y) = (y-u)"1 of 7^.

We refer to [DS], Chapter X, for standard facts concernig the
functional calculus. Since 7^(y) itself is an element of C*eg(G'), there
exists an <f ̂ function gy(x) called the resolvent, or Green function G^(e,x)
of u such that

W(f)= /*^.
For large values of y, say |y| > 1, gy(x) is given by

^"(x)
(2.1) gyW = ^vW = 2.-.TT

n=0 I
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We shall also write (y-^i)-1^) for g,(x) = ^(y)(8,)(x). In general,
see [W2] (see also [A] and [S] in the case of a finitely generated free
group) we know that G^(e,x) is an algebraic function of y for any
walk whose law measure p- is finitely supported. In this case however
the algebricity of the Green function follows readly from the formulas (3.1),
(3.2) and (3.3) of Section 3. If G^(e,x) satisfies some functional equation,
we shall think of taking the analytic continuation g^(x) to satisfy the
analogue equation, whenever this is possible. Keeping this in mind, we
shall calculate the spectral measure £'(cj)(6e,§e) associated with 7^. Fix
xeG and integrate 2.1 term by term to get

^j^(x)dy=5,(x)

whenever F is a smooth curve around all the singularities of the analytic
function ^(y)(8,)(x).

If we let now r shrink around sp (u.) we get

(2.2) 5,(x) = - - ' - ( ' Im^(x)dcr+ ^ W
71 Jspc(H) je sp(u)\spc(H)

where

Im^(x) = lim {(o+fe-H)"1^) - (a-iG-[i)~\x)}
c-i.n + iE-»0

and Pj(x) are mutually orthogonal projections onto the ^ 2 eigenspaces
of [i (corresponding to the poles nij of gy^x)). We refer to section 4
for a more detailed description of ga(x).

The spectral measure £'(a)(8g,5e) is nothing but the positive measure
obtained by letting x = e in (2.2). Let us simply write ^m(a) for it,
then

dm (a) = - - Im g^(e) da + ^ Res g^(e)S^.
K 76sp(n)\sp(.(n) y=mj

In the next section we shall see that the poles of g^(x) are the same
as the poles of g^(e) and we shall compute the continuous and the
discrete spectrum of ^.
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3. Computation of sp Qi).

Identify ^, as a set, with G and think of G as a state space. The
random walk on G with law |LI is exactly the walk described in the
introduction, if we let [p{x,y) = ^(x~ly)}^yeG assign the one-step
transition probabilities. The geometry of ^ leads to the following
considerations. Suppose that { x o , X i , .. . ,Xn) is a path from e to x,
that is, a sequence of points XQ, X i , . . . , Xn with XQ == e, x^i = x and
p(XpX,+i) > 0 for 0 ^ j ^ n — 1. Suppose that x = ^^, .. . ,a^ is
the reduced expression for x. Then a? fcast one of the x/ must be
equal to Oj . Keeping in mind that the walk is also invariant with
respect to the left action of G, one can describe more precisely the
Green function ^y(x). The earliest description was given in [DM] in
the case of G equal to the free group, later, independently, many people
discovered analogue formulas for free products of finite groups (see
[CS2] [T2] and also [AK] [ML] [F-TS] [Wl]). Hence we may assume
that it is well known that gy(x) may be written as a scalar multiple of
a function h^{x) satisfying

h,(e) = 1

(3.1) h^xy) = h^x)'h^y) whenever \xy\ = |x| + \y\

^y(^i) = hy(z^) ^ both Zi and z^ belong to (?».+i.

We recall that, for any function satisfiing (3.1), we can easily compute
the ^ norm (see [F-TS] or [T2]). In fact, if h^Oj) denotes the (constant)
value of hy on C^.+i, then hy belongs to ^ p if and only if

g- n^a^ ^ ^
L,! +^(0,)^

When this happens we have

If we set

„/, I,-. = i _ y1 "A^r
" y " " L 1 + H . l f c (/,.'^ 1 + n, h^W

^e) = i
then h^(x) may be written as an analytic function of w. In particular,
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if djE (^.+1, then

(3.2) h(a,) = ̂  =

being
. . - / n ,—l \z = z/w) = 2w - 7?, -/——

\ ^ /

for a suitable choice of the sign in the above square root.

We shall simply write ^ whenever the choice of the sign of the
square root is not specified. We recall that, for any fixed x, the
function y : -> g^x) is analytic, and equal to the Green function G^(e,x)
for large values of y. Taking the analytic continuation of (3.2), after
some calculations we get

i) y = 2w + ]: p^
7-1

") P^-^-P^^}-^n, ) \ n,

iii) f Q+l n \y- \P ' )as w,i^.{i-^^y.
Furthermore, if we turn y into a function of w, we have

(3.4) iji^.y -w ^ i , , . - .v / 2dw l ^ l+^ |^ . |2 ll^^

whenever w is real, different from 0, and such that the corresponding
value of y belongs to R\sp (^).

Formulas above can be found in [T2] but can also be deduced
directly from the results of [F-TS].

Let us consider first the poles of ^(x). The following quantity will
play a central role in the description of sp (^).

Call
pm- max p!
nm 1^7^9+1 ^j

and let ^ be the corresponding value for h(a^).
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THEOREM. — Let [i as above. Then the function gy(x) has a pole if
and only if n has a nontrivial ^2 eigenspace and this happens if and only
if at least one of the following conditions hold :

Q+l .

0) S — — < l
^1 ̂  + 1

1 Q+l 1(2) Hi + 1 > ,S ^ + 1 '
Proof. — The <f 2 eigenspaces of |LI are in one to one correspondence

with the poles of g^(e), which are the same as the poles of gy(x). In
fact, suppose that gy(x) has a pole for w = Wo.

Suppose first that Wo ¥- 0. Then Wo = oo . We shall consider only
the case Wp = + oo, being the other virtually the same.

By (3.3) exactly one of the ^ must have a pole too. Also, the
choice of the sign for ^ in (3.2) must be « — » while, for k 7 ^ 7 , must
be « + ». Suppose that j + m. Then we have

lim 1^-1=^1.
w^+co Vim Pj

Let us consider now the subgroup Gm generated by Gn +1 and 6^.+i.
It can be easily seen that the above condition implies that

Z il^yMll2 = + W
xeG^

for w sufficently large and this a contradiction, since for these values
of w gy(x) must be in ^ 2 . So that the only possibility is that ^ has
a pole. In this case, write a^ (respectively aj) to denote any element
of G^ + 1 (respectively of G^.+i ) , then a limit argument shows that

(3.5) g,(x)= -i.nf^V
Pm i-iVj,Pmj

if x=a^(^aj(fl^aj, . . . , (fl^J and |x| = Is + 1
0 otherwise.

In particular, gy^x) is finite for every x .
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Hence the only possibility to get a pole for gy(x) is w = 0. Since
for complex values of y == y(w), g^(x) belongs to ^ 2 , by (3.4) we must
have

n6-> i "y ^(0)12 ^ o
^ ^l+n^O)^0-

Now, |^(0)| = 1 or |^(0)| = — according with the choice « + » or
n]

« - » in (3.2).

Looking at formula (3.6), a moment's reflection shows that no more
then one sign + is allowed for the ^. Since Hi ^ n^ - ' ' ^ n ^ + i , this
choice is possible only for ^ i . Suppose first that ^i has been chosen
with the sign « + ». The corresponding curve y(w) is given by

9+1

Y i ( w ) = 2 w + ^ p^ + p,^
(3.7)

Ah-1/ n , - l \ ^ 1 ,_ ,-== pi— + Z p j ^ j - pi^i
and

Yi(0) = Pi - Z ^ = Yi
7-2 ^7

1 1 Q+l 1

^^-——-E2 i - n, + 1 ^ n, + 1

Suppose now that condition 2) holds. Then, in a neighbourhood of
w = 0, the function above, associated with the choice of signs
« + » , . . . , « — » gives a resolvent set for y .

Again, the functional calculus says that

Jm(yi) = lim fe^+^)-
e-^-O4 '

Looking at w as a function of y we can see that

(3.8) Res^) = lim is g^+^e) = dm(j,)
Y = Y l e^0 +

1 1 Q+1 1

.llm 2w(^ = 1^ = n7TT - ̂  n;TT > °
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hence n has a nontrivial eigenspace that will be described in the next
section. If condition 2 does not hold, suppose first that

1 Q+l 11 ^ y 1

M -L 1 ^ M -L 1HI + 1 ^ n, + 1

then it is clear that the function 7i(w) cannot give rise to a resolvent
set in a neighbourhood of w == 0 so that we can ignore this case.

Finally, suppose that
1 Q+l 1" ^ y 1

^ + 1 ^ ̂  + 1

In this case the limit in (3.8) is zero, hence there are no ^ 2 eigenspaces
corresponding to yi .

Let us turn to the choice of signs in (3.6). Suppose now that all
the ^ have been chosen with the same sign « — ».

Corresponding to this choice we have y(w) given by
9+1

Yo(w) = 2w + ^ pj^
7-1

9+1 n
Y(0) = - Z pl = Yo

j=i n]
1 <7+1 1-/(0)= i - Z2 ' - ^ ^ + 1

Arguing as before we can see that, if condition 1 holds then [i has a
nontrivial ^2 eigenspace, while, when condition 1 does not hold then
dm(yo) = 0. (Actually, a quick check of the behaviour of Yo(vv) shows
that, when Yo(0) < 0, then Yo belongs to res(^i).)

Conversely, if [i has an ^2 eigenspace, then gy(e) must have a pole.
We have seen that, in this case, either yM = YiM or YW = Yo^)
and a pole may exist if and only if at least condition 1 or 2 hold. D

We shall now investigate the continuous spectrum of n .

It is clear from (3.3) and (3.4) that, if we want to investigate the
/ 2 spectrum of ^i, we have to consider y as a function of w and we
must check the derivative for all the possible choices of signs for the
^. This will be done in Theorem 3 and Theorem 4 for some special
choices of the pj and of the n,.
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We want to consider first the case g^(e) + 0 and let y =
y e res (u).

Then there exists a choice of signs in (3.2) and w = Wo e R such
that y(wo) = y and, for w in a neighbourhood of W o , y(w) eres (u) and

y(w)=2w+^p,^,(w)
j

/ ( ^ o ) > 0 .

For these values of y, we have

J_
'^yW = ̂ (^)-\(x) = ,- -^(x).2w

Suppose now
y^eres(u) and g^(e) = 0.

By definition, this may happen only if there exists Wo such that, for
w = Wo the function w(y) has a pole at y = j p . Arguing as in the first
part of the proof of Theorem 1, we can conclude that, in this case,
exactly ^ has a pole and g^(x) has the expression given in (3.5).

i Furthermore, since for any aeG^^+\ we have

^yp*(Yp-^)(^) = 0

condition 3.3 i) becomes

(nrnZ^ Pm 1 , v-. ,
YP-M~M—J==n- '£- z^'\ "TO / "TO Sm .j^m

thus, letting w -> Wo, we can see that

/".-1\
YP=PTO^-

Observe that, in this case, we have

co / Q+l n2 M V
) | | |2 _ 2 V^ / V^ ^ "•m \
\\glp\\2 - ^mPm Z, I L ~~^} '

s=0 \ j=2 "J Prn/

Hence y^ e res (u) and ^(^) = 0 implies that

P m ^ y P i ^
n^ j ^ m n!
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Conversely, a quick calculation shows that, if the above condition holds,
then the function given in (3.5) satisfies the condition,.(..(̂ i)-.).,
and hence y = Pm(~m——) belongs to res (u) and gy(e) = 0.

\ ^/n /

We are now ready to state a necessary condition for spc to be
connected.

THEOREM 2. — Suppose that continuous spectrum of u is connected
then

(3.9) pm< ^ P J - '
^ j^m n}

Proof. — It is clear that, for w -^ + oo, the best possible choice in
order to have Y'(w) positive is

y , (w)=2w+^p,^
j= i

while, for w -^ — oo, it turns into
(7+1

Yo = 2w + ^ p^7 .
7=1

The behaviour of the two above curves is very easy to check : y+ is
convex and has a positive minimum, say p + , while Yo is concave and
has a maximum, say po, which is surely negative when Yo(0) is not
positive. As noted in Theorem 1, this occurs when

q+l ^v 1 > 1L^^
In general, we cannot ensure that po is a negative number. In any case,
the continuous spectrum of u is contained in the interval [ p o , p + ] . Any
other curve y(w) having positive derivative for some w, gives rise to a
« hole » in the above interval, which disconnects sp (u).

Since condition (3.9) ensures that the curves

y,(w) = 2w + ^ p^J + p^ for w < 0
j^m

y^(w) = 2w + ^ p,^ + p^ for w > 0
j ^ m

have positive derivative for |w| sufficiently large, we get the result. D
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The next theorem provides a sufficient condition for the connectedness
of sp (n) when the probabilities are choosen in a reasonable way with
respect to the orders of the groups: the following condition says
essentially that we must assign small probabilities to small groups.

Recall that Hi ^ n^ ^ • • • ^ ^9+1. Choose the numbers pj in such
a way that

2 2

(3.10) pk == pj- for every k and j
n,, rij

then we have the following

THEOREM 3. — Suppose that the above condition (3.10) holds. Then,
if

^Q+I ^ q

sp (n) consists of exactly one interval.

Proof. — Observe first that, since n^+i ^ q, the point spectrum does
not occur. Hence we have to prove that the curves y+ and Yo considered
in Theorem 2 are the only possible choices in order to have y'(vv)
positive. Recall that condition (3.10) implies that

fn,-l\ f^-l\ (n^,-l\
P{ ——— ^ P2\ ——— ^ • • • ^ P^i[

HI / \ ^ / \ ^+1

and set
z^-lM

In == -0)
' 2 V n,

^Pk^k~^\ Pk+i^k+i-1^
^1\ Uk ) 2 \ n^+i ^

T I fhl ' " I t ^ \ t^fc+ll ' " K + 1 I 1 ^- 1 ^-
lk =[-2[-^)'^-[-n^)]' ^k^q

, (P^^Zl\^\
\ 2 \ n,+i ) )

We have

so that y'(w) is negative whenever at least two terms in the above
summation are negative. We shall consider first the best possible choice
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of sign in every /, 0 < k < q + 1 . Hence we have to consider first

k - 1 q+l

=2w+ ^ pj^+ ^ pj^ when w e ̂
J = l 7= A

Yi(w) =2^+jI^^zJ+^-z^=2w+9f^+ whenwe/^.

It is clear that, whenever y^(w) is negative in 4, no other curve may
give rise to a resolvent set for w e 4.

Let us start with I Q .

We know that yo(w) gives a resolvent set for w sufficiently small.
Furthermore, since n^.^q, y^O) is negative and this implies that no

curve can give a resolvent set for 0 < w ^ p , (nlz-~\. Also since
7

|z,| ^ |zi| for w^^"^—^ we can see by (3.11) that the only

possible choice, different from yo, is given by

7^2^ E^-+^.
J=2

A quick check of ^IWl shows that |^[ is decreasing for

negative values of w. In particular

(3.12) 1^-(w)| ^ [^^/(O)! =1 for w ^ 0.
n,

Consider now the subset A of G consisting of all words of the type

^•13) x = (^)(a,a^), . . . , (f l^)

where dj denotes any element of G^.+i and |x| = 2s.
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Since
+00 / Q+ 1

E l^l^^E S^-l^-
xe A '- s=0 \ j = 2

we see that condition (3.12) and the choice of rig+^ greater then q,
imply that, for w ^ 0, the above sum is infinite being

g+l g + 1

S^i^^-i2^ E^ i
7=2 j = 2 ̂

Hence jo ls ^e only curve giving a resolvent set in /o-

Let us consider now y^ in 7^ for 1 < k ^ q. It is obvious that, in
^g+] -1^I k , the largest possible value for the quantity \Zj\ is p^+i(-^-1——j
\ nQ+l /UnQ+l

Hence, since the quantities -J- are all equal, for we// , we get
n;

YU^)- - ( ^ -1 )+ E

Pg+i
^ -(^-1) + ( g + l ) -

\+i-l'
lq'+ 1

^+1

^1+r
^9+1

again, the choice of n^+i implies that the right hand side of the above
inequality is negative. Finally, let us consider I g + i . This time we have
that the smallest of the [z, is |Zg+ i | = z ^ + i . Hence we must consi-
der again the curve j g . Observe that I^/^+J is increasing for

^-^\ ̂andW ^ Pq+l
lQ f+ 1

being — = -9±J- for every j.
Hj rig+i
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If we replace Oi with f lg+i in (3.13), a similar argument shows that
0 0 / 9 ^ y

n^Wii2^ Z E — = + oo
s=o \ j = i ng+l/

under our assumption. D

The last theorem of this section considers a sort of unreasonable
situation, completely opposite to that of Theorem 3.

THEOREM 4. — Suppose that pi = pz = • • • = pg+^ == p .

Suppose also that
(3.14) Hi = n^ and, for every fe , with 3 ^ k ^ ^ + 1, n^ ^ ^ n / .

j < k

Then the continuous spectrum of [i consists of exactly one component.

Proof. — It is convenient to denote by x, ̂ 5 any word having the
reduced form similar to that of condition (3.13): set

^j,k,s == (a/^)(^Ah • . • . ̂ flk) and |x| = 25

where Oj (respectively a^) denotes any element of G^.+i (respectively
G^+i). As before, we shall show that only two of the curves of 3.3 i)
have positive derivative.

Suppose now that w ^ 0 and set

y^w) = 2w + ^ p^ + ^+ .
j^k

It is obvious that, being Hi = n^, both y1 and y2 cannot give rise to a
resolvent set. Let us consider now y^ with k ^ 2.

A short calculation shows that the derivative of nj^ 2 with respect

to n/, is positive when 2vv is less then p[ - /c——) • Recall that
\ ^ )

(n i — l \ (n')—\\ /^o+i\ D U i + 1
-1—— ^ -2—— ^ • • • < -̂ ±1 • Hence, for w ^ r--1——. we have

HI / \ "2 / V^+i/ 2 Hi

^i i^r2^ ^+ ^nii^'i^ii^^ ̂  i
which implies that

00

S \gy(^l,k,s)\2 = + 00.
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Observe that it is essential to have ^ 1 = ^ 2 . We shall produce an
example where y1 gives rise to a resolvent set for negative w , providing
that Hi and n^ are far enough apart.

From the above considerations it is also clear, that, for

o^^f"^1),
2\ ni )

no curve give a resolvent set for y. So that the first curves to be
considerd are, as well as in Theorem 3, the

y, = 2w + ^ pi;; + ^ p^-
J^k j ^ k + 1

^^M-ih^1)!^.^^-V2 \ nk ] ^ \ ^k+1 /J

Again nor yi or 72 can give a resolvent set. If we look at the
derivative of ^f with respect to n^, we see that, for positive values
of w, t,f | is a decreasing function of rij.

Hence, for k ^ 2 and w e 4 we have :

(3.15) l^+i^/ l ^ l^'+i^+i = —— for every j ^ k + 1.
^A+l

If we restrict our attention to the words x^h+i,s^2,k+i,s, • • • ,(^k,k+i,s
we see that the ^2 norm of g^(x) is greater or equal to

oo / k \ I

zfz^)
/ = 0 \ j = l nk+l/

which is infinite under our assumptions.
Finally, the above considerations show that, also for

^p,(n-Q^l}2 \ ^+1 /
9+1

the only curve giving a resolvent set is y"^ = 2w + ^ p^ . D
7-1

Remark. - Observe that, if n^ = 1 < q ^ n^ n^, . . . ,Hq+^ the
continuous spectrum of n consists of at least two components. The
curve disconnecting sp (u) is y1 which has positive derivative at the

. . 3q + 1
pomt2w-=-2,(,TD•
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3. The representations.

This section is devoted to the description of the measure dm(a) and
of the unitary irreducible representations.

We shall first describe the eigenspaces corresponding to the points
/ <7+1 1 \ ( 1 q+l 1 \

70 [when s ̂ <l) and Yl (when ̂ > s ̂ l)'

The corresponding representations will be square integrable and
hence reducible see [CF-T].

Identify functions defined on G with functions defined on ^. Say
that a polygon P is of type j if it corresponds to a left coset of
G^+i in G. We shall also write ̂  for these polygons. Let ^V° consist
of all complex valued functions /, defined on ^, which have zero
average over each polygon. It is easy to verify that J^0 is an eigenspace
for the operator induced on ^ by right convolution with u. I f / i s
such a function we have / * ̂  = jof.

Let ^o = ^n^CCz).

Let J^7 (/== 1, . . . ,^+1) consist of all complex valued functions on
^ which are constant on the polygons of type j and have zero average
over all the other polygons. Analogously, ^ ] are all eigenspaces of ^.

Set J .̂ == ^j n^(G).

We have the following

THEOREM 5.
q+l ^

^o ^ {0} if and only if ^ ——— < 1
7=1 n! + 1

(4.1) ^ ^ {0} if and only if ^ ——— <^ n, + 1 n, + 1
^j = {0} /or fl^ r^ ot/i^r values ofj.

Moreover, if we think of ^j O'=0,l) as subrepresentation of the regular
representation of G, their continuous dimension is respectively

Q+l 4 4 Q+l -l

^^n^i^n^-^n^l'
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Proof. - Let us consider first J^o- Suppose that / ^ O is an
element of J^o- Since ,̂ 0"=0, . . . ,g+1) are all invariant by the G
action on ^, we may always suppose that f(e) + 0.

We shall take averages of the values of / in order to obtain another
element fo of J^o whose ^2 norm can be easily computed. Start from
the polygons leaving from the identity.

Let fo(cij) be the average of the values of / over all the vertices

of ^j different from the identity. Hence fo(a,) == - • J { e ) . Let now
n,

fo^j^k) be the average of the values of / over all the verteces at
distance two from e which belong to a polygon of type k meeting ^.

Hence

/o(a^)=^ E Z /(^*)
' t( a ; e^-+l)f°t6G^+l}

.11 s -/(„)-+/M.

"''^.,.1^ "f"

Repeat the same reasoning for the verteces at distance n ^ 3 from the
identity: then

/o(a^, ..., a,,) = ———————— ^ ^
W-^,...,n^^^^^^^^^^^

t! ^ "t2

Z f^i^.-.a^
^s-^

If we define

<S>(e) = 1

(4.2) 0(o,) = - — for every a^eG^ .+ i

0 (x^) = 0 (x)(I> (^) whenever | xy \ = | x \ + | ̂  |

then fo(x) = f(e)^>{x). By Schwartz inequality 0 belongs to ^(G). On
the other hand, 0 satisfies a resolvent-like condition so that we have :

M-f.-'t ^)i'r,f,-y'_Lr.», ^i+^iiK^r/l ^' ^B^iJ
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9+1 ^
Hence 0 belongs to £ 2 if and only if ^ ——, < 1. We shall now see

7-1 ^'+1

that, when this occurs, J^o is the whole eigenspace corresponding to
V o . Let • " " v-H:̂ )
The functional calculus allows us to recover the orthogonal projection
F onto the subspace corresponding to yo by means of gy(x). In particular
F(g) = S * ̂ F for a suitable positive definite function <I>^ and

<F(8,)A> = <^(x) = J- f ^(x) dy
27uJc

where C is a smooth curve around the point 70. Observe that y, as a
function of w, is given by the curve yo(w) considered in Theorem 1
and hence gy(cij) = ^] for every 7. If we let C shrink around yo. we
get:

1
<W)= —Res^)(D(x)

27n v=YnT-YO

= lim (y - yo) —— <S)(x) = . ——- 0(x)
^yo 2w(y) 2 dw ^^

-K^L^-O-i^)^'-^-
9+1 1

So that, when ^ ——, < 1, (po is an idempotent of C*eg(G').
y = i ^+1

On the other hand, it is obvious that (po is an element of ^o ^d
hence any other yo-eigenfunction of ^x must also lie inJ^o-

Let us turn to the ̂  for j ^ 1. Suppose that / 7^ 0 e ̂ . Then
/ is not identically zero on the polygons {3ft j ] . As before, we may
assume that f(e) ^ 0.

If we repeat the construction above, again we get a new function
fj which is still in J^.
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Again, the ^2 norm of fj can be easily computed. Consider the
functions denned by the rule :

W = 1

(D,(a,) = 1 where a^G^i

^(^) = - — if f l ^eG^+i and k ^ j
nk

0/x^) = <D,(x)0,GO if |x^| = |x| + |^|

then /,=/(^)(D,.

If we compute now the <f 2 norm of <S>j, we see that this is infinite
unless j = 1. In other words, the constant value is possible only on
the smallest polygons. Arguing as before, we can also see that J^i is
nonzero if and only if

i-^<-^.^n,-+l n, + 1

In this case the orthogonal projection (pi onto ^"i is recovered by
considering the function ji(w) and has the following expression :

( 1 "V1 { \^^-{n^-^r1-
The final assertion (see e.g. [KS] for the definition of continuous
dimension) is a consequence of fact that the continuous dimension of
the representations corresponding to jj (/=0,1) is nothing but the value
that the functions (p^(/=0,l) take at the identity. D

Let us consider now a e spc(u). Let y be a complex number with
Rey = a. Suppose that a is not a branch point for g y ( x ) : we have
seen in Theorem 1 that w(y) is far from zero when y tends to a. Also,
^±^(x) is finite for every x and, being gy(x) analytic in the upper half
plane, we may ensure that ga±iQW are continuous functions of a when
a is an interior point of spc(u). Finally, arguing as in [S], we may
deduce that <?o+^(<0 = g^-i^e) implies tha a is a branch point for^(^).

Let 5' denote the set of branch points of gy(e). Since gy(e) is an
algebraic function, S is finite.

For any a e spc(u)\5' define
ga+ioW - ga-ioW

(PaM =

ga+io(e) - ga-ioW
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and
dm(a) = - -(ga+io(e) - g^-io(e))da.

7T

Then the functional calculus says that

W = <PoM + cpi(x) + | (p,(x)dm(a)
Jsp^)

where (po (respectively (pi) is identically zero if jo (respectively yi) does
not belong to the point spectrum of |A .

In fact, all the functions (p^ involved, are two sided eigenfunctions
of n (with eigenvalue a) and the above sum is an orthogonal sum.

Using the functional calculus again one can argue as in [S] to see

that — -{ga+ioW ~ ga-ioW} ls positive definite for aespc(H), hence
7C

(p^(x) is positive definite for aespc(n)\5'.

Corresponding to any (po(cr e spc(n)\5') we may associate a continuous
unitary representation of G, say n^.

When a T^ y; i = 0, 1 then the corresponding n^ is realized in a
standard Hilbert space J^, which can be thought to be completion of
the space of left translates of (p^. For any finitely supported functions
/ and g we have :

/ ̂  /a = / * ^a , TtaOO/a = (§x * f)a

(fa,ga)a = (/ * ^a,g)

( , ) denotes the inner product in ^2(G) and ( , )„ the one in H^. Also,
we have

(f,g) = \ (/ * <Pa,^) dma = (f,g) = (/ * (po,^) + (/ * (pi,^)
Jsp(n)

-h (fa,go)adm<J.
Jsp^n)

Let CT e sp (H)\{Yo? Yi} and let gy(x) be equal to (^—[l)~l(x) at y = a + ^'e,

so that g^e) = . In [S] it is proved that if

lim w(y) + lim w(y) 7^ 0 7^ oo then the corresponding representation
e-•>•0+ e-^O"

n., is irreducible.
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The same arguments used in [S] also apply to our case. Namely,
we have the following

THEOREM 6. — Suppose that a e sp (u)\{5' u {yo?Yi}} • Then the
corresponding representation n^ on Hy is irreducible.

Sketch of the proof. - 1) Let g(a) = {v|/e7^ : 7^(|Li)v|/=<7\l/}. Observe
that (p^ belongs to <0(a) and recall that, if Q(o) is one dimensional,
then Ka is irreducible.

2) Let 0o be the orthogonal projection onto H ^ , the functional
calculus says that

Q^ = lim ^(a+fe-^di))"1.
e-^

3) Observe that Qy can be computed for large values of E and then
take the analytic continuation.

Let a' = a + ie and g^ = (o+fe-u)"1 . Then for large values of
e we have

[a+i8-7i,(u)]-1 == 7i,{(a+fe-u)-1}
hence

(4.3) (0o(8.*(p.),8,*(pja= lim ^(^{(^-a)-1} [5, * cpj,§, * (pj,
e-*0+

= lim ie(g^ * 5^ * (pa, 5^).
e^O"^

In order to compute the above limit observe that the right hand side
of 4.3 is given by fs^ gc'(^z)^y(zy). Since ga' a multiplicative function

zeG

of (xz) we can use this property providing that | z ^ | x | + 2. Hence
we shall estimate ^ ^(xz)(p^(zy).

\z\^ \x\+\y\ +3

4) Write gg+to(x) ~ ̂ -^^ for (p,(x) and compute first
ga+io(e) - ga-io(e)

lim fs(^* 5^*^-<o,8^).
e-^O^

Define vectors u(x} == (Mi(x), . . . , i^+iOc)) ^(x) = (yi(x), . . . , ^+i(x))
as follows :

uj(x) = ̂ ^(^"'^a-.o^o"1)
<

where the sum is taken over all elements t e G such that 1 1 \ = | x | + 1
and the first letter of t does not belong to (?n.+i.

^•oo = Z^-.o^"^)^^)
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where the sum is taken over all 5 in G such that |s| = \y\ + 1 and
the last letter of s does not belong to (^.+1.

Recall that^(x) = ̂ .Mx). ,.-,,(x) = ̂ .̂,̂  and
define' for " = 1' 2' • • • ' ^ + 1 ) ^ (^+1) matrices ̂  by the rule
A}nk - S ^'(O^o-.oO) where the sum is taken over all elements ( of

Kl-n

length n such that the first letter is an element of G,^, the last is an
element of (7,^+i. Define also a transition matrix T letting

T = J° if J = k

^ \n^, if j ^ k , j , k = l , . . . , q + i

where ^ = ^(w(<r')) and ,̂ = ^,(w(cT-tO)).

Since ^("+l> = TA^, one can prove that

(4.4) (^*8,*^_,,,8,)= ^ ^'(^-l)^-„(t-l}0
|<j<3+|^c|+|.v|

00

+ Z ^00 (^--^MX).
n = l

5) In order to compute the limit in 4, observe that the first term
in the above equality remains bounded as e -^ 0 + , while the second
terms is nothing but

^00(/-r)-1^1^).
The caracteristic polynomial Pg(a) of T is given by

w = fn\^+^^^)Vi-z1-^^)^
^•=1 / \ ^iG^+^-W

Therefore, as £ ̂  0+ P, tends to a polynomial which has 1 as a simple
root and this implies that, as s -> 0+ , limit 4.6 is a product of the
form C(x)-(p^).
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As for the limit of i^(ga+ie * 8:c * g^+io,S-y) repeat the same reasoning,
finding a matrix T which, as s -> 0+ , converges to a matrix which
does not have the eigenvalue one. This implies that

lim i^(ga+ie * 5x * go+io, 8^) = 0.
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