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UNIQUE CONTINUATION FOR THE SOLUTIONS
OF THE LAPLACIAN PLUS A DRIFT

by A. RUIZ & L. VEGA

1. Introduction.

We consider solutions of the inequality

(1) |A<r)| < V(x)\Vu(x)\ xefl

where fl is an open connected set contained in R". We say that (1) lias
the unique continuation property if any solution which vanishes in an open
subdomain of Q must be identically zero in fL

Unique continuation properties for inequalities as (1) with singular
drift V have been treated in several works. Hormander [H] studied a general
case

(2) \Lu(x)\<V(x)\^u(x)\+W(x)[a(x)\,

where L is an elliptic Lipschitz coefficient operator. In particular, concer-
ning L^ spaces he proved unique continuation if q > n~ . This result

3n — 2
was extended to = —,— in [BKRS] when L is the Laplacian. Both proofs
are based on the so-called Carleman estimates which turn out to be false
i f( / < —^— (see [Je]).

Key-words : Unique continuation - Schrodingcr operators.
A.M.S. ClassiFication : 35L15 - 42B25.
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In this work we substitute L^ for the spaces of Morrey, also called
the Fefferman-Phong class for its recent use in the study of the eigenvalues
ofSchrodinger operators [FeP]. (See also [CS], [K], [ChR], [ChF], and [RV]
where these classes appear in the unique continuation context.)

We say that a function v ^ 0 locally in Z^ is in F^y a <^ n / p , if
there exists TQ > 0 such that

{ / \1^ 1
(3) ||H|kp=sup ra[————[ ^) , x^^r<ro\<oo

\^\B(x,r)\ JB(x,r) ) J

where B(x^r) denotes the ball of radius r centered at x and \B(x,r)\
its volume. This class corresponds to Lp^ in the classical notation for
\=ap-n. (See[St], [C], [P].)

We prove the unique continuation property for solutions u in Jf^(^),
the Sobolev space of functions in L2^), with two derivatives in Z/2^),
for the inequality (1) when the drift term is in F^ if a < 1 and
p^(n-2) /2( l -a ) .

Notice that it follows very easily from the definition of F^ that
L^ = F^ and therefore our result includes the previously known ones.
On the other hand, it also applies to functions with worse singularities.
For instance, assume that T : R71 —> R771 is linear and surjective and
consider w : Rm —^ R a function in Lq for q >, (2m 4- n — 2)/2, then
the function v{x) = w(Tx) satisfies the above conditions and (1) has the
unique continuation property. However, if m < n this function does not

Qy^ __ 2

need to be in L^ when p >, —_—. This result has interest in applications
to physics, where very often the singularities of potentials and drifts are on
manifolds of positive codimension.

The method we use is based on Carleman L2 weighted inequalities as
in [CS] and [ChR] and the diadic decomposition used in [RV]. There are
some technical complications since the linear Carleman weight <p{x) =7-3;
does not work and we need to use a parametrix, as in [Je], adapted to the
quadratic weight (p(x) == Xn + a^/2.

We would like to thank S. Chanillo for calling our attention to this
type of lower dimensional potential.

We, lastly, have some comments about the notation.

L2^) : The set of functions / such that
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\\f\\L-w= (hfW^vWdx} <oo.

I |a,;, : The norm of the Morrey space defined in (3).

A : The Fourier Transform in IR71.

A' : The Fourier transform with respect to x ' where x = {x' ,Xn} €
R77-1 x R.

\A '' Characteristic function of the set A.

D ' . - i ( Q / Q x ^ . . ^ Q I Q x ^ .

2. Statement of the results.

THEOREM 1. — Let u be a solution of (1) in H'^(^) and V a
nonnegative function in F^ for p ^ (n - 2)/2(1 - a), a < 1, with the
further hypothesis of \\\V [ [ \a,p being sufficiently small if p = (n-2)/2(l-a).
Then ifu vanishes in an open subset ofQ, u must be zero in Q.

The proof of Theorem 1 relies on the following Carleman estimate.

THEOREM 2. — There exist constants c > 0, depending only on
n, and Ao > 0 depending only on n and TQ in (3), such that for (p(x) =
x,, + 4/2 and V in F^\ a < 1,

(4) ||e^V^||^(v) ^ A^|||V|||,Je^An||^-i)

holds for any C°° function u supported on R71"1 x [-1/2,1/2] and any
\ > XQ, where

/3=( (a - l )+(7z-2) /2p) /2 .

3. The Proofs.

Proof of Theorem 1 from Theorem 2. — We follow well-known
arguments.

1. As in [KRS], [BKRS], we may reduce by reflection, rotations,
dilations and translations to the case where u = 0 out of the unit ball
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B((0,. . . , 0, -1), 1) centered at the point (0, . . . , 0, -1) and it suffices to
prove that in this case u must be zero in a neighborhood of the origin.

2. Take u(x)rj(\x\) = g(x) where rj is a C°° function such that 77 = 1 in
[0, e / 2 ] , 77 = 0 in [e, oo), for e > 0 to be chosen later on. We may substitute
V by

W(x) = XB^e)(x) (v(x) + ——\ , 6 > 0,7 < a,

and so we deal with a drift bounded below.

Since W is in F^ we use (4) and write :
II e^g^w) < C^(\\\V\\^p+6)\\e^Ag\\^-^

<. C^(\\\V\\\^ + ̂ )(1|^A^||^-^^^ ̂

+ || e^V^u\\mw-^
where the last term on the right-hand side of the above inequality is
bounded using known Sobolev inequalities (see [FeP], [ChF]). If x is in
supp^n(B(0,^)\B(0,£/2)) there exists ^(e) < 0 such that y(x) < ̂ . Then
if f3 < 0 and X big or |||V|||a,p < 1/2G, we obtain

I I ^V^II^dyY,,,,,,^,) < C'A^IIIVIII.^+^e^llA^II^^-i).
The proof would be finished if the last term is finite, but

Ap = (Ai])u + V77 • VIA + rjAu, rj € C^°\
hence

\\^g\\mw-^ <. C ̂  ̂ u^w-^ < C'Mfr^
\a\<2

since W~\x) < M.

The following elementary lemma is the fundamental tool which allows
us to go beyond the L^ class and to prove the Carleman inequality for
Morrey spaces.

LEMMA 3. — For x € IR" and f € L^W1), define the operator 1C
by

/Cf(x)= f K ( x , x - y ) f ( y ) d y

n

where suppA'(a:, •) is contained in a box R = TT[a^6,]. Using R as a
1=1

fundamental piece, construct by translations of R a grid of boxes {Ry}y^'
such that the interiors of Ry are mutually disjoint and R71 = I J^ . Then

v

ICT^(V) <. C||A"||^(R,^R,,) fsup / V\ \\f\\wv-^-
\ v JR,, )
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Proof. — Define fy = \R,,f. Because of the assumption about the
support of K we trivially have

E XsuppK(x^)(x - y) \R, (y) < ff\

Then
/ \ 2

IIWi.(V)= ^ E^\ v ) L'^V)
<52ny / \W2v(x)dx

„ J R,,

^52»||Jq|i«(R„^,.)(sup^ v) |̂|/.||?
and b}" Cauchy-Schwarz inequality

^52n||J<||l-.(R,.,R,.)(sup/' v) Ell^ll'i2^-1)-
\ ^ J R,, / y

Proof of Theorem 2. — As we said, we use a parametrix of the
Carleman perturbation as in [Je] and [BKRS]. In the sequel see these
references for the claimed properties.

The substitution u = ve~^ reduces (4) to

\\(D+i\(l+Xn)N)v\\^v)
^c(p,7i,ro,a)|||y|||,,^|||D+zA(l4-a;n)JV|^||^^-i)

where N = (0, . . . ,0,1), supp V C R71-1 x (-1/2,1/2) and D =
—i{Q/9x\,..., Q/9xn)- Our aim is to take a left inverse of

\D + i\(l + x,,)N[2 = ̂  D] - (—— - (1 + xn)\\ ,

which is a differential operator with variable coefficients with respect to
the last variable Xn' Denote by A\ the Fourier transform with respect to
the n — 1 first variables. Thus

(\D + Z-A(1 + Xn^vf (^/) = fK'l2-^ - {1-^XnW2} ^ ^\Xn)
QXr,

^(Xn^'WXn^') S (^n,0

9where ̂ (^,^) = |^ |+(-1) J(^—-(l+a;n)A),j = 1,2. A simple change
OXn

of variable reduces the problem to finding an inverse to the one-variable
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differential operator — - z. (The details can be found in [Je] p. 124.)
CiZ

Therefore a left inverse of \D-{-i\(l+Xn)N\'2 is given by B'^Xn, D)Bi (xn, D)
where Bj(xn,D), j = 1,2, is the pseudodifferential operator with symbol

(5) Pj^^) = (-l)^-1^! + Xn) + (-l)^-1^!^-1^)

with A2 =s,x= (x ' . xn ) , ^ = (^n), x € R71-1 x [-1/2,1/2], ^ € R71 and

(6) a00 \ pOQ

b(z, rj)=V2 e-^-^ds ) e-^-^2^2)/2- / e-52/2-5^-^,

^ , ^ € R .

From (6) and the property b{-z,r]) = b(z,rf) it is easy to obtain
r)13 <97

(7) 0^0^^ < ̂  + '52(1 4" tz'n) + ("1)JK/1 ~ ̂ )-1-H-1/?1

for any multi-index a,/? € N71.

Therefore, it is enough to prove

(8) \\T,B^x^D)B^Xn,D)u\\L2(v) ̂ c^M^^)
with supp u C R71-1 x (-1/2,1/2), Tj = 9/9^, 1 <, j < n and
Tn+lU = A(l + Xn)u.

From (7) it follows very easily that if 1 <, j <, n + 1 then TjB'z is
a Calderon - Zygmund operator with constants which depend only on Ao.
(See [Jo], theorem on p. 68.)

Now for V C F^ 0 <a <n , l < p <, n/a consider V = (MV^ )1^1

where M is the Hardy -Littlewood maximal function and 1 < pi < p. Then
V(x) ^ V(x), V is an Ai weight and V € F^P with \\\V\\\^p ^ c\\\V\\\a^
(See [ChF], Lemma 1. Observe the notation there is different and that the
proof still holds for the case 0 < p < n.)

Therefore we have

\\T,B^u\\^v)<.c\\u\\^.
It will be enough then to prove

(9) ll^i^llL(v)<^|||y|||,,,||^||^^-i)
for V C F^ as in Theorem 2 (notice that V~1 ^ V~1) and

B,u(x^xn) = s-1 [ b{s(l + Xn) - s-11$'|, s-1 ̂ e^ f(Qd^
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with x = (x'\Xn).

Consider now a bump function ^o € C§°(R) such that ^o(x) = 1
if \x\ < 1 and vanishes if \x\ >, 2. For k = 1,2,..., [Igs] + 1 define

T T X
^k{x) = ^o(^) - ̂ o(^rr) and ^oo (aQ = 1 - ̂ o(^ig^i)- Call for
k = 0 , . . . , [Ig 5] + 1 or k = oo

(10) bk(z^)=^(\z-iri\)b(z,rj),

(11) P^(x^)=S^bk(s(l+Xn)-S-l\^S-l^)x=(xf,Xn)^=^^n)

and B^ the pseudodifferential operator with symbol p^g. Notice that by
construction

[ig^l+i
Y, P^s+PTs^P^
k=0

and therefore (9) will follow from
IÎ IÎ (V) ^ c2-^A^|||V|||,^h||^(v-i)(12)
ll^i^ll^(V) ^ ̂ |||y|||^M^(v-i)

with e > 0 and k = 0,1,..., [\gs] + 1.
Let us first deal with B^. From (7) and (11) we have

o^_y_ oo < c^
Qx^Q^18 ~ (52+|$|)l+lal+^l'

Consider p^ = (s2 + |$|)p^ and -^i? tlle associated pseudodifferential
operator. Then B^ is as TjB^ and can be treated in the same way.
Therefore we have to prove
(13) ll^ll^(y)^c^|||y||k,h||^(v-i)

for V C F ,̂ 2/3 = (a - 1) + n—2, a < 1 and (Jf)7^^) = 5-2^(5-20^(0Ip
where <^($) = (1 + |$[)~1- Then it is well known that cj) behaves as [a;]1"71

when x is close to the origin and decays faster than any polynomial at
00

infinity. Therefore we can write ^{x) = V^ ^jW with supp cj)j C B(0,2-7)
j=-oo

and
fll^-lk00^2"^"^ i f j ^ o
lll^||L-^c^2-^ i f j^O.

Thus we have
II ̂ "Ikw ^ c^"-1) ̂  l|$,(s2.) * u\\^(v)
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and by Lemma 3 and the estimate for ||^,HL^

,,,,,,-,,(^^..->(.up^F)+Sc,.2-»<(s,,^v))l|<.||,.,,.,,

where {Q^},^z} is a grid made by cubes of volume (s~'22j)n. On the other
hand

sup/ y^^-^r-iiiyin^.
y JQ\.

Putting all the estimates together and choosing m > n — a we obtain, if
a < 1

II^HL^V) ^ c^-^IIIVIII^ill^ll^^.-^

which is better than (13).

Let us consider now p^ for k = 0,1,..., [\gs] + 1. Recall that B^f
is given by

^UW = f A'(.T,,, x - y)f(y) dy x = (^ Xn)

where

(1^) K(x^y)= [p'l^Qe^dfi

and 7^, as in (11). Notire that K depends on k and s but for simplicity of
the notation we have dropped the index.

First we need an upper bound of the kernel A".

LEMMA 4. — Define K as in (14). Then for any natural number m
there exists a constant c,,, > 0 such that
(15)
|A'(.r,,^)| $ c,,6>2n-32A:(l+|2A:^TU)-l(l+|^!//|)-(^^^^^^^
where y = (.//, //„) € R" and \Xn\ < 1/2.

Proof; — Assume first that |^,| <, (2k~ls)~l and \y'\ <, (2k~ls)~l.
Then we can write using cylindrical coordinates $ = (|$'|^,$n), ^ € 5"~2

K ( x ^ y ) ^ f e^'d |$'|"-2

^Q\ •7|$«|<•2A+25 V2^-35<||$'|-52(l+.r«)|<2/••+^

• f A^^)^1^^1"^^^^!)^.J s " - ' 2 /

Tlierefore

IA^.T, , y)\ < c22^2^-1) sup sup / p^(xn, ̂ e^^^ da^
^, ^/100<|$'|^10062 J S " - 2

<c22ks2{n-l)(2ks)-l(l + ̂ Vl)-1"-2)/2
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where the last step is a consequence of (7), (11) and the well-known
estimates of the Fourier transform of a smooth measure on the sphere (see
[Se] p. 233).

The general case is proved by integration by parts in (16) with respect
to the variables $„ and |$'| and using again (7).

Hereafter we shall follow very closely the argument in [T]. The result
will be obtained by interpolation between two estimates. The first one will
be an L2^"1) - L'2 (a;) estimate (uj will be eventually V^ and the second
one an L'2 — L2 bound. In order to obtain the first part we shall need first
an upper bound of the kernel. This suggests to cut K into pieces according
to its level values. Consider as before the bump function ^o C C§°(R) such
that ^o(x) = 1 if \x\ < 1 and vanishes if |a;| ^ 2. Then for j = 1,2,... we
define ^j(x) = ^o(^j) - ̂ 0(^1-) and

(17) K,(xn,y^yn) = ̂ yWx^y'^n).
00

Then K = ̂  Kj and from the Lemma 4 we have
j=o

(18)
f |A'j| < c^2"-^-^^^!^ ̂ •s^l"1)-1 i f 0< j ^ [Igs] 4- 1 - k

\\Kj\ ̂ c^s2tt-3^1n2k-^l^)2-1n(k+•i\l\2ksyn\1n)~l \!j>[\gs]+k

and supp Kj C {(^^H ^ 2j+'2s~2}. Then we have the following
lemma.

LEMMA 5. — For j = 0,1,..., define Kj as in (17). Then

(19) liy^(^^-2/V(2/)^ll^(^Q^T,||||y|||S^

where
^ ^ f c^^-'^77-2^)/2 ifO ^ j<, [\gs] + 1 - k
rj \ c^52a^-22^n-•2a^/2(2A•+^-l)-m ifj ^ [lg5] + 1 - k.

Proof. — We want to apply Lemma 3 but notice that the kernel
Kj has compact support only in y ' variables. Therefore we have to cut Kj
according to level sets with respect to the yn variable. Define for d = 0,1,...

Kjd{xn,y',yn) = Kj^n^y'^y^xiAVn)
where \i^ is the characteristic function of the set Id and Id = {yni^ <:
2ksyn <, 2rf+l} if d + 0 and Jo = {2/n,M <: (2^)-1}. Notice that

00

Kj = y ^ Kjd and the support of Kjd is contained in a box of dimension
d=0
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2^5-2 x • . . x V^s-2 x 2d-ks-l. We can apply Lemma 3 to K^ where
the grid has the dimensions we have just mentioned. Call {R^} the boxes
of that grid. Therefore, if 0 ^ j ^ [Igs] + 1 - k, the left hand side of
inequality (19) is bounded by \\Kjd\\L» fsup,J^ VP\ But (18) gives

\ jd /

\\K,d\\L^ $c^2-7n^2n-32^(2-2).

On the other hand, decomposing each R^ in cubes with height equal to
2^+25-2

..p/^^L^,,/ y.\
v JR^ 2^+25-2 ^ y JQ^ )

< c^"2^^2^^"0^"'1^""^!!'̂ !?— Ill • llla,p

where {Q^}^ is a grid made by cubes of volume 2n^+2)5-2n. Putting both
estimates together and summing up in d we obtain the desired result in
this case.

Now consider j ^ [\gs] + 1 - k. Then by (18)

ll̂ rilk- < Cn^-3^^"^ ̂ 2-^+^2-^
and

sup [ vy < sup / yp if 2d-ks~l < 2j+2s~2
^ JR-i'1 v JQ^ ~

-tf j d

r f>d(t>k^~l ( r \
^j^vp ̂  -^ sup^vp) i{2d~ks~l ̂  y+2s-2-

\ j d /

Using both estimates in Lemma 3 and summing up in d we obtain the
desired bound also in this case.

Finally we need the following lemma

LEMMA 6. — For j = 0,1,..., define Kj as in (17). Then

(20) liy^(^^-2/)/(2/)^||^(R.-i^_i^/^^cT^|/»^

where
r ' = [ 2js~2 if^ ^ P^l + 1 - k

3 \c2-ks-l ifj^[lgs]+l-k.

Before proving the lemma notice that a standard interpolation theo-
rem together with the estimates (19) and (20) give us

\\JKj{xn,x-y)f(y)dy\\L^y^cr^\\f\\^y-^
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where
,,^r c52(Q-l)2^(l-a)+(n-2)/2p)|||y|||^,p i f o ^ j ^ [ig5] +1 - k

rj [ c,ns2a~l~hj^-a)2~fc(l~^\2^ss-l)-u^ ifj ̂  [lg5] + 1 - fc.

Then summing up in j we obtain (take m > — — a)
z

f K(xn,x-y}f(y)dy\\^.(v) ̂  cs^-^-^'-^^V^M^v-.)

where 7^ is given in (14) and 2/3 = a — 1 + ———. Therefore, the proof of
2p

Theorem 2 is finished as long as we prove Lemma 6.

Proof of Lemma 6. — Using the definitions of Kj and K in (17) and
(14) respectively we have

I K,{xn,x -y)f{y)dy = I ̂ s^x'-y))f{y) f p^Xn^e^-^ d^

= ffWq{xn^e1^ drj

where

(21) qj(Xn,rf,rin) = fpU^^n)^-^^ (^rf) d^ •

Notice that the pseudodifferential operator defined by qj is of variable
coefficients just with respect to Xn' Then using PlancherePs theorem we
have

I /fWqix^e^ J|
II-7 II^R"-1^-!^,!^))

/•1/2 || f ( f ̂  \ , , ||2

= / / / fW^q^ri'^e^-drjn e" •" drf\\ dx,,
J - l / 2 \\J \J / l l2,2(R•— l)

r y1 /2 r - 2

= / / f(r^',r^n)q(xn,rf,r]n)eix^"dr]n dxndrj'.
JR..-I J-l/2 J

Therefore it is enough to prove ([Jo], p. 68)
A3 W

(22) —9^ ^CT,'(I+|^|)-^ -7=0,1,2.
Qx-n "Sn

Consider first ^ = 7 = 0 . From the definition of i))j we have
(23)

-̂<.(iy)

=^-2)n-l^(^)-(2^-2)n-l,'o(^).
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On the other hand, recall that the support of p^(a'n^'^n) is contai-
ned in the cylinder ||$'| - ̂ (l + Xn)\ < 2k^ls, Therefore if 2~js2 <: 2ks
(i-e., j > [\gs] + 1 -- k) by Young's inequality (11), (7) and (22) we have

ML- <. IbU -̂21^ i'o (-7)!!^ < c2-ks-l.s
.,/ oo .// ' A

H^"^2 ^ 2^5 write ^o"1' z . ^om where
m=i

iom (^ =?0 (^) (X{|^|<2-}($') -^{^l^-i}^)) .

We shall prove (22) for m == 0 being the general case a consequence of the
A'

exponential decay of ^ p. Thus

ll^|l^<lb?J|L-(2^-2)n~lll ?oolk-
. {vol(supp ̂ (a;,, .,^,) n {|^| ^ 2-^2}) ^ cVs-\

If ^ ^ 0, or 7 7^ 0 we use the above procedure together with (7). Notice
that we only have to compute derivatives with respect to ̂  where the right
decay is obtained.

BIBLIOGRAPHIE

[BKRS] BARCELO, KENIG, RUIZ, SOGGE, Weighted Sobolev inequalities and unique
continuation for the Laplaciaan plus lower order terms, 111. J. of Math., 32,
n.2 (1988), 230-245.

[C] S.CAMPANATO, Proprieta di inclusione per spazi di Morrey, Ricerche Mat., 12
(1963), 67-896.

[CS] S. CHANILLO, E. SAWYER, Unique continuation for A+V and the C. Fefferman-
Phong class, preprint.

[ChR] F. CHIARENZA, A. RUIZ, Uniform L2 weighted inequalities, Proc. A.M.S., to
appear.

[ChF] F. CHIARENZA, M. FRASCA, A remark on a paper by C. Fefferman, Proc.
A.M.S., (Feb. 1990), 407-409.

[FeP] C. FEFFERMAN, D.H. PHONG, Lower bounds for Schrodinger equations,
Journees Eqs. aux deriv. partielles, St. Jean de Monts, 1982.

[GL] N. GAROFALO, F.H. LIN, Unique continuation for elliptic operators; a geometric
variational approach, Comm. Pure Appl. Math., 40 (1987), 347-366.

[H] L. HORMANDER, Uniqueness theorem for second order differential operators,
Comm. PDE, 8 (1983), 21-64.

[Je] D. JERISON, Carleman inequalities for the Dirac and Laplace operators and
unique continuation, Adv. In Math., 63 (1986), 118-134.



UNIQUE CONTINUATION FOR THE SOLUTIONS OF THE LAPLACIAN 663

[Jo] J.L. JOURNE, Calderon-Zygmund operators, pseudo-differential operators, and
the Cauchyintegral of Calderon, Lecture Notes in Math., Springer Verlag,
1983.

[K] C. KENIG, Restriction theorems, Carleman estimates, uniform Sobolev inequa-
lities and unique continuation. Harmonic Analysis and PDE'S, Proceedings
El Escorial 1987, Springer Verlag, 1384, (1989), 69-90.

[P] J. PEETRE, On the theory of Ly^ spaces, J. Funct. Anal., 4(1969), 71-87.

[RV] A. RUIZ, L VEGA, Unique continuation for Schrodinger operators in Morrey
spaces, preprint.

[St] G. STAMPACCHIA, L^^-spaces and interpolation, Comm. on Pure and Appl.
Math., XVII (1964), 293-306.

[Se] E. STEIN, Oscillatory integrals in Fourier Analysis. In : Beijing Lectures in
Harmonic Analysis, Princeton Univ. Press, 112 (1986), 307-355.

[T] P. TOMAS, A restriction theorem for the Fourier transform, Bull. AMS, (1975),
477-478.

Manuscrit recu Ie 26 juillet 1990,
revise Ie 5 decembre 1990.

A. RUIZ & L. VEGA,
Departamento de Matematicas
Universidad Autonoma de Madrid
28049 Madrid
(Espagne).


