
ANNALES DE L’INSTITUT FOURIER

MARCIO G. SOARES
On algebraic sets invariant by one-dimensional
foliations on CP(3)

Annales de l’institut Fourier, tome 43, no 1 (1993), p. 143-162
<http://www.numdam.org/item?id=AIF_1993__43_1_143_0>

© Annales de l’institut Fourier, 1993, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1993__43_1_143_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
43, 1 (1993), 143-162

ON ALGEBRAIC SETS INVARIANT
BY ONE-DIMENSIONAL FOLIATIONS ON CP(3)

by Marcio G. SCARES

1. Introduction and statement of results.

In this work we consider the problem of extending the result of J.P.
Jouanolou [J] on the density of singular holomorphic foliations on CP(2)
without algebraic solutions to the case of foliations by curves on CP(3).

If T is an one-dimensional foliation on CP(3) with singular set
sing^) and r is an irreducible algebraic curve, we say that r is an algebraic
solution of T if r\sing(^7) is a leaf of the foliation. In what follows, by
invariant algebraic set of T we mean either an algebraic solution or an
algebraic surface <S C CP(3) invariant by the foliation.

One-dimensional holomorphic foliations on CP(3) are represented, in
an affine coordinate system ( x, y , z ), by a vector field of the form

d
X=gR-^^X,

i=Q

where g is a homogeneous polynomial of degree d, R is the radial vector

field x— + y— + z— and Xi is a vector field whose components are
9x Oy 9z

homogeneous polynomials of degree ^ ,0 < t < d. If g ^ 0 or if g =. 0 and
Xd cannot be written as hR where h is homogeneous of degree d — 1, then
X has a pole of order d — 1 at infinity. We call d the degree of the foliation
[GM] [OB]. We prove the following

Key words : Foliations - Residues - Separatrices.
A.M.S. Classification : 34A20 - 58F18.
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THEOREM 1. — Let X^ , fi € C , be the vector field

X^ = {ux + ̂  - ̂ +1)^ + (^ + ̂  - ̂ d)^ + (^ + 1 - ̂ d)^

and let ^ be the foliation on CP(3) represented by X^. Then, for
0 <| jji \« 1 and d > 2, ̂  has no invariant algebraic set.

THEOREM 2. — Let ^d denote the space of one-dimensional foliations
of degree d on CP(3). For each d > 2 there is a dense subset 9^ C ^d such
that any T € Qd hsis no invariant algebraic set.

In [J] Jouanolou proved both theorems for CP(2). Later A. Lins Neto
[LN1] improved theorem 2 and showed that the set 9^ is open as well.
He also gave new proofs of these results based on residues associated to
foliations. The proofs we give follow this line of argument and we make
use of a result of D. Lehmann [L] on residues which is of the kind of those
of Baum and Bott [BB], [C], Camacho and Sad [CS], Brasselet and Lins
Neto [LN2]. The plan of this work is as follows. In section 2 we quote the
result on residues which will be used and prove some auxiliary lemmas. In
sections 3, 4 and 5 we prove theorem 1 and in section 6 we prove theorem 2.

2. Auxiliary results.

Let W be an n-dimensional complex manifold, T an one-dimensional
singular holomorphic foliation on W with sing(^7) a discrete set of points
and V C W a complex submanifold invariant by T with dimc^ = m.
For each point p € sing(^7) take a coordinate domain U around p with
U D sing^) = {p} and such that U = V D U is given by z/i = ... == yq = 0
where ( x\,..., Xm^ V i ^ " "> Vq ) are coordinates in U and m + q = n. Let
the foliation T be represented in U by the vector field

m Q 9 ^

^E^'^+E^^)^
where Bj( x, 0 ) = 0 for 1 < j < q. If ^ € R[ci,. . . , Cq] is a characteristic

class of dimension 2m, J(x} is the matrix ( ~~~^x^ 0 ) j ? 1 <- ^ J < : ^
\ °yj )

and if we define

Res;r(^,V;p) =
I" ^p(J(x)) ctei A ... A dxm ]
[Ai(;c, 0 ) , . . . , A ^ ( r c , 0 ) j
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where [ ] denotes the Grothendieck residue symbol then we have, provided
V is compact, the following

THEOREM 2.1 [L].

/ ^y/w) = ^ Res^-(^,y,p)
Jv pesmgj^nv

where the integral is over the fundamental class of V and i^v/w ls ^ne

normal bundle of V in W. D

Remark 2.2. — If a vector field X has non-degenerated linear part at
a singular point p, A i , . . . , \n are the eigenvalues of the linear part of X at
this point and if V is one-dimensional, invariant by X and tangent at p to
the direction associated to \i then, by taking (p = ci we have

Res.(c,V,p)=[cl?^
|_ Ai{ x, 0 ) J \i

In case V is two-dimensional, invariant by X and tangent at p to the plane
determined by eigenvectors associated to the eigenvalues \i and Xj then,
by taking (p = c^ we get

Res^r2 v ̂  - r ̂ ^dxi A ̂ ' 1 - (E^^Afc)2
Kesx(c,, l/,p) - ̂  ̂  ^ ̂ ^ ̂  ̂ j - ^

( see [BB] or [GH] pg 658).

We will also need the

LEMMA 2.3. — Let F C CP(n) be an irreducible algebraic curve whose
singularities, in case they exist, are such that Y has only transverse smooth
analytic branches through each of them. Suppose sing(r) C {pi,... ,pm}
and consider the sequence of blow-ups

CP(n) := Mo -̂Mî -M2 ... ̂ "-Mm := M

where Mi is obtained by blowing-up M^-i at 7r^_\o.. .oTrf1^). Let F* C M.
be the proper transform ofF. Then

,. m

/ C^/M) = \n + l)d°(r) - x(n - (n - l)^£(pi)
J^ i=i

where d°(r) is the degree ofF, ^(F*) is the Euler characteristic o/T* and
i(pi) is the number of analytic branches ofF through pi.
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Proof. — If M is an n-dimensional complex manifold then C\{KM) =
-ci(M) where KM is the canonical bundle, i.e., KM = I^T^M with T*M
the holomorphic cotangent bundle. If M is obtained by blowing-up M at
p then KM = TT*KM + (n — 1)E where E is the line bundle associated to
the exceptional divisor 8 [GH]. Applying this to the sequence above and
noticing that the blow-up's do not take place at points which lie on an
exceptional divisor we arrive at

KM = (TTi 0 . . . 0 7r^)*^cP(n) + (n - 1)(7T2 0 .... 0 TT^)*EI + . . .

. . . + (n - l)7r^*E^-i + (n - l)Em

and hence

Ci(JC^) = Ci((7Ti 0 . . . 07T^)*J<cP(n))

+(n - l)ci((7T2 o . . . o 7r^)*^i) + . . . + (n - l)ci(E^).

Let us evaluate Jp*ci(J<^|r*). To do this we must compute
Jr* ^((^^CP^))!]^) and Jp, ci(((7T, o . . . o 7Tyn)*£',-i)jp,) where TT = TTI o
... o TTm- Now, ^cP(n) = [—(n+ 1)̂ 1 where [i^] is the hyperplane bundle.
By choosing a hyperplane H such that 7^nsing(r) = 0 and H is transverse
to F we have

/ Ci((7T*XcP(n))|pJ = / Ci(^cP(n))|r
Jr* ' Jr

^-(n+^^^^-^+^ir.^^-^+i^^r)
Jr

where TJH is the Poincare dual of H and [r,7:f] is the intersection number
of F and H which is just the degree of F. Now for Jp^ ci(((7r^ o . . . o TT^)*
£^_i)|r*). Since the exceptional divisors 81 in A^( are two by two disjoint
we can consider each one separately and as F* intersects Si at precisely
£(pi) distinct points we get

( ci(((7r,o. . .o7r^)*^_i) ,r . )= { ^_,=[r,^-i]=^_i).
Jr* Jr*

Hence
/. ?n

/ ci(^^|r.) = -(n+ l)d°(r) + (n- 1)^^).
•7r* ^

Since

ci(M)|r. = ci(r*) +ci(^r*/Ai)
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so that

/ C^/M) = I ci(.M)|r* - t ci(r)
Jr* Jr* Jr*

and as

f c,(M)^=- I CZ(KM^)
Jr* Jr*

we finally arrive at
p m

/ cl(^/^)=(^+l)do(^)-(n-l)^^)-x(^). DJ^ i^i
Let us consider now an one-dimensional singular holomorphic foliation

T on CP(n) with sing(. '̂) a finite set of points and such that if Xp is a
vector field representing F in a neighborhood of p € sing(.?') then p is a
non-degenerated singularity of Xp and further, the eigenvalues A i , . . . , \n
of DXp(j?) are all distinct.

Let r C CP(n) be as in Lemma 2.3 and suppose r is invariant by
J-'. For each p € sing^) H F let Bp denote the set of analytic branches of
r through p and note that since F is invariant by F ^ if p € sing(r) then
p e smg(.F). We have the

LEMMA 2.4.

^ ^ Res^(ci, B,p) = (n + l)d°(r) - x(r).
pesing^nr Be^p

Proof. — First note that if F is invariant by F and p € sing(^7) H F
then each branch of F through p is necessarily tangent to exactly one
direction associated to an eigenvalue of DXp(p) and that two different
branches cannot be tangent to the same direction [PM]. Write sing^^F =
{pi , . . . ,pyn} and let TT := TTI o . . . o TT^ : M. —> CP(n) be as in
Lemma 2.3. Given pi e sing^) n F let A ^ , . . . ,A^ be the eigenvalues of
DXp^pi) and B\^..., B\, ^ be the branches of F through pi ( note that
S(pi) < ^)- After a renumbering of the eigenvalues we may assume that
B^j is tangent to the direction associated to A1. Now let X* be a lifting
of Xp^ to a neighborhood of the exceptional divisor £1 in M.. Then X*
has precisely n singularities on ^, say ^1,...,^ and the eigenvalues of
DX^ (gp are A^ — A ^ , . . . , A ^ , . . . , A^ — A^ and since B^ is tangent to the
direction associated to Xp 1 < j < £{pi), the proper transform of B1 is
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transverse to 81 at the point ^ and is tangent to the direction associated
to the eigenvalue A} of BX^(qj) for 1 < j < £(p,). By Remark 2.2 we have
that, denoting by ^r* the foliation induced by F on M via TT

Res^^r^)^^-^^^-^-!)
'̂ W "3

-Res^(ci,B;.,p,)-(n-l).

Summing over the £(pi) branches of F through pi we get

^(Pz) (-{Pi)

^ Res^(ci,r^) - ̂  Res^(ci,B;.^) - (n - 1)^)
j=i j=i

and summing over pi C sing(.F) n F

m ^(Pz) m ^(pz)

^ ̂  Res^(ci,r,g}) = ̂  ̂  Res^(ci,B},p,) - (n- 1)^,).
i=l j==l z=l j=i

By Theorem 2.1

m ^(pz)

^^Res^^i.r^^)-/ ci(^/^)
z=i j=i •7^*

and by Lemma 2.3

r rn

/ (^/A,) = (n+ l)d°(r) -x(r) - (n- l)̂ (p,)
7r* ^

hence
m ^(pz)

^ ̂  Res^(ci,B;.,p,) = (n+ l)d°(r) - x(r)
1=1 j=i

thus proving the lemma. D

Remark 2.5. — Since d°(r) > 1 and -x(r*) = 2g - 2 > -2 we have

^ ^ Res^(ci,B,p)>n-l
p€sing(^')nrB€^p

and is an integer (compare with Theorem A of [LN1]).
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3. Residues associated to ̂ .

Recall the family of vector fields X^, fi e C, given by

^ = (^ + ̂  - x^)9 + (^ + ̂  - ̂ )9 + (^ + 1 - ̂ )9

c/a/ c^ (7 ;̂

The foliation J^, induced by X^ on CP(3), has no singularities at infinity,
as can be easily verified and the singular set sing(^) consists of D =
d3 + d2 + d + 1 points p^ = ( x^, y^, z^\ 1 < £ <, D. In fact, the
singularities are given by the roots of

/o 1 \ / H xC^+d+l(3.1) x(xd - ii) =1

with y and z given by y = (a^ - ̂ )-d-l and z = (^ - /x)~1. For ^ = 0
we have sing(^o) = {( ^, F'^^^, F^) : 1 < ^ < D} where ^ is a
primitive root of unity of order D. Hence, for ^ sufficiently close to 0, (3.1)
has D distinct roots and it is immediate that these depend analytically on
/^. The characteristic polynomial of DX^ at p^ is given by

Pe^W = A3 + cn^A2 + ̂ -2,K^)A + ̂ v(/^)

where

ai^(/,)=d^+3(^-/^)

^(^) = (d2 + 2d)x^(x^ - /,) + 3(^ - /,)2

<73,,(^) = (D - 1)<^^ - ̂ )2 + (^ - /.)3

and for ^ = 0 the eigenvalues are Ai^o = (-l+zd)^o, X^o = (-1-^)^^
^3,^,0 = (—1 — id)x^Q. Note that all singularities of ^o are of Poincare type
and non-resonant. Put

a^k\^=hi^±^A^
\,t'i^.ii

and

^W = Y^——.
^j^^^k^^
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Then
( (1,2,3).^ _ 2-^d-d2+^(d2+3d)

0^ [ [ ) ) — ——————^2——————

^(2,1,3)^ _ 2
^ W - l+d

(3,1,2) ^x _ 2+d-d2-^(rf24-3c0
/Q 9^ . Q/^ W - 1+d2

^<z^ ^(1,2,3)^ ^ i-Sd2-^-^)

^2,1,3)^,^

..(3,1,2)^^ _ l-3d2+^(3d-d3)
V Pi \.u) — —————D—————

and, by differentiating P^(A), (TI^(/^), 02,^(^)5 cr^^d^) and .r as a function
of /^ in (3.1) we get

rd^1-2-^. . -^^_3^5_^ ^
d/A V u ^ - 4 ( l - ^ d ) 2 D ^ , 0

d^2'1^^- ^-rf ^-d
d/x W~2(l+d)2DJ-/^0

dQ^3'1'^ ^x _ -d5+d+3^(d5-d) -d
dp, ^ ) ~ 4 ( l + ^ d ) 2 D ^ ^ , 0

d^1'2'^ ^^ _ d7+d6-2d5+2d3+rf24-6d-6+^(d7+4d6+4d5-3d4-4d3-7d2+3d) -d
dfi W~ 4(l+d)2(l+^d)2D ^,0

d/3^'1'^ (^ __ -d7-8d6-13d5-6rf4+9d3+8d2-d-2 ̂ -d
d^ W - —————————2(l+d2)2^—————————^,0

d^3'l'2) ^x _ d74-rf6-2d5+2d3+ri24-6d-6-^(rf7+4d6+4d5-3d4-4d3-7d2+3d) -d
dp, W- 4(l+d)2(l-^d)2D ^,0

Note that all derivatives are non-zero for d :> 2.

4. First part of the proof of Theorem 1.

4.1 Non-existence of algebraic solutions
having only smooth analytic branches.

Suppose r^ C CP(3) is an irreducible algebraic curve whose singular-
ities, in case they exist, are such that F^ has only smooth analytic branches
through each of them.

Assume r^ is invariant by F^. Then sing(^t) D F^ 7^ 0 (see [J]) and
moreover, ifj?^ C sing (^)n sing (r^) then the branches ofF^ through pa^
are transverse to each other. Blow-up CP(3) at each p^ ^ ̂ g^^) D F^
to obtain a manifold CP1(3)<-7I—.M and let F* C A^ be the proper transform
of r^. By Lemma 2.4 applied to n == 3 we have that

^ ^ Res^(cl,5,p^)=4do(^^)-^(^^).
p^^esing(^)nr^ BeBp^ ^
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On the other hand

Re^(c^B,p^)=a^k\^

for some

(z , j ,A- ) e{ ( l , 2 , 3 ) , ( 2 , l , 3 ) , ( 3 , l , 2 )}

and the sum of residues reads

E E ^•k)^-
p^er^nsing^) BeBp^^

By using formulae (3.2) and (3.3) we conclude that, with three exceptions,
these sums are either numbers which are not positive integers or have non-
zero derivative for the parameter value p, = 0. Therefore, apart from the
three exceptions, for 0 <| ^ « 1, r^ cannot exist since such a sum cannot
be an integer greater than or equal to 2, as required by Remark 2.5. The
three exceptions are the following :

Case L

Let Q be a non-zero subgroup of Z/DZ and let

e^)= ^ ^l'3)(^.

Note that x^ o = ^£d where ^ is a primitive D—th root of unity and d is prime
o

with D and hence, i f^ fo ls a generator of such a Q then 6^(0) = ——— | Q \
1 + d

can be a positive integer provided | Q \ (the order of Q) is a multiple of
, (2,1,3)

d + 1. Also ^ —^-——(0) = 0 since ^ ^ = 0 for ̂  is a
{^<o^} ' {^<o^} '

generator of Q. Therefore we must show that Og{^) is not constant as a
function of ^ for all non-zero Q < Z/DZ. The proof of this fact is based on
the following :

LEMMA. — Let ^ 7^ 1 be an m — th root of unity. Then

^ -X _ m^-l+XY"1-1)Ê̂ -Y y7" - 1
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Proof. — Formally we have

1 ^ i _^?
y _ ^ - y 2 ^ y g -

g=0

Hence
^^^_^^_^(^
y — ̂  ~ Y7 ̂  y9 — 2-^ yg+i

g=0 g=0

and

y.^-X _ X^^^ ____^(9+1)
2^ ̂  _ y ~ y Z^ 2^ yg — Z_^ 2-^ yg+i
^=1 s ^=1 g=0 ^=1 g=0

^ 00 CO
A v--\ 772 v-^ my^ ^-^ in ^-^

~ Y 2^ yj'm — 2.̂y z—»' yjm Z—/ yjm
j=o j=i

mX ( Y171 \ ( Y^ \
=~^[Yr^-l)-m[Y^——l-l)

- m(-l+^^m~l)
~ Y ^ - l '

Remark that if X = f(t) and Y = g(t} where / and g are germs of
holomorphic functions at 0 G C such that /(O) = p(0) = 0 then the
conclusion of the Lemma holds. Q

Now,

(2,1,3), x _ Ai^ + As^ cri,^(^) -,a^ ^^ — ———^—————— = —-.——— — 1
^2,^ ^2,^,^

where cri^(/^) is as in page 7 and note that, by (3.1),

^W='Ef^(d^£)^

>2^ = ̂ 9i(d,^)^

i^O

where /,,^ are polynomials in ^ with coefficents rational functions of d.
Differentiating implicitly (3.1) we get

a^) =(d+ 3)^ + ̂ -^-^ + ...

\ ( 1 ^d , -^ - 1) + rf + 2>2,e,p. = (-1 - d)^ " + —-——^————^ + . . .
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where the dots indicate higher order terms and observe that the coefficients
of ^ do not involve ^d. Hence

a!,̂ )

^2,-^

so that

1 ( d + 3 }[ d + i )

QgW - ( d
- " ' \d

tid (
s ^

^d (

+3)
+17

V

{I:

d(D-l)-3
(d+3)D ^

d(D-l)-d-2
2(d+l)D

V- ^-
2^ ^d
^d^} s

....) ^
^ + ...)

/d+3\ ^d

^d+J ̂

-W i/,
W

1 -7

< - -TO
rf - y<(^) -1

^e^}

Write X^ = X + J^ + . . . , Y^ = Y + Y^ + . . . where X^,Y^ are the terms
of order p,\ i ̂  2. By applying the same reasoning as in the lemma above
we conclude that

^d-x^}^\G ( - l+xyl< ? l - l)+. . .E ^-y,(^) -i+y|c?|+_
{^<o^^}

where the dots indicate higher powers of fi. Hence

QgW

n \ . , ( d(D-i)-3/ ^^rD.-^r2^^1"1^,,!^! _L
l/ -11 \ {d^D [- 2(d+l)D ) 1 ^ - / 1 + . . .^/d+3\

v ^ + i y j^ii i f ^p-D-^y^i |G|1 1 ^ 2(d+i)^ y ^i i -h .. .

This shows O^(^) is not constant as a function of [i.

Case 2.
D̂

 f (1,2,3)/ x (2,1,3). x , (3,1,2). J
L \0^ (^)+^ (^)+^ (^)
^=1 L ]

-\GY

This corresponds to a curve F^ with sing(r^) = sing(J^) and at each
p^, r^ has three branches B^,B^ and ^3 such that Bi is tangent to the
direction associated to A^,^, 1 <, i < 3. Since o^'2'3^) + a^2'1'3^) +

/Q -1 Q'\

a^ ' ' ' (^LA) is a symmetric function of the eigenvalues of DX^(p^) and
the summation extends over all points in sing(^), it follows from Baum-
Bott's theorem (see[C]) that this sum is independent of [i and equals
-2d3 + 2d2 + 6d + 6, as can be seen by calculating it for ^ = 0. By
Remark 2.5 we must have -2d3 + 2d2 + 6d + 6 > 2. Now, if d > 3 then
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—2d3 + 2d2 4- 6d + 6 < 0 and it remains to consider the case d = 2 in which
we get the sum equal to 10 and D = 23 + 22 + 2 + 1 = 15. By Lemma 2.4
we have 10 = 4d°(I^) - ̂ (I^) or ^(I^) = 4d°(r^) - 10 and since Y^ is a
curve in CP(3) with 15 triple points we must have rf°(r^) > 3 which gives
xO^) > 2, an absurd.

Case 3.

As in Case 2 but now with d = 2 and the summation extends over
the subgroup Q < Z/15Z (note that D = 15) of order 3, for then we have
the sum equal to 3.— = 2. By Lemma 2.4 we have 2 = 4d°(T^) - x^)

-Lo
or ^(r*) = 4d°(r^) — 2 and since F^ is a curve with 3 triple points then
d°(r^) > 3 which gives x(F^) > 10, an absurd.

4.2 Non-existence of invariant smooth algebraic surfaces.

Suppose Sp, C CP(3) is a smooth algebraic surface invariant by ̂ .
By the Vanishing Theorem of [L] we must have Sp, D sing(^) ^ 0. From
Remark 2.2 it follows that

Res^,S^p^=^i•j•k)W

where (i,j, k) is one of the triples (1,2,3), (2,1,3) or (3,1,2). Hence

^ Res^(c^,p^)= ^ (S^W
p^e<s^nsing(JF,j p^e<s^nsing(^)

and by Theorem 2.1 this sum equals

/ ^ (^/CP(3)) •
J^

Now, this integral is just the degree of the surface S^, for c\(ys /c?(3))
equals the Poincare dual r]s^ of the cycle [Sp] and so the integral is just the
intersection number ofSp, with a generic line in CP(3) and this is the degree
of Sp, (see [GH]). In particular, the sum of residues is a positive integer.
By using formulae (3.2) and (3.3) we conclude that, with one exception,
the sums above are either numbers which are not positive integers or have
non-zero derivative for the parameter value ^ = 0. Hence, for 0 <| [t « 1,
Sp, cannot exist but for this exceptional case. The exception is

V^ f3\ ' (/^) where Q is a non-zero subgroup ofZ/DZ.
{^<o^}
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That is because since y^2'1'3^) = —-^—,— the sum above could
U i" -L

be a positive integer provided the order | Q \ of Q is a multiple of d2 + 1
and, as in (4.1), the sum of derivatives (see (3.3)) is zero in case X^Q is a
generator of Q. Put

w= E ^153)^)
0?=<o(=<?}

and let us use the lemma in (4.1) to show Qg(l^) is not constant for
^ 3

^ sufficiently small. Now, y^2'1'3^) = --2^- where 03^) is the^^w
independent term of the characteristic polynomial P^(A) (see page 7).
Differentiating implicitly (3.1) we get

A^ = -(d 4-1)3^3- + 3(^ + 1) (-^-^+rf+2) ̂  + ...

<73,<(^)=£>^d+(Z)-4)^^+...

where the dots indicate higher order terms. Hence

A3,,,, _(rf+l)^+3(rf2+l)(d^^2)^+.. .
<73,<(^) - D^ + (D - 4)^ + ...

_^+l^^+3(fe)(d<D^-^2)^...
[ D ) ^+(^4)/,+...

and applying the lemma and the same reasoning as in (4.1) we get

e^)
_/d+l^lgl[-l+3(^)(d(D^^)(^)•gl-^^^

V D ) i- Wf^\Q\ + . . .
thus proving that 6^(^) is not constant.

5. Conclusion of the proof of Theorem 1.

Throughout this section X denotes the germ at 0 C C71 of a
holomorphic vector field with an isolated singularity at 0 C C71. Let
A i , . . . . An be the eigenvalues of DX(0) and consider the following :
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Condition 1 : \i ^ C^Aj, % 7^ j, z,j'=l,...,n.

Condition 2 : There is no resonance relation among the A^, % = 1 , . . . , n.

LEMMA 5.1. — IfX satisfies condition 1 then no germ at 0 C C71 of a
singular irreducible analytic curve can be invariant by X.

Proof. — By a formal change of coordinates we have that X
n

is expressed as (see [A], Poincare-Dulac's theorem) X = ^(\iXi +
1=1

Q

^(rci, . . . ,a^))-.— where (pz is a formal power series starting with terms
OX-j^

of degree > 2. Suppose on the contrary that F is the germ at 0 G C71 of a
singular irreducible analytic curve invariant by X. Let p : Dg —>• C72 be
a parametrization of F where Dg == {z G C :| ^ |< e}. Under the formal
change of coordinates to p there corresponds a formal parametrization p*
which we may assume to be of the form p* (t) = (t^, 031^2 + . . . , . . . , dnt^ +
. . . ) where 1 < i\ <_ ii for i = 2 , . . . , n. Since r is invariant by X we have
dp*—— = i/(t)X(p^(t)) with v(t) not identically zero and this reads
d.t

^ = v{t){\^1 4-...)

a^2-1 + ... = y(t){\^a^ + ...)

OnU^-1 + . . . = ̂ {XnCint^ + . . .)

where the dots indicate higher order terms. Eliminate v from the first two
equations to get

£^1-1 a2^2- l+••.

and then
Ai^i + ... a^t^ + ...

a2;Wl^l-H?2-l + ... = a^Xi^1^2-1 + .. .

which gives

a2^iA2=a2^Ai or ^ = i- € Q+

A2 t2

and this contradicts condition 1. D
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LEMMA 5.2. — IfX satisfies both conditions 1 and 2 then no germ V
at 0 G C71 of a complex hypersurface with an isolated singular point can
be invariant by X.

Proof. — Suppose on the contrary that V is invariant by X and let
C?(;TI, . . . , Xn) = 0 be a defining equation of V. By Poincare's theorem [A]
X is formally equivalent to

_ , 9 . o
Z = ̂ lo—— + . . . + \nXn^——

OXi OXn

and under this formal change of coordinates G becomes F ( x i , . . . , Xn) say.
Since V is invariant by X we have Z(F) = vF. Write F = Fm + ̂ m+i + • • •
and y = VQ + v\ + . . . , decompositions into homogeneous polynomials.
Z(F) == vF gives

9Fm . . . oF^
>lXl^—— + . . . + \nXn^—— = ̂ oFm'

OXi OXm

oF QF
If I/Q = 0 then \\x\ „ m + . . . + A^rc^ m = 0 and this gives resonance

ox\ OXn
relations among the eigenvalues or implies that at least one of them is
zero, depending on whether Fm has a pure power of some xi or not. But
this contradicts our hypothesis on X. Hence UQ ^- 0 and v is a unit. This
implies y~lZ{F) = F, i.e., F (=. J F ^ its Jacobian ideal. By a theorem of
Saito [S], in suitable coordinates (? / i , . . . ,^/n), F is a quasi-homogeneous
function and there exist positive rational numbers a i , . . . , dn such that

9F OF
F = a\y\—— + . . . + CLnyn~^—• Let X be written in these coordinates as

9yi 9yn
Y^——+...+Yn—— so that

oyi 9yn

9F 9F ^ ( 9F 9F \
Yl^~+-'+Yn^——=^ [aiyi^— + • • • +an2/n^——9yi 9yn \ 9yi Qynj

where z^* is a unit since v is. Now, since 0 G Cn is an isolated singular
f 9F 9F 1

point of V, <{ -—,. . . . -— > is a regular sequence and therefore
I 9yi 9yn \

YI = ̂ aiyi i = l,...,n.

Writing v* = v^ + v{ + ... we get

Yi = y^aiyi +... i == l,...,n



158 MARCIO G. SOARES

which gives —'- = —z- C Q4' contradicting condition 1. D
Xj aj

We can now finish the proof of Theorem 1. Note that for 0 <^\ ^ \« 1,
X^ satisfies both conditions 1 and 2. By (4.1) and Lemma 5.1 T^ has no
algebraic solution and by (4.2) and Lemma 5.2 T^ has no invariant normal
surface. Now, if we had an invariant singular surface with non-isolated
singularities, its singular set would contain an invariant curve and this is
forbidden by (4.1) and Lemma 5.1. Theorem 1 is proved.

6. Proof of Theorem 2.

Let ^d denote the space of one-dimensional foliations on CP(3) of
degree d > 2 and let 2^ C ^ be the set of non-degenerated foliations
of degree d, i.e., foliations with non-zero eigenvalues at each of its D =
d3 + d2 + d + 1 singularities (see [C]). The next lemma is a 3-dimensional
version of Lemma 5 of [LN1] and we repeat the proof here for the sake of
clarifying the arguments that follow.

LEMMA 6.1. — 5^ is open, dense and connected in ̂ . Moreover, given
^FQ G Ed with sing(.Fo) = {pi^ • • • ,Po} there are neighborhoods UQ of FQ J^
^d, Vj ofpj in CP(3) and analytic functions ̂  : UQ —> Vj , j = 1,. . . , D
such that Vi D Vj = 0, i ^ j, and for any F G UQ, ^j(^F) is the unique
singularity of F in Vj.

Proof. — Given FQ G S^ with sing(.?o) = {pi? • • • ^Po} consider an
affine coordinate system (x, y , z) such that sing^o) ^l Hoc = 0 where Hoc
is the plane at infinity for this system. Suppose that F^ is represented in
this coordinate system by the vector field

r\

[Po(x, y , z) 4- xgo(x,y,z)} -^L-1 uv'^5 ^? ^ ) ' '^yuv'^5 y ? ^ ) \ o
r\ 0

+[Qo{x,y,z)-^-ygo{x,y,z)],- + [Ro(x,y,z) + zgo{x,y,z)},-

where Po, Qo^ RO and go are polynomials of degree d with go homogeneous.
Since this representation of FQ is defined up to multiplication by a non-zero
complex number let us fix the coefficient of a monomial of Po i Qo 5 -^o or 9o
to be 1. Under this condition there is a neighborhood V of FQ such that
any F G V has no singularities at Hoc and has an unique representation in
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the coordinates (x, y , z) of the form

/) ^
[P(x, y, z) + xg(x, y,z)} -^ + [Q(.r, ̂ /, z) + yg(x, y, z)} ,

^ [ R { x , y , z ) + z g ( x , y , z ) } .

where P,Q,R and ^ are polynomials with g homogeneous and the same
coefficient of P, Q, R or g is 1. Define maps

F : V x C3 —^ C3 G:VxC3 —>C

by

F( ,̂ x, y, z) = (P + ̂ , Q + ̂ , R + z^)

G(.F, a;, ̂  2;) = det ̂ ^(^ x, y, z) = tr A^F^F, .r, ?/, ̂ )

where Q^ means derivative with respect to the variables in C3, tr denotes
the trace and A1 denotes the i - th exterior product. Now, pj = (xj, y^ Zj)
is a non-degenerated singularity of ^b if and only if F^o.x^y^Zj) = 0
and G^o.Xj.y^Zj) ̂  0. By the Implicit Function Theorem applied to F
at p i , . . . ,PD we have the functions ̂  : UQ —> Vj, j = 1, . . . , D. Note
that this shows that 5^ is open and that, if V is as above, then F G V\S^
if and only if there exists a point ( x , y , z ) € C3 with F ( ^ , x , y , z ) = 0
and G(.F, x, y , z) = 0. This implies that V\5d is an analytic subset of V of
codimension ^ 1 since, by Theorem 1, 2^ is not empty. Hence 5^ is dense
and connected. Q

Given ^o ^ 2^ let UQ and ̂  : ^/o —^ ^ be as in Lemma 6.1 and
consider the maps

^ , ' M o — — C 3 j = l , . . . , D

defined by

^•OT = (tr92^(^^•(^)),t^A292^(^^•(^)),trA392^(^^•(^))).

The components of ^ are the elementary symmetric functions of the
eigenvalues of the linear part of F at ^-(T). If we let P C C3 denote
the discriminant variety of monic polynomials of degree 3 then the linear
part of T at ^j(F) has a repeated eigenvalue if and only if ^j(^) C V.
Since, by Theorem 1, there exists T e 5^ whose linear part at each
singularity has distinct eigenvalues and 5^ is open and connected, we have
that ^^(V) is an analytic subset of UQ of codimension ^ l , j = l , . . . , D .
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Hence, if S^ C 5^ is the subset consisting of foliations whose linear part
at each singularity has distinct eigenvalues then E^ C ^ is open, dense
and connected. Let 7 : C3 —> C3 be denned by 7(Ai, X^, As) = (ai, 0-2,0-3)
where a,, i = 1, 2, 3 are the elementary symmetric functions of A i, \^, As.
Then

7)C3\7Z : C\n —— C\V

is locally biholomorphic where 7Z = {(Ai^As) € C3 : A, = \^i ^ j}.
Given TQ e 2^ choose a neighborhood Wj C C3 of ^-(^b) in which a local
inverse 6j of 7 is defined and let U^ C H) H S^ be an open set such that
^(^o*) C H^ for j = 1, . . . , D. Define

^ : ̂ o* —^ C3 ^ = ̂  o ̂^ —— Uj ^ f j .

Then

^) = (Ai(^(^)),A2(^-(^)),A3(^(^)))

where A,(^ (JF)), z = 1, 2,3, are the eigenvalues of the linear part of T at
^•(.F). To define ̂  it is enough to say what is ̂  HU^. Put

-(^)^ _ ^OM^))+Afc(^))
^ (>F) - ——A^M^))——

.(.̂ ^)^ ^ [Az(^(^))]2

^ v / A,(^(^-))A,(^(J-))
where (ij,k) G {(1, 2, 3), (2,1, 3), (3,1, 2)} and let Iq = [m C N : m > q}.
Let us consider all conditions on the eigenvalues we have used, namely,
^i ^ Q^\j i 7^ j, all non-resonances and all sums of residues of the form

^a^-^)^

^/^•V)^!

^[a^2-3^)+^2•l-3^)]^

W^W+a^^^I,

E[a^l'3)W+"^l'2)W]^2

E^112'3^) +a^l•3)(^)+^3•l-2)(^]^ J,
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where in the last expression, because of Baum-Bott's theorem, the summa-
tion extends over proper subsets of sing^). The denial of these conditions
gives a denumerable set of analytic subsets of codimension 1 of U^ whose
complement in U^ is ^DZ^. This proves Theorem 2 since ̂  is not empty.

D
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CORRIGENDUM

In section 5, condition 2 must be included as a hypothesis of Lemma
5.1 for the result to hold. For in this case, by Poincare's theorem, the vector
field is diagonalisable and the proof of the lemma is correct. Also, for p, == 0
and d odd we have the resonance

X ^+1^ ^\ }^2,^,0 = 1 —^— I ̂ 1,^,0 ~r As^oJ
\ z )

but the derivative with respect to ^ of this equation at fi == 0 reads

-dD+2d+2 ^ / d + l \ /-^+4\
2 D ~ V 2 ) \ 2D )

which holds only for d = 1. Therefore, for 0 < |/^| « 1, ̂  admits no
resonances and all the results of section 5 hold. I wish to thank J.F. Mattel,

*J. Cano and E. Salem for pointing out these mistakes.


