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ON THE COMPLEX ANALYTIC GELTAND-FUKS
COHOMOLOGY OF OPEN RIEMANN SURFACES

by Nariya KAWAZUMI

Introduction.

The (continuous) cohomology theory of the Lie algebra of C°° vector
fields on C°° manifold X was originated by GePfand and Fuks [GF][GF1].
Accordingly it has been called the GePfand-Fuks cohomology theory.
Haefliger [Ha], Bott and Segal [BS] described the cohomology with trivial
coefficient as the singular cohomology of the section space of a certain fiber
space over X. The cohomologies with coefficients in the tensor fields on X
were described in a similar way by Tsujishita [Ts].

Our purpose is to establish a complex analytic analogue of these
theories. In the present paper we confine ourselves to the Lie algebra of
complex analytic vector fields on an open Riemann surface.

Let M be an open Riemann surface and S a finite subset of M.
We denote by L(M^ S) the Lie algebra of complex analytic vector fields
on M which have zeroes at all points in S. L(M^ S) is a Frechet space
with respect to the topology of uniform convergence on compact sets. The
bracket [, ] is continuous, and so L(M, S) is a topological Lie algebra. For
S = 0 we abbreviate L(M, S) to L(M). In view of a theorem of Behnke and
Stein [BeSt] M is a Stein manifold, and so we can utilize some topological
methods. The uniformization theorem of Riemann surfaces supports our
investigation.

Key words : Riemann surfaces - Vector fields - Gel-fand-Fuks cohomology - Spaces of
holomorphic functions.
A.M.S. Classification : 30H05 - 57R32 - 14H15.
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Recently, on the other hand, the relations of the Lie algebra L(M) to
the moduli space of Riemann surfaces via the Virasoro action have been
clarified [ADKP]. To investigate these relations more closely we need the
cohomology with coefficients in the complex analytic tensor fields of certain
types on the product spaces M71', on which L(M) acts by the diagonal
action. In this paper we study the cohomologies with such coefficients.

Before the result of Tsujishita [Ts], Resetnikov [Rl] determined the
cohomology of the Lie algebra of C00 vector fields on the circle S1 with
coefficient in the C°° functions on S1 in a classical way. Since we study
more general coefficients than the tensor fields on M itself, we need to
pursue Resetnikov's classical method.

Fix a type v = ( ^ i , . . . , ^ n ) ^ ^n arbitrarily. Consider complex
analytic tensor fields on the product space Mn represented locally as
f ( z - i ^ . . . ^ Z n ) d z ^ l • • ' d Z n ^ n , where zi is a local coordinate of the z-th
component. Let r(M77') be the Frechet space of complex analytic tensor
fields on M" of the fixed type y . The Lie algebra L(M) acts on T(Mn)
continuously by the diagonal action. Denote by ^a;^...,^) the L{M) module
of germs of complex analytic tensor fields of the type v at the point
(;TI, . . . ,Xn) 6 M72. By a classical method coming from Resetnikov, there
exists a spectral sequence

E^ ^^(M71;^)

converging to H*(L(M); T^M")) (see §9), where W is a sheaf on M71 whose
stalk at (0*1 , . . . , Xn) C Mn is given by

^,...^)=?(L(M);r(.l,...^))•
Our main theorem in the present paper gives a decomposition of the
cohomology group Hq(L(M)•,T^^^^^^) into the global part derived from
the homology of M and the local part coming from the coefficient T{x^,...,xn}'

Denote by W\ := C{z},- the topological Lie algebra of germs of complex
uz

analytic vector fields at 0 6 C. Set T := {x\,..., Xn} C M. There exists a
W\ module of germs of tensor fields N^ for each t C T such that an L(M)
isomorphism

7(.,,..,,^)=(g)^
tCT

holds, where N^ is acted on by L(M) through a local parametrization
centred at t. Here and throughout this paper 0 means the completed tensor
product [G.PTT] [T].
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THEOREM 5.3. — Let M be a connected open Riemann surface whose
first Betti number b\(M) is finite and T a finite subset of M. Suppose a
W\ module A^ satisfying the condition (5.2) in §5 is given for each t G T.
Then we have an isomorphism

*
a-*(L(M);(g)Art) ^ /\(^H^M,T)) ®(g)jr(Wi;A^),

f^T t^TteTt€T

where S3^ (M, T) is the graded linear space concentrated to degree 2 given
by the 3 times suspension of the first complex valued singular homology
group H\{M,T), and f\* (^3H-i{M,T)) is the free graded commutative
algebra generated by the graded space.

Now our N^s stated above satisfy the condition (5.2). Consequently
the computation of H:'{L(M)',T(Mn)) is reduced to

(1) computing the local part H*{W^N^) and

(2) studying the topology of the configuration space M71.

It seems very difficult to establish a general theory for computing
such cohomology groups as H*(W^N^) (cf, [FF]). It would be our next
problem to investigate those groups with concretely fixed coefficients.

The outline of the paper is as follows. We explain the meaning of the
condition (5.2) in the above theorem in §2 and §4. In §3 we construct the
cohomology classes of degree 2 coming from H^(M,T) stated above. The
classes are represented by cocycles taking the form of covariant derivatives.
In §5 we formulate our main theorem and Addition Theorem of Bott-Segal
type for the Lie algebra L(M,S). The latter plays a fundamental role
throughout this paper. It is proved in §8 by replacing partition-of-unity
arguments in [BS] by Oka-Cartan's Theorem B. Addition Theorem for the
formal vector fields is formulated by Feigin-Fuks [FF] and Retakh-Feigin
[RF]. Using Addition Theorem, we compute the cohomology of L{M,S)
with trivial coefficient in §6 and §7. In §9 a spectral sequence coming from
Resetnikov is introduced, and two easy examples (the tensor fields on M
itself and the functions on C3) are given.

The author would like to express his gratitude to Prof. Y. Matsumoto
and Dr. K. Ahara for their constant encouragement and to Prof. H. Ko-
matsu, Prof. T. Tsujishita and Prof. K. Iwasaki for their helpful sugges-
tions.
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1. Basic notations.

For a complex topological Lie algebra 0, we mean by a 0 module
a complex topological vector space which g acts on continuously. The
continuous cochain complex of the topological Lie algebra 0 with coefficients
in a 0 module N is denoted by

^*(S;AQ =Q^(s; TV),
p>o

whose cohomology group, i.e., the continuous cohomology group of 0 with
coefficients in N , is denoted by H ^ ( Q ^ N ) . The complex C7*(0;7V) is acted
on by 0 through the Lie derivative C(-). When N is the trivial 0 module C,
we abbreviate them to C7*(0) and H*(Q) respectively. (For details, see for
example [HS].)

Let M be an open Riemann surface (1 dimensional non-compact
complex manifold) and S a finite subset of M. We denote by L(M^ S)
the Lie algebra of complex analytic vector fields on M which have zeroes
at all points in S. L(M, S) is a Frechet space with respect to the topology
of uniform convergence on compact sets. The bracket [ , ] is continuous,
and so L(M^ S) is a complex topological Lie algebra. When S = 0, we
abbreviate L{M,S) to L(M).
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A typical example of L(M) modules is the Frechet space of complex
analytic A;-th covariant tensor fields on M :

Tk(M) = H°(M^ OM((T*M)^)).

(OM denotes the structure sheaf of the complex manifold M.) L(M) acts
on it continuously by the (usual) Lie derivative £ ( ' ) . For k = 0,1,2, we
denote To(M) = F(M), Ti(M) = K(M) and T^(M) = Q(M).

Let M' be an open Riemann surface, S ' a finite subset of M' and
(j) : M —^ M' a complex analytic immersion satisfying (f)(S) C S". In an
obvious way the pullback homomorphism

0* ̂ (M'.^-^M,^)

is induced. If N is a L(M, S) module, L { M ' , S ' ) acts on N through the
homomorphism 0*. The L(M', 5") module obtained in this way is denoted
by ( p ^ N . A natural cochain map

: C*(L(M,^);7V) -^ C^L(M^S^^N)

is induced.

Denote by LQ the Lie algebra of germs at the origin 0 e C of complex
analytic vector fields on the complex line C which have a zero at the origin
0,

Lo := ̂ {4^ = lim L{{\z < 6}, {0}),
6^0

which is endowed with the inductive limit locally convex topology [G, TVS]
[K] [Kl]. A 1-cocycle 60 of LQ with trivial coefficient is defined by

60 V^i) =m

which plays an important role in studying the cohomology of LQ.

A parametrization <j)s centered at s € M is a complex analytic
homeomorphism of a neighbourhood of 0 G C onto a neighbourhood of
s e M satisfying <^(0) = s. If s G S, the parametrization (j)s induces the
pullback homomorphism

^*:L(M,^)-^Lo.
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Using the coordinate Zs = ̂ s~\ we have

^W^f^^L^
dz

where X^7(^)^- G L(M,S). For a Lo module TV, a L(M, 5) module
(ps^N and a natural cochain map

(^ : C*(Lo; TV) ̂  C*(L(M, ̂ ); (^AQ

are induced. A 1-cocycle ̂  of L(M, S) with trivial coefficient is denned by

^-(^oeC^M^)).

When X e L(M, 5) is represented locally by X = f^Zs)6-, we have
(22^5

(1-1) ^ (X)=^(0) .d^s

The complex number <^(X) does not depend upon the choice of a
parametrization (f)s.

Denote by W^ the Lie algebra of germs at the origin 0 G C of complex
analytic vector fields on the complex line C with the inductive limit locally
convex topology :

TYi :=C{z}—=\imL({\z <e}).
dz >

e-^O

A parametrization <^ centered at t C M induces the pullback
homomorphism

^* :L(M)-^W^.

If N is a TVi module, a L(M) module 0^A^ and a natural cochain map

(^ : C^W^N) -^ C7*(L(M);^,7V)

are induced in a similar way.

In the sequel we consider the following situation. Let M be an open
Riemann surface and 5' and T disjoint finite subsets of M. A LQ module
N8 is given for each s e 5' and a W^ module N1 for each t e T. A
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parametrization (f)u centered at each u G S U T is fixed. Then a L(M, S)
module

N:= (g) ^N-
u^SUT

is defined. Here and in the sequel, the tensor product (g) means the
completed projective tensor product [G,PTT][T]. Our purpose in the
present paper is to give a description of the cohomology jy*(L(M, 5'); N)
using the natural map

^ :(g)^*(^o;^s)0(g)^^*(Tyl;7Vt)^^*(L(M^);7V)
seS t€T

under some natural restriction of N'11 (u € S U T).

2. Regular Lo modules and the case of disk.

In this section we introduce a natural restriction on LQ modules to
study the case M is a disk and 5' is a one-point set.

Set
d _eo = z— e Lo.
dz

The 1-dimensional subspace Ceo is a subalgebra of Lo. For a Lo module
N , a subcomplex C'*(Lo, eo; N) of the complex C*(Lo; N) is defined by

C*(Lo,eo;7V)={cGG*(Lo;7V);int(eo)c=/:(eo)c=0}.

Its cohomology group, i.e., the relative cohomology group of the pair
(Lo.Ceo), is denoted by Lr(Lo,eo;AT) (see [HS]).

For 6 > 0, we denote

D, := {\z\ < 6} C C.

Using the coordinates z : De ̂  C, we regard the algebra L(De, {0}) as a
subalgebra of Lo. The algebra L(Dg, {0}) acts on a Lo module in this way.

The multiplicative group Cx = C — {0} acts complex analytically on
the Lie algebra Lo as follows :

^H^
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where t G Cx and f { z ) i - e LQ. Then we have

dt~JTt = ̂ eo = eo^.
at

DEFINITION 2.1. — A LQ module N is regular if the multiplicative
group Cx acts complex analytically on N :

T t : N ^ N ( t e C " ) ,

and satisfies the following :

(1) Tt(Xn) = Tt(X)Tt{n) {X e L^ n e N)

(2) t-Tt=Tteo=eoTt.
dt

Example. — The following LQ modules are regular :

(1) the trivial module C.

(2) the LQ module of germs at the origin 0 C C of complex analytic A'-th
tensor fields on the complex line C of order > I

^C{{z}}(d^

where k^ I e Z.

(3) the (completed) tensor product of two regular LQ modules.

(4) the Z/o module In (n e Z) defined as follows. In is a 1 dimensional
complex vector space. By abuse of notation, we also denote its base
by In :

l n = C l n .

LQ acts on In by

X • In = n6o(X)ln, X ( E L o .

Thus, when N is a LQ module, for t e C^ a cochain map

Tt : C*(L(^,{0});AO -. C*(L(^,,,{0});7V)

(r,c)(Xi,..., Xp) = ̂ (c^-1^!,.... Tt-'Xp))
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is induced. This map satisfies

(2.2) t-Tt=Tteo=eoTt.
dt

PROPOSITION 2.3. — If N is a regular LQ module, there is a natural
isomorphism

H^L{D^ {0}); N) = JT(Lo, eo; N) 0 H^L(D^ {0})).

Here ^"*(Lo,eo; N) denotes the relative cohomology group of the pair
(Lo,Ceo) with coefficients in the module N ( [ H S ] ) .

PROPOSITION 2.4.

^*(L(^{o}))=ceao,
where 60 = 6^ is the 1-cocycle defined in (1.1).

Proof of (2.3) and (2.4). — First of all we prove there is a natural
isomorphism

(2.5) 7r(L(Z^ {0}); N) = JT(L(D,, {0}), eo; N) ̂  (C C Oo).

We denote by C^L(D,, {O});^)60 the subcomplex of C*(L(De, {0}); N)
consisting of all cochains invariant under eo (i-e., annihilated by the action
C(eo)). Using the averaging operator

C\L(D^ {0}); N) -^ C^L(D^ {0}); TV)60

^ / (7exp2.^T^W<7o

one obtains a natural isomorphism

H^L(D^ {0}); TV) ^ H^C^L(D^ {0}); TV)60).

Observe the interior product

int(eo) : C\L{D^ {0}); TV)60 -. C-\L(D^ {0}); TV)60

is a cochain map satisfying

int(eo)(^oU) + (^oU)int(eo) = 1.
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C*(L(^, {0}); TV)60 == C\L{D^ {0}), eo; AQ 0 (C C Oo),

which implies (2.5).

Next, for 0 < 6 < 1, we consider the cochain map

^ : C*(L(D^, {0}), eo; N) -. C7*(L(^, {0}), eo; TV)

induced by the inclusion ^ : L(£^ {0}) C L(D^,{0}) C LQ. By (2.2), r^
gives the inverse of the cochain map of ^. Consequently we obtain

(2.6) C*(L(^JO}),eo;AO=C*(Lo.6o;AO.

When N is the trivial module C, (2.5) and (2.6) imply

7r(L(i^{o}),eo)=ceao,
which proves Proposition 2.4. Proposition 2.3 follows from (2.4), (2 5) and
(2.6).

As is known,
*

H*(Wi)=/\(e),
where the 3 cocycle 9 is defined by

/ d d d\ (f^ f'w f'w
e[f^,.9^)-h(z)-\=det[g(0) g'(0) g"(Q)
^ dz d z ) \h(0) h'(0) h"(0),

^^i^t^i^-
A parametrization (^ centered at a point t in an open Riemann surface

M induces a 3 cocycle

(2^) ^-(^GC^M)).

The 3 cocycle ^ does not depend upon the choice of parametrizations.

LEMMA 2.8. — If M is contractible,

^ : H^W,) -^ H^L(M))
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is an isomorphism, i.e.,

*
H*(L(M)) = /\(^).

Proof. — In view of the uniformization theorem of Riemann surfaces,
we may assume M = {z C C;|2;| < 1} orC and the parametrization <f)s is
induced by the inclusion M ^-> C. By an argument similar to (2.4), one
deduces

7T(L(M)) = H\C"{L(M)Y0}.

The complex C^L^M))^ is equal to C7*(TVi)60. Hence we have
*

H^L(M))=H^W,)=/\(0t).

3. Covariant derivative cocycles.

On an open Riemann surface M, there exists a complex analytic
nowhere zero vector field 0. In fact, in view of a theorem of Behnke and
Stein [BeSt], M is a Stein manifold, and hence all complex line bundles on
M are complex analytically trivial.

For a non-negative integer A:, we define a 1 cochain Vj? G (^(^(M);
Tk{M)) by

v^9) = T——nT^1^9'' / e W)5
(K + 1J!

where o~k 6 Tfc(M) is the ^-th tensor product of the dual of 9. We call V^
the covenant derivative cochain associated to 9. Using the Leibniz5 rule,
one deduces the following

LEMMA 3.1.

d(Vf)= ^ (b-a)VfuVf,
0<a<b</c,a+b=/c

where the cocycle Vf U Vf G (^(^(M); Ta+^M)) is given by contracting
the coefficient in the cup product V^ U V^ G ^(^(M); Ta(M) (g) T^(M)).
Especially dVf = 0 if and only iffc = 0,1,2.
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For k = 0,1,2, we call VJ| the A;-th covariant derivative cocycle
associated to 9.

The behavior of Vf's under the gauge transformation of TM needs
to be clear. Let g C F(M) be a nowhere zero function on M. By straight-
forward calculations we have

LEMMA 3.2.

(1) vf^-V^df^log^ =d(l^Q-l\ ̂ C\L(MYK{M}).
V 1 V 9 )

(2) vf» - v?, „ fl; J ̂  - j (̂ H a-.) , C'(L(M);QW).
\ * [ \ y / ) j

Consequently the cohomology classes of Vf and V^ do not depend
upon the choice of a nowhere zero vector field 9. We denote their cohomol-
ogy classes by Vi and V2, respectively.

Remark. — For local coordinates z and w, Lemma 3.2 (2) implies

V^-v^=d^{w,4d^,

where {w, z} denoted the Schwarzian derivative ofw with regard to z. Using
this fact, one can obtain a function theoretic proof of the correspondence
[ADKP] of the Virasoro 2-cocycle of Vect5'1 to the Weil-Petersson Kahler
form on the moduli space of Riemann surfaces via the Virasoro action.

Next we study the behavior of the cocycle V^. Observe that the
holomorphic de Rham cohomology of a Stein manifold is naturally iso-
morphic to the (usual) de Rham cohomology. Thus we may identify
H^M) = K(M)/dF(M). A natural map

^ : K(M) -^ C\L{MY, F(M)), uj ̂  (X ̂  uj{X))

induces an injection K : ̂ (M) -> ^(^(M); F(M)), since the coboundary
map on (7°(L(M);F(M)) = F(M) is equal to the exterior derivative d.

LEMMA 3.3.

^~19 - V^ = ^(diogg) e C\L(M^ F(M)).
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Consequently the set of all the cohomology classes induced by the
0-th covariant derivative cocycles V^ is just parametrized by the lattice
^(M^TTV^TZ).

The covariant derivative cocycles Vo and Vi are utilized for con-
structing elements of ^(^(M, S)) in the following way.

Let H^(M,S) denote the first complex valued singular homology
group of the pair (M,S). By virtue of Stokes' theorem, for an element
7 C H^ (M, S), the line integral along 7 induces a well-defined L(M,S)-
homomorphism

/ : K(M) -^ C (the trivial module), uj ̂  [ uj
^ J^

which induces a linear map

f : ̂ i(M, S) ̂  JT(L(M, ̂ ); K(M)) -> 7T(L(M, S)).

LEMMA 3.4. — For 7 e H^(M, S) and u e ^(M),

/ ^(n)Vi = 0 e ̂ (^(M, S)).
J^

Proof. — Put u = [hQ-^h e F(M). Define a 1-cocycle c e
C\L(M^ S)) by c = - ̂  u\/^ that is,

c(^)=- l fh(0f)9-\ f^F(M).^ J ^

Then easily we have {^ ^u)V^){fQ,gQ) = dc(f9,g0) for all f,g e F(M),
which shows that the cocycle f ^(^)Vi is a coboundary.

From Lemma 3.4 follows

COROLLARY 3.5. — The linear map

^VoVi : Hz(M^S) -^ H\L(M,S))

does not depend upon the choice of a nowhere zero vector field 9.

We denote the image of this map by f^ ,^ ^ VoVi.

The above construction may be generalized slightly.
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Let s and t be two points on M. Denote by Ft (resp. F5) the L(M)
module of germs at t e M (resp. s <E M) of complex analytic functions on
M. Fix a path connecting s to t on M. Then the indefinite line integral
along the path

pt-\-e pt-\-e

/ : K{M) -^ F\ uj ̂  / a;
•^s Js

and
/^+6

/ : K(M) -^ F* (g) 1 + 1 0 F5 c F^ (g) F5

^s+e

/•t+e /•s+e

^ ̂  0; (g) 1 — 1 (g) / CJ,
J* J*

(where t+e varies near ^ on M,) are L{M) and L(M, {5}) homomorphisms,
respectively. Especially 2 cocycles

f^vfeC^AU.});^)
J s

and
/•<+€

/ V^VfeC^M^F^F5)
^s+e

are defined.

LEMMA 3.6. — For u € K(M), we have

[ ^)Vl=Oe^2(L(M,{5});Ft)
J s

rt-\-e

\ ^(n)Vi = 0 C ̂ (^(M); F* (̂  F5).
^s+e

Proof. — There exist hi G Ft and ^5 C F8 such that

^ == dht near ^,
= d/is near s.

Set

cf=-^/ u^ + ̂  € C1(L(M, {5}); F^

1 /lt+e

c'^-, / ^V^+(/l.(g)l-l(g)/l,)V^eC l(L(M);Ft0FS).
2 ^s+e



ON THE COMPLEX ANALYTIC GEL'FAND-FUKS COHOMOLOGY 669

Then one deduces dc' = f^ /^)Vf and dc" = f^ ^)Vf, as was to be
shown.

Consequently the cohomology classes J^6 VoVi and J^6 VoVi do
not depend on the choice of a nowhere zero vector field 9.

4. Analytic preliminaries : (DFS) spaces
and (DFG) spaces.

An inductive system of locally convex spaces {A^,n|_^ : N1 —^
^i+iheN is compact injective (resp. nuclear injective) if each linear map

^i :M-^M+i ( z e N )

is compact (resp. nuclear) and injective. Since nuclear maps are always
compact, every nuclear injective inductive system is compact injective. A
locally convex space N is a (DFS) space (resp. a (DFG) space) if it can be
represented as the locally convex inductive limit lim A^ of a compact (resp.
nuclear) injective inductive system {A^,'u|.^}^^ (see [K]).

Our purpose in this paper is to compute the complex analytic GePfand
Fuks cohomology with coefficients in the germs of tensor fields

C{z^..^Zp}dz^ . . . d zp^ .

This coefficient group is clearly a (DFG) space (see [T] §§50-51). Clearly a
finite dimensional space is a (DFG) space.

We begin this section by summarizing some basic properties of (DFS)
and (DFG) spaces following [K] and [Kl]. Lemma 4.3 is essential to the
definition of the support of an analytic functional valued in a (DFS) space
(§8) and the computation of the cohomology of tensor fields (Appendix).
Next we review the Klinneth formula for topological complexes. Finally
we treat the Mittag-Leffler lemma on the derived functor lim1, which is
utilized in the proof of Addition Theorem.

We use [G.TVS], [G.PTT], [G,DF], [Kl], [T] and especially [K] as
general references.

LEMMA 4.1. — Every compact injective inductive system of locally
convex spaces is equivalent to a compact injective inductive system of
Banach spaces.
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Lemma 4.1 is proved in [K]III Prop. 9.2, p.302 or [Kl] Lemma 2, p.369
and p.374. 1.30.

LEMMA 4.2.

(1) A (DFS) space is a complete reflexive Hausdorff (DF) space.

(2) A (DFG) space is a (DFS) space.

(3) The strong dual of a (DFG) space is a Frechet nuclear space, and the
strong dual of a Frechet nuclear space is a (DFG) space.

(4) A closed subspace and a quotient space (by a closed subspace) of a
(DFG) space are (DFG) spaces.

(5) A continuous linear bijection (= injective and surjective map) between
(DFG) spaces is a topological isomorphism.

(6) The tensor product of two (DFG) spaces is a (DFG) space.

Proof. — (1) See [Kl] Lemma 3 and Theorem 6, p.372.

(2) A nuclear linear map is compact.

(3) See [K] III Theorem 9.8, p.309.

(4) See [K] III Theorem 11.3, p.330.

(5) Let / : E —> F be a comtinuous linear mapping berween
(DFG) spaces. Suppose / is injective and surjective. Then the strong dual
y* : F * —^ £'* is continuous, injective and surjective ([T] Theorem 37.2,
p.382). In view of Banach's Open Mapping Theorem, /* is an isomorphism.
Since E and F are reflexive, / = /** is an isomorphism.

(6) (DFG)0(DFG) is (DF) ([G,PTT]I §1, Proposition 5.2, p.43),
nuclear and complete. Hence, by [K] III Theorem 9.10, p.313, it is a (DFG)
space.

Horn denotes the linear space consisting of all continuous linear
mappings throughout this paper.

LEMMA 4.3. — Let {N^u^}i^ be a compact injective inductive
system of locally convex spaces and F a Frechet space. Then we have a
natural isomorphism (of linear spaces)

Hom(F,lim7V,) ^ limHom(F,7V,).
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Proof. — Our proof imitates that of [K] III Theorem 9.3, p.303 or
[Kl] Lemma 3, p.372. We prove the natural map

lim Hom(F, N,) -^ Hom(F, lim N,)

is injective and surjective. The injectivity follows from that of each u^.
For the rest the surjectivity is proved. We may assume each Ni is a Banach
space by Lemma 4.1.

Fix an arbitrary / e Hom(F, lim Ni). Using a distance d of the Frechet
space F, set

^:=/(Q/cF;d(0,2/)<2-1}).

We derive a contradiction under the hypothesis that B^_i is not included
in the image of any bounded subset of N1 for each i. Then we can construct
Xi € Bi and an absolutely convex neighbourhood Vi of 0 G Ni inductively
satisfying the following conditions (cf. ibid. loc. cit.)

(i) u^^V^CV,

•Nz+i,
(ii) x^...^^u^^(ui^{Vi) z+ )

(iii) u\^(Vi) l is compact.

Here u'1 : Ni -^ limA^ denotes the canonical injection. Then V =
00

U Vi is absolutely convex and absorbing because each V is a neighbour-
hood of 0 G NI. Hence V is a neighbourhood of 0 in limA^. Since / is
continuous, we have Xi G Bi C V for some z, which contradicts the condi-
tion (ii).

Consequently £^_2 is contained in a bounded set of X^_i for some i.
————————N,

Especially u\ (B^-s) is compact. Since limA^ is Hausdorff by Lemma
. ————————Ni ~^

4.2(1), u^ : u\ (^-2) —^ \imNi is an imbedding and

W-1 o f : [V C F; d(y^ 0) < 2-^+2} -> N,

is continuous. Therefore / is consisted in the image of Hom(F,A^). This
completes the proof of Lemma 4.3.

Next we review the Kiinneth formula for locally convex complexes,
which is essential to the computations below. A short sequence of locally
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convex spaces and continuous linear mappings

(4.4) 0 - ^ A ^ B ^ C ^ O

is topologically exact if z induces a topological isomorphism of A onto the
subspace kerTr and TT induces a topological isomorphism of the quotient
space B / ker TT onto C.

LEMMA 4.5. — In the topologically exact sequence (4.4), suppose B
is a (DFG) space or a Frechet nuclear space. Then the strong dual

0 -̂  C7* -̂  B* -^ A* -> 0

is topologically exact.

Proof. — When B is a (DFG) space, A, B and (7 are (DF) spaces
(Lemma 4.2 (4)(2)(1)). Hence, by [G,DF] Proposition 5, p.76, the strong
dual is topologically exact.

Suppose B is a Frechet nuclear space. Then, by [G.PTT] II §2 no.l
Theorem 6 Corollary 1, p.38, B is a Frechet Montel space. Similarly by
[G, PTT] II §2 no.2 Theorem 9, p.47, A and C are Frechet Montel spaces.
Thus the strong dual is topologically exact by [K] p. 268.

A cochain complex of a locally convex space (£', d) is topological if
the differential d induces an isomorphism of the quotient space E / k e r d
onto the subspace d{E) C E.

LEMMA 4.6. — A (DFG) cochain complex {(7*,d} is topological if it
is locally finite, i.e., for all p G N

dim HP (C") <+oo.

Proof (cf. [G.TVS] I§14, Ex.4, p.42). — Set BP = dCP~1 and ZP =
ker(d : CP -^ C^+1). Since Z P / B P is finite dimensional, a lift HP C ZP
of HP is closed (from Hahn-Banach Theorem. See [G.TVS] I.§12,Theorem
7, Corollary 2, p.38). Hence HP C (C^-1/^-1) -^ Z? is a continuous
bijection of (DFG) spaces. By Lemma 4.2(5) it is a topological isomorphism.
Consequently C?~1 / Z ? " 1 —^ BP is a topological isomorphism.

LEMMA 4.7. — Let E be a (DFG) (resp. Frechet nuclear) topological
cochain complex. Then E* is a Frechet nuclear (resp. (DFG)) topological
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cochain complex and its cohomology is topologically isomorphic to the
strong dual of H(E) :

H{E^=H(EY.

H(E) is a (DFG) (resp. Frechet nuclear) space.

One deduces Lemma 4.7 by usual arguments involved with Banach's
Open Mapping Theorem (resp. Lemma 4.2(3)) and Lemma 4.5.

The following theorem is proved in [S].

THEOREM 4.8 (Kunneth formula). — Let E and F be Frechet topo-
logical cochain complexes. Suppose E or F are nuclear. Then the tensor
product E(^)F is a Frechet topological cochain complex and its cohomology
is topologically isomorphic to the tensor product H(E) (g) H(F) :

H ( E ^ F ) = H ( E ) ^ ) H ( F ) .

Dualizing Theorem 4.8, we obtain

PROPOSITION 4.9 (Kunneth formula). — Let E and F be (DFG)
topological cochain complexes. Then the tensor product E (g) F is a (DFG)
topological cochain complex and its cohomology is topologically isomorphic
to the tensor product H{E) (g) H(F) :

H(E (g) F) = H(E) (g) H{F).

Proof. — Applying Theorem 4.8 to the strong duals E* and F*, we
have

H(E 0 F) = ̂ ((F* ^) F*)*) = H(E^ 0 F*)*
--= (H(E^) 0 ̂ (F*))* = H(E^ (S) ̂ (F*)*
= H(E) (g) H ( F )

by Lemmata 4.2 and 4.7. Especially H(E (g) F) is a (DFG) space and
Hausdorff. Hence the coboundaries B{E (g) F) is closed in the cocycles
Z(E (g) F). It follows from Lemma 4.2 E ^ F is a topological complex.

In §9 we need another version of the Kunneth formula

PROPOSITION 4.10 (Kunneth formula). — Let E be a Frechet topolog-
ical cochain complex and F a Frechet nuclear space. Suppose there exists
a projective system {F,, ̂ +1 : F,+i -^ F,}^ of (DFG) spaces such that
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(1) F=limF,,

(2) the natural projection F —>• Fi has a dense image for each i,

(3) the map ^+1 : F^+i —^ Fi is compact.

Then we have

JT(Hom(F,E)) = Hom(F,jr (E)).

Proof. — From [K]III Theorem 5.13, the strong dual of F is topolog-
ically isomorphic to lim(F,)*. Since F is nuclear, Hom(F, E) = F* (g) E =
\im(Fi* (S) E)^ which implies

7T (Hom(F, E)) = lim H" (F,* (S) E) = lim F,* <g) TT (E)

= F* (g) ^*(F) = Hom(F, H^E)).

Here we utilize Theorem 4.8.

It should be remarked F = /^ L(M, 6') satisfies all the conditions of
the above proposition.

Finally we review the Mittag-Leffler lemma. Let {Ayi,^4"1 : A^+i —^
An}n(=N be a projective system of linear spaces. Consider the linear map

6 n^ ̂  n^' (an) ̂  (an - ̂ '(^n+i))-
n n

By definition ([M]) we have

limA^ := ker^ and lin^A^ := coker^.

PROPOSITION 4.11 (Mittag-Lemer). — For a compact injective induc-
tive system of Banach spaces {B^,'?/^1}^^, we have

lim1^* = 0,

where {B^*,'^4'1*}^^ is the dual projective system of^yi,'?/^4'1}.

For the proof, see Palamodov [P] or Komatsu [K] III Lemma 10.2,
p.318.

We need modify this proposition for the use in the proof of Addition
Theorem.
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PROPOSITION 4.12 (Mittag-Leffler). — Let {Bn^^l}n^ be an
inductive system of locally convex spaces satisfying the conditions (1)-(3) :

(1) {Bn-, '^"^neN is nuclear injective.

(2) Bn is a (DFG) space ifn is even.

(3) Bn is a Frechet nuclear space if n is odd.

Then we have

WHom^AO =0

for an arbitrary (DFS) space N .

Proof. — Proposition 4.11 and Lemma 4.1 imply the sequence

(4.13) o ̂  iimB2n* ̂  n^2-* ̂  n52-* ̂  °
is exact. From Banach's Open Mapping Theorem the sequence (4.13) is
topologically exact.

Let C be a Frechet space. Since ((BB^nY = n(^2n*) is a Frechet
nuclear space, (this isomorphism is a topological one. See [K] or [Kl]) we
have (n^n*) 0 C == Hom(eB2n,C) ^ Y\Rom(B2n,C). Tensoring C to
the sequence (4.13), one deduces 6 : ]'"[Hom(^2n5 C) —> ]~[Hom(B2n, C) is
surjective from Theorem 4.8. It follows from the cofinality of lim1

(4.14) lin^Hom^n+i, C) = 0.

N is represented as the locally convex inductive limit of a compact
injective inductive system {Ni,u^}i^ of Banach spaces. From (4.14) 6 :
]~[Hom(B2n+i,M) —' nHom(£?2n+i,A^) is surjective. Since the inductive
limit lim commutes with the direct product ["[, 6 : ]~[Hom(B2n+i, N) -^
n Hom(£?2n+:h A^) is surjective by Lemma 4.3. Thus we obtain
lin^Hom^^, N) = 0,, as was to be shown.

5. Main theorems.

In the sequel we impose the following three conditions (5.1) on a LQ
module N :

(5.1.1) N is regular as a LQ module (2.1).
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(5.1.2) N is a (DFG) space (§4).

(5.1.3) The cohomology group 7:f*(Lo,eo; N) is locally finite (4.6).

The LQ module of all (twisted) germs of tensor fields at the origin
(o , . . . ,o )eC^

U ^ C { ^ i , . . . , zp}dz^ • ' • dzp^ (p e N^o^i, • . • ̂ p e Z)
satisfies the condition (5.1). The locally finiteness of its cohomology is
proved in Appendix (Corollary A.2).

Let F -= C{z} be the W\ algebra of germs of complex ananlytic
functions at the origin 0 e C. We impose the following three conditions
(5.2) on a W\ module N. li is a 1 dimensional LQ module defined by

X'l^=6o(X)l^ X eLo.

(5.2.1) N satisfies the condition (5.1) as a LQ module.

(5.2.2) li 0 N satisfies the condition (5.1) as a LQ module.

(5.2.3) The algebra F acts on N , and the action F 0 N -^ N is a TVi
homomorphism, i.e., the Leibniz' rule

X { f ' n ) = { X f ) ' n + f - ( X n ) X ^ W ^ f ^ F . n ^ N

holds.

The W\ module of all germs of tensor fields at the origin ( 0 , . . . , 0) C
C^

C{z^.. ̂ zp}dz^ . • • dzp^ (p C N>i^i , . . . , ̂  e Z)

satisfies the condition (5.2). Here F acts on it by

f(z) • g{z^ . . . , Zp)dz^ • . . dz^ = f(z,)g(z^ . . . , Zp)dz^ • • • dz^.

Now we can formulate our main theorem in the present paper.

THEOREM 5.3. — Let M be a connected open Riemann surface whose
first Betti number &i(M) is finite, S and T disjoint finite subsets ofM and
(pu a local parametrization centered at u ^ SUT. Suppose a LQ module N8

(resp. a W\ module N 1 ' ) satisfying the condition (5.1) (resp. (5.2)) is given
for each s G S (resp. t <E T). We define a L(M, S) module N by

N:= (g) ^N\
uesuT
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Then the homomorphism

0*:= (g) ^^H^L^N^^^H^W^N^^H^HM^S^N)
uCSUT sCS tCT

induces an isomorphism

7r(L(M,6');AO
*

^/\(E3^l(M^U^))^0^*(Lo;7VS)00^*(TVl;7Vt),
s^S tGT

where Y?H^(M, 5 U T) is the graded linear space concentrated to degree
2 given by the 3 times suspension of the first complex valued singular
homology group H^ (M, 6' U T), and A* (S3^ (M, S U T)) is the free graded
commutative algebra generated by the graded space.

Let 7 : ([0,1], {0,1}) -^ (M, 6' U T) be a continuous path. Then we
can give the cohomology class corresponding to S3^] explicitly by

•J^^WM,S» o" ,̂T})̂
< p(i)+eY7 v7 ^ i-f^fT (i\/r Q\ A v\ if 7(0)e 5 and^(o) VoVi e ̂  (L(M, 5); ̂ (I),F) _ / ^ ̂

. Ĵ o1)̂ 6 ̂ Vi ^ ̂ (^(M, ̂ ); ̂ ^F ^ 0^(o)^) if 7({0,1}) C T

using the covariant derivative cocycles (§3). Since each N^t G T) satisfies
the condition (5.2.3), the cup product

/.7(l)+e
U / VoVi : ̂ *(L(M, ̂ ); ̂ (i)^^1)) ̂  TT+^M, 5); ̂ (D 7V^1))

J7(0)

makes sense.

We consider the case T = 0 first. We need formulate an addition
theorem of Bott-Segal type for the Lie algebra L(M,S), (for the formal
vector fields, see Feigin-Fuks [FF] and Retakh-Feigin [RF]) which plays a
fundamental role in this paper. We prove it in §8 by adding the cohomology
vanishing theorem of Stein manifolds of Oka and Cartan to partition-of-
unity arguments in the proof of Bolt and Segal [BS] for the C°° case.

We begin by recalling a simplicial cochain complex

C : [q] ̂  C^

i.e., a contravariant functor from the category of finite ordered sets to the
category of cochain complexes. The normalized complex Cq is the quotient
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Cq = Cq/C^^, where C^^ is the sum of the images of the degeneracy
operations. The total cochain complex {Co <— C\ ^— C^ < — • • • } is denoted
by | C | and called the realization of the simplicial cochain complex C. The
following lemma introduced by Bott and Segal is a basic tool for calculating
realizations.

LEMMA 5.4 (= Proposition (5.9) [BS]). — If C —> C' is a morphism
of simplicial cochain complexes such that Cq —> Cq is a cohomology
equivalence for each q, then \C\ —> \C'\ is a cohomology equivalence.

Let M, S, (j)s and N8 (s e S) be as in Theorem 5.3. Suppose T is
empty. Let il = {Uj}^^ be a finite open covering of M. Set I := {j; 1 <
j <^ J } . Consider the simplicial open Riemann surface Ms associated to
the covering 11 :

Ms : [q] ̂  Ms,g = ]J[ [(7o,cri,---,^;^J
o'0:?c^l=)•••^)c^9

where (TQ is a finite subset of J, U^^ = D Uj^ and [(TO, cri, • • • , (7g; Ucro} is a
jeo-o

copy of the Riemann surface U^. We denote by Wq the natural projection

^q '• Ms,g -^ M [ ( 7 o , a i , - - - ,(Tq\U^\ —> U^.

For s ^ S and q C N^o; denote by Sq the point in [<js •> • • ' ? o's; ̂ crj
corresponding to s with labelling [erg, • • • , o's] :

5g = [ ^ s , " ' ^s',s} 6 [(7s,- • • ,(7s;(7crJ C Ms,g,

where 05 = {j € J; s G L^-}. We define a Lo module A^^ (u C Wq^^S)) by

FTV 5 , i f n = ^ ^ c 5
\C (trivial), if u i [sq, s e S}

and a L(M^^,Wq~l{S)) module Nq by

U^q-^S)

where (j)u is the local parametrization centered at u 6 Ms,g induced by
^OTg(u)- We obtain a simplicial cochain complex

[q}^C\L(M^Wq-\S)^Nq),

because of the naturality of the pullback cochain map (§1).
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THEOREM 5.5 (Addition Theorem). — Under the above situation, the
augumentation

{C^nM^w.-^S^N^^C^nM^^N)

induces a cohomology equivalence.

The proof is given in §8.

Part of the main theorem follows from Addition Theorem immedi-
ately.

PROPOSITION 5.6. — Let M, S, (f)s, N8 (s C S) and the homomor-
phism (f)^ be as in Theorem 5.3. Suppose T is empty. Then the homomor-
phism <^ induces an H*(L(M,S)) isomorphism

^*(L(M^);7V)^^*(L(M,5))^(g)^*(Lo,eo;7VS),
s^S

where N = 0 <^A^.
ses

Proof. — The local parametrization (f)s is a complex analytic homo-
morphism of D^ := {\z\ < Cg} (eg > 0) onto an open subset Us of M
satisfying 0s (0) = s.

Since the first Betti number of M is finite, there exists a finite open
covering {Ua}a^i of M — S such that the union

^'={Ua}aeI^{Us}seS

is a finite contractible open covering of M.

Consider the simplicial cochain complex

[q}^C^L(M^w,-\S)^N,)

associated to the covering it. We have an isomorphism

C^L{M^W^-\S)YN^)

^(^C^LiU^is^^N8)
sCS

^ (g) C*(L([/^(,),{^(u)}))00C7*(L(^J)
ueWq~l{S),U^Sq

^(g)G*(L(£»^{0});A^)
s^S

® 0 G*(£(D^^,{0}))®0G*(L(^)),
uewy-l(S),uyiSg
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where the third 0 runs over the set of [ao,o-i, • • • ,0-g; Uao] satisfying
I U S D (TQ D ai D • • • D ^ and ao H J ^ 0. C*(L(I^ {0}); TV5),
C*(L(D^^JO})) and C^L(U^)) are (DFG) complexes because TV5 are
(DFG) spaces (5.1.2). Since each N8 is regular as a LQ module (5.1.1),
Proposition 2.3 implies

H\L(D^ {0}); TV5) ^ H^L{D^, {0})) ^ ^*(Lo, eo; TV5).

Especially this space is locally finite by (5.1.3) and Proposition 2.4. Hence
C*(L(D^^{0});N8) is a topological complex from Lemma 4.6. Similarly
G*(L(D^ ^, {0})) and C*(L([7crJ) are topological complexes from Propo-
sition 2.4 and Lemma 2.8 respectively. Consequently we have an isomor-
phism

H^L(M^w,-\S)^N,)

^(^H^nU^is^^N8)
s^S

(5.7) 0 0 H\L(U^^ W^)})) ̂  (g) H\L(U^)}
ueWq-l(S),U^Sq

by Kunneth formula (4.9).

Using the cochain maps 0s ̂  and Og : H * (LQ , eo; N8) —> (7* (Lo, eo; A^5)
satisfying das(u) = 0 and [Q's(^)] = ZA for all u e H*(LQ, eo; TV5), we obtain
a homomorphism of C*(L(ME,g, Wg"^^))) simplicial cochain complexes

a:C*(L(ME,„^-l(^))^0^*(Lo,eo;^)
ses'

-^^^(Ms,,,^-1^));^).

(5.7) means a is a cohomology equivalence. It follows from Lemma 5.4 and
Theorem 5.5 the realization of a is an isomorphism

^*(L(M^))^(g)^*(Lo^o;^)^^*(L(M^);7V),
s^S

which completes the proof of Proposition 5.6.

Following Bolt and Segal [BS], we prove in §6

PROPOSITION 6.2.
*

ir^M^^Map^,^);^/^!,...,^,^),
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where dego;, = 2, 1 < i < b^ = h(M), Map(M, S3) denotes the space of
continuous maps of M to S3 with the compact open topology, 61 is the
3 cocycle defined in (2.7), and /\*(-) means the free graded commutative
algebra over C generated by (•).

For the C°° vector fields of holomorphic type on an open Riemann
surface and the algebraic vector fields on an affine algebraic curves, the
analogues of this proposition are known (cf. Feigin [F]).

Furthermore we prove

THEOREM 6.1.

* / r°A(L^*(L(M))=/\ / VoVi,^ .
\JH,{M) )

In §7 we utilize Proposition 5.6 and Theorem 6.1 to prove

THEOREM 7.1. — If S is non empty,

H^L(M^S)) =/\( f VoVi, 6s, (s € S)Y
^ J H ^ M ^ S ) )

Assembling these results, we can prove our main theorem :

Proof of Theorem 5.3. — The theorem for the case T = 0 is proved
immediately. In fact, by Proposition 5.6. and Theorem 7.1, we have

^*(L(M, 6-); N) = JT(L(M, S)) ̂  (g) JT(Lo, eo; N8)
sCS

* / r \
=A / VoVi ,^ (5C^) ^(g^Lo.eo;^)\JH^M,S) ) ^

*
=/\(^H,(M^S)) 00^*^0;^).

ses

Next we consider the case S ^ 0 and T ^ 0.

Fix an element SQ e S and a path connecting SQ to each t e T. From
the case T = 0 and the fact

rt-\-e ^t /.t+e
/ VoVi = / VoVi + / VoVi

•JSQ JSQ J t

{ VoVi e H^HM, s u r)), [ VoVi e ̂ H2^; F),
Jso Jt
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we obtain an isomorphism

(5.8)
H " ( L ( M , S U T ) ; N )

^^UH ^^^/\(f ^oVi^eT))^ 0 H^L^N-)
u^. o U-z

where f^ VoVi G ^(L(M, 5); (^F^) acts on ^*(L(M,5);AQ and
H*(L(M, S U T); TV) using the F structure on TV*.

Consider the Hochschild-Serre spectral sequence of the pair (L(M, S),
L(M, S U T)). Since the cohomology class ^+€ VoVi lifts to H^^M, S);
(t>t^F), the transgression dr vanishes on the class. Therefore it follows from
(5.8)

^*(L(M,5);AO
* /* * P~t I C

"A( / VoVi)0/ \ ( / VoVi,(ter))
^JH^M,S) / ^ J s o )

0(g)^*(Lo; TV6) 00^(^1;^)
se6' ^er

*
^^(^^(M^ur))^^^*^;^)^^^*^;^),

ses' ter
as was to be shown.

Finally we prove the case 5=0 and T -^ 0.

Fix a point so G M - T. Set 5 == {so}. The Hochschild Serre spectral
sequence of the pair (L(M),L(M,S)) induces an exact sequence
(5.9)

• • • ̂  ^(L(M); N) -^ H^(L(M^ 5); TV) ̂  ^(L(M, 5); li ^ N) -^ • . . ,

where li is a 1 dimensional L(M, S) module defined by

x. i i=y°Wii , x GL(M^).
Fix a point to e T and a complex analytic nowhere vector field 9 on M.
The theorem for the case S ^ 0 and T ^ 0 implies

(5.10)
^*(L(M,5);AO

* * . rto+e

^(S^A^r))^/^ / VoVi)0^*(Lo) 00^(^1;^)
Jso t€T
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and

(5.11)
H^L(M,S);1^N)

* * / yto+e \

=/\(S3ffi(M,r))®/\ / VoVi®JT(Lo; l i )® (9)^(^1;^).
vso / t6T

We claim

(5.12) d A l VoVi) = 6sooe, e ̂ (M, 5); li 0 <^F),
Vso /

where the cocycle ei € (^(^(M,^); li) is defined by

€i(f9) = (^^(so)!!, /9 6 L(M, S).

Using 9, we define a projector

P:L(M)^L(M,S), f9 ̂  (/ - /(so))9.

For X e L(M,5), we have P([9,X}) = [9,X] - 6soo(X)9. For X,Y e
L(M,S), integrating the cocycle condition dV^Vf = 0 along the path
from SQ to to, we obtain

0 = - ̂ °6i(X, Y) + (V^V?)(X, Y){t, + 6)

a^o+e \ / ^o+e x

VoVi ([Q^XW - / VoVi)(X, [9,y]).
o / \Jso /

Therefore

a^o+e \ f / / /lto+e \ \ 1^ VoVi (x,y) = Ud( \ v^v?) op) (c^y)} . i,
o / I \ \Jso ) ) }

=^°6i(x,y).
(5.12) follows.

As is proved in Lemma 7.4 (without the use of this theorem),

(5.13) d^o=-e^.

Consequently the transgression di induces an isomorphism

A / /^o+e '\ ^ / /lto+e \
A / VoVi ^ ̂ *(Lo) ^ A / ^Vi ^ ̂ *(^o; li)

^so / \Jso /
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for degree ;> 1 under the isomorphisms (5.10) and (5.11). It follows from
(5.9)

*
ff*(L(M); N) ̂  f\^Hi(M, T)) 0 (g) JT(lVi; TV*).

t^T

This completes all the proof of Theorem 5.3.

6. Explicit description of H*(L(M)).

Let M be a connected open Riemann surface. Assume the first Betti
number of M is finite. In this section, we give an explicit description of
H^L(M)) :

THEOREM 6.1.

* / r \
jr(L(M))=/\ / VoVi,^ ,

\JH^M) )

where t C M, 0t is the 3 cocycle defined in (2.7), and A*(') means the free
graded commutative algebra over C generated by (•).

Following Bolt and Segal [BS], we show first

PROPOSITION 6.2.

7:f*(L(M))-^*(Map(M^3);C)=/\(^,.. . ,^,^),

where deg^ = 2, 1 ̂  i <, &i = 61 (M), and Map(M, 5'3) denotes the space
of continuous maps of M to S3 with the compact open topology.

For the C°° vector fields of holomorpic type on an open Riemann
surface and the algebraic vector fields on an affine algebraic curves, the
analogues of this proposition are known (cf. Feigin [F]).

Next we prove

PROPOSITION 6.3.

H\L(M)) = I VoVi.
^i(M)

Theorem 6.1 follows from Propositions 6.2 and 6.3 immediately.



ON THE COMPLEX ANALYTIC GEL'FAND-FUKS COHOMOLOGY 685

To prove Proposition 6.2, fix a complex analytic nowhere zero vector
field 9 on M.

LEMMA 6.4. — If an open set 0 in M satisfies H1^) = 0, there exists

a complex analytic immersion z : 0 -^ C satisfying 0 = —.uz

Proof. — For a local coordinate w, consider the equation

(6.5) ^=——(^0) ,
dw J\^)

where f(w) = Ow. Each solution z of (6.5) is an immersion into C and

satisfies , = 9. The integral constants of (6.5) form a Cech 1 cocycle

on 0. Hence the condition -^(O) = 0 implies the existence of a desired
immersion z : 0 —^ C.

Proof of Proposition 6.2. — The fundamental map in our case is easier
than that in [BS].

Since the first Betti number of M is finite, there exists a finite
contractible covering it = {Uo}a^i of M of covering dimension 1. A
cosimplicial space M^ is defined by

M ̂  U u^
(T=0-oD---Do-q

where a is a finite subset of I such that Ua- 7^ 0, and

^ = IJ Ua.
aGcr

Observe U 0 ' is contractible because the covering U is contractible. Hence,
applying Lemma 6.4 to U 0 ' , we obtain a complex analytic immersion

Zy '. U0' —^ C satisfying 9 = ,—. Forp e L7'0", we define a map fa,p '. Ua- —> CdZy
by

f^p(') = Za(') - ZaW.

By Lemma 2.8, the homomorphism

(/^),:C*(L(^))^C*(L(C))

is a cohomology equivalence because Uo- is contractible.
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Denote by A^U0' : C7*(L(C))) the double complex of C°° differential
forms on U^ with values in G*(L(C)). Since U0' is contractible and (/a,?)*
is a cohomology equivalence, a cochain map

/, : C7*(L([/,)) -^ ̂ (^ : C*(L(C)))

defined by

a ̂  (<9-1) 0 (/^),int(9)a + (/<.,p)*a

is a cohomology equivalence. By virtue of Lemma 5.4, the homomorphism
of simplicial cochain complexes

/ : C*(L(Ms,,)) -^ A*(M^; C*(L(C)))

induces a cohomology equivalence on their realizations. Therefore, by
Theorem 5.5, we obtain an isomorphism

H^L(M)) ̂  JTdA^M^ C7*(L(C)))|),

whose RHS is isomorphic to ^*(Map(M, S3)) ^ H^Moi?^ S\ S3))
because of [BS] Corollary 4.8.

Proof of Proposition 6.3. — Our proof proceeds inductively on &i(M).

The case &i(M) = 1. — In this case M is an annulus, and so we may
assume M = {ri < \z < r^}, 0 <, r\ < r^ < +00. Fix a 1 cycle 7 on
M such that ^ z-^-dz = 1. It suffices to show [f VoVi] ^ 0 <E ^(^(M)).
Assume [J VoVi] = 0 6 .^(^(M)), i.e., there exists a 1 cochain c e
C^I^M^satisiying

(6.6) f^g" - fg^dz = c ((fgf - f'g)^
J^ \ d z j

for all f,g C F(M). Substituting / = 1 and g = ^fc+l, (A; 7^ -1) to (6.6),

we obtain 0 (2^ , - ) =0 for A: 7^ —1, which implies

(^^'(6.7) ^^l = A I f^ (/^F(M))\ dz i J^

for some constant A € C. Substituting / = z3^ = z~1 to (6.6) and (6.7),
a contradiction is derived. Thus [f VoVi] 7^ 0 G ^(^(M)), as was to be
shown.
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The case &i(M) ^ 2 . — There exists an open covering {U^,U^} of
M such that U\ D U^ is contractible, and Ui is an annulus. By inductive
assumption,

H\L(U^) = { VoVi.
JH^U^

The proposition for the case &i (M) = 1 implies

H\L(U,)) = [ VoVi.
J^i(?7i)

Since H-^(M) = H^(U^) C H^(U^, the proposition follows from :

LEMMA 6.8. — Let M be a connected open Riemann surface of finite
Betti number and {U^.U^} an open covering of M such that U\ D U^ is
contractible. Then the inclusion homomorphism

(6.9) H\L(U,)) 0 H\L(U^) -^ H\L(M))

is an isomorphism.

Proof. — Denote by M^ the simplicial open Riemann surface associ-
ated to the covering {L^L^}. We regard H*(L(M^^q)) as a cochain com-
plex with trivial differentials. Since H*(L(Ui)), ̂ (L^)), and H"(L(U^ H
U^)) are free graded commutative algebras, there exists a morphism of
simplicial cochain algebras Jf*(L(Ms,g)) -^ C*(L(Ms,g)), which is a co-
homololgy equivalence for each q. Hence, by Theorem 5.5, we have an iso-
morphism H " ^*(L(Ms))| ^ H"(L{M)). Easily one deduces

H\L(M^)) -.|^*(L(Ms))|2

=^2(|^*(L(Ms))|)-^2(L(M)),

which implies the injectivity of (6.9). Since the dimensions of both sides of
(6.9) are equal, (6.9) is an isomorphism.

7. Explicit description of ^*(L(M,6')).

As in §6, let M be a connected open Riemann surface of finite Betti
number and 6' a finite subset of M. Our purpose in this section is to show
an explicit description of H*(L(M, S)) analogous to Theorem 6.1 :
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THEOREM 7.1. — If S is non empty,

* / r \
JT(L(M, S))=/\[ VoVi, 6s, (s c S) ] .

\JH^M,S) )

To prove it inductively, fix a point t e M - S and set 5i = 6' U {t}.
For the rest of this section, we abbreviate

L=L(M,S), Li =L(M^i).

We have to compute 7L*(Li) explicitly under the assumption (7.1) holds
for L. The Hochschild-Serre spectral sequence of the pair (L, Z/i) [HS] gives
us an exact sequence of H " ( L ) modules

(7.2) .. • -^ H^L) ̂  ^(Li) ̂  H^L^ 1,) -. .H^L) ̂  .. • ,

where 1^ is a Z/i module defined by

x.i,=^(x)i,, X e L i .
Fix a complex analytic nowhere zero vector field 9 on M. A 1 cochain
ei CC^Li,^) defined by

^(f^)=(02f)(t)l^ fO^L,

is a 1 cocycle. By virtue of Proposition 5.6 and the fact

7r(Lo,eo; l i )=C6i,

its cup product

\J:H^L,)^H^\L^1^
ei

is an isomorphism. Substituting it to the exact sequence (7.2), we obtain
an exact sequence of H * ( L ) modules

(7.3) • • • -^ H^L) -^ ^(Li) A ^^(Li) 4 H^\L) - > • • • .

LEMMA 7.4.

A(^)=- l e^°(Li).

Proof. — Set V = ^<9, where ^ C F(M) is a function satisfying
h(t) = 1 and fe(5) = 0 for 5 e S. Then a linear map P \ L —^ L^ defined by

P(f9)=f9-f{t)V^ f9eL
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is a projector onto L\. We have

(7.5) P[V, X\ = [V, X] - 6^X)h9 = (hof - fOh - 6^X)h)9.

Using (7.5), we obtain

M)(X) = d(^ o P)(Y, X) = -(Q2^) - 6^X)(9h)(t)^
=(-e,-d(Oh(t)-l^))(X)^

which proves Lemma 7.4.

Consider the case S = 0 first. By the definition of E,

(7.6) E(6tQ)=0t^H3(L).

LEMMA 7.7.

* / r \
H^L(M^{t}))=/\[ \ VoVi,^ .

V^i(M) /

Proof. — As is proved in Proposition 2.4, H*{L(D^ {t})) = A*(^)-
Tensoring the algebra A* := A*(J^,(M) ̂ Vi) to the exact sequence (7.3)
for the disk Dg, we obtain a long exact sequence

(? / * \ 9
^A*^/\(^) ^ A*0/\(^)

/ * \9-1 / * V 9 + 1

(7.8) - [A*0/\(^)j -. (A*^/\(^) ......

A homomorphism of the sequence (7.8) to the sequence (7.3) is constructed
in an obvious way. Applying the 5-lemma to the homomorphism, we can
prove ffl(L(M, {t})) ̂  H^L) ̂  (A* (g) A*(^))9 inductively on the degree
<7-

Next consider the case S ^ 0. Fix s G S and a path connecting s to
t on M. The line integral along the path defines a cocycle OQ e (^(Li) :

ao= ( VoVi.
t/S

LEMMA 7.9.

A(ao) = -^.



690 NARIYA KAWAZUMI

Proof. — Let V C L and P : L -> Li be as in the proof of Lemma
7.4. We have the following formulae :

/ C{V)uj = (^(V)(t), and / C(X)^ = 0
J s J s

for any uj <E K(M) and any X c Li. Let X and V be arbitrary elements of
Li. Integrating the cocycle condition d(VoVi)(y,X,Y) = 0 and using the
above formulae, we have

{ / (VoVi)([y,x],y) + AvoVi)(x, [y,y])l. i,
^s Js J

=^ei(x,y)+c([x,y]),
where we define a 1 cocycle c € C'^Z-i, 1^) by

c(X)= /'(VoViK^X).!,,
^s

for X e Li. It follows

î (7 ^Vi) (^n = { d ( ( fvoVi)op)(y,x,y)} . i,
Ws / l v ^Js / / ^

= { - ( f VoVi) ([y, x] - ̂ (W r)

-(^VoVi)(^[y,y]-^(y)}.i,
=-^ei(x,y)-dc(x,y),

namely, di(J^ VoVi) = -^ei, as was to be shown.

From Lemmata 7.4 and 7.10 follow

(7.10) A(aon)=-naon-16to and A^o^) =-^o71.

Conclusion of the proof of Theorem 7.1.

We consider a free graded commutative algebra J?* = /\*(a,^) with
dega = 2 and deg^ = 1, and a derivative D on J?* defined by

L )̂ = -n^S and D(a7^) = -o^.

By abuse of notation, we denote by C the trivial graded algebra defined by
(C)° = C and (C)9 = 0 for q > 1. Then we have an exact sequence

. . . -^ (C)9 c-, ^9 ̂  jy?-l _°, (C)9+l ̂  . . . ^



ON THE COMPLEX ANALYTIC GEL'FAND-FUKS COHOMOLOGY 691

Tensoring it by H* := ^(L), an exact sequence

• • • -^ H ' 1 ̂  (7T (S) R^ °> (7T ^ JT)9-1 -^ H^1 ̂  . • •

is obtained. From (7.10), the correspondence denned by a ̂  OQ and 6 ̂  6^
induces a morphism of long exact sequences

-^ H^ -^ {H^R-Y -^ (H^R^Y-1 ->
II I [

-^ H^ ^ ^(Li) -^ ^9-l(^l) -^

By the 5-lemma the map H* (g) J?* ^ ^*(Li) is an isomorphism. This
means

JT(£i) = H^L) ®/\ ffvoVi,^) .
Ws /

Consequently now we can prove Theorem 7.1 inductively on (5'. The
theorem for the case ft,? = 1 is already shown in Lemma 7.7.

8. Proof of Addition Theorem.

This section is devoted to our proof of Addition Theorem (5.5), which
is a translation of that for C°° manifolds in [BS] into the case for open
Riemann surfaces. The notation in §5 is retained. For an arbitrary complex
manifold f^, we denote by F(^) the Frechet space of complex analytic
functions on ^2 with the topology of uniform convergence on compact sets.

First of all we need to define the GePfand-Fuks filtration.

Let QQ e L(M^ S) be a non-zero complex analytic vector fields on M
whose divisor is equal to ^ s. QQ induces an isomorphism

ses

(8.1) F(M)^L(M^), f^f9o.

For Stein manifolds ^i and ^2, the algebraic tensor product F(^2i) (g)^
F(^2) is dense in F(^i x f^). In fact, by the approximation theorem
of Well and Oka ([C] Expose 9, Theoreme 4), it is reduced to the case
for polynomials. Hence the completed tensor product F(^i) (g) F(^) is
topologically isomorphic to F(^i x ^2) ([T] Theorem 51.6). Thus (8.1)
induces an isomorphism

(8.2) ^(^(M, 5); N) ̂  (Hom^A^), N))^

^(/i,...Jp^c(A9o,...,/p9o)),



692 NARIYA KAWAZUMI

where the symmetric group ©p acts on }lom(F(MP)^ N) by the permutation
of the arguments twisted by the signature. In the sequel, we regard a
cochain c C CP(L(M, 6'); N) as an element of B.om{F(MP),N), i.e., an
analytic functional on Mp (with value in N).

Recall the notion of the support of analytic functionals on a complex
manifolds. For a compact subset K of a complex manifold f^, a topological
linear space F^(K) is defined by the inductive limit of locally convex spaces
(see [K])

F^(K) = lim F{U},
KCU

where U runs over all the open neighbourhoods of K in f^. An analytic
functional c G Hom(.F(Q), N) has its support in K :

supple C K,

if c is contained in the image of the inclusion homomorphism
Hom(.Fh(JC), N) —^ Hom(.F(^),A7'), namely, c is contained in the image
of the inclusion homomorphism Hom(^(?7), N) —> Hom(.F(f^), N) for any
open neighbourhood U of K in f2. For a subset A of f^,

supple C A

means that c has its support in some compact subset in A. It should be
remarked any analytic functional has its support in some compact subset
in f^ as is shown in the following lemma.

LEMMA 8.3. — Let f2 be a Stem manifold and N a (DFS) space Q4).
Then any analytic functional c 6 -Hom(.F(f2), N) has its support in some
compact subset offL

Proof. — By definition (§4) N is represented as the locally convex
inductive limit of a compact injective inductive system of Banach spaces
{ A ^ . z ^ i ^ : Ni —>• A^+i}^^ : N = limA^. Since F(yi) is a Frechet space, c
is represented as a composite

c = u1 o c'

for some suffix i and some d G Hom(F(^),A^) by Lemma 4.3. Here
u1 : Ni —> TV is the canonical embedding. Ni is a Banach space with a
norm p. p o d is a continuous semi-norm on jF(f^). Hence p o c' is bounded
by the maximum norm on some compact subset K of f^.
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Since Q is Stein, we may assume that K is F(f2)-convex. In view of
the approximation theorem ([H] Corollary 5.2.9), F(^) is dense in F^(K).
Consequently c' extends to an analytic functional on F^(K) with values in
TV, which proves Lemma 8.3.

We define

M^ = { ( m , . . . , Xp) e Mp', (t(^ U {x^ . . . , Xp}) < k + ̂ S}

(M^)^={(^,...,^)e(M^)^;

t t ({5^; s e S} U { .n , . . . , Xp}) <k+^S}

and

^ = {c e ̂ (M.^A^suppc C M l̂
1 MP J

C^={ceC^L(M^w,-\S)^N^ supp cC(Ms,,)d.
(^E^)^3 ;

^ = ®^ ^ a subcomplex of C^L{M,S);N) and C. = ©^ is
P " p '9

a subcomplex of ^(^(Ms,^^--1^)); Nq). The filtrations {07^}^ and
{C^}/c are called the Gel'fand Fuks filtrations. Thus we obtain the
simplicial cochain complex

^*,* •' [q} ̂  C^ = W{M^W,-\S)YN,}.

The theorem is reduced to the following two assertions.

ASSERTION 8.A. — The simplicial linear space C^ is degenerate
above dimension dk, where d is the covering dimension ofil.

ASSERTION 8.B.

H^C^) = C^(L(M, ^); N) (in dim. 0).

In fact, by virtue of (8.A), the realization |C^J is equal to the total
complex

{^O ^~ ,̂1 ^~ ' • • ^~ ^^kd}^

the spectral sequence associated to which converges. It follows from (8.B)
the augmentation

|C^|^C4*(L(M,^);AO
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is a cohomology equivalence. Taking the union for all k, we obtain Addition
Theorem (5.5).

The proof of (8.A). — Is similar to that in [BS] §8.

The rest of this section is devoted to

The proof of (8.B). — Fix p and k. We define a simplicial linear space
B,by

[q] ̂  Bq = {c G Hom^aMs^^A^suppc C (M^}.

From (8.2) C^^ is isomorphic to the simplicial linear space [q] i-̂  Bq^ as
a simplicial linear space. Set B_i = {c <E Hom^M^), TV); suppc C M^}.
Then it suffices to show

ASSERTION 8.B.I.

H^(B^) =B-i (in dim. 0).

Denote by K^ the analytic hull of a compact set K in a complex
manifold ^. Let E denote the nerve of the covering -U :

E = { a C { l , 2 , . . . , J } ; [ / , ^ 0 } .

The partial order ^ on the product S^ is defined by

7 r = ( ( T ^ . . . , a p ) ^ T T ' = (ai',...^/)
^0'z D a/ for each z.

Then we have

(M^)P= U [7ro,...,7r,;^].
7ro^---<7rg

We can construct sequences of compact subsets Li and L^, z G N,
1 < j < J , in M satisfying

(8.4) L, = (j L,^
j=i
00

(8.5) £7, = U ̂ j,
1=1

(8.6) I ,̂̂ . = L^j,

(8.7) Every compact subset in Uj is included by some L,j.
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We define a simplicial compact subspace Ki^ : [q] i-> K^q of Ms by

I Y
^= U h),..-,<7,;^o] n(Ms,^,

\croD---:)o-q,o-oeS y

where Li^o = n ^,j. For each q, we have
.7 €0-0

(8.8) Every compact subset in (Ms,g)^ is included in some K^q.

(8.9) ^,9(Ms,,)P = ̂ 9-

When we set JQ = (L^ n M ,̂ we have

(8.10) Every compact subset in M^ is included in some Ki.

(8.11) ^MP=K,.

Here it should be observed that M^ and (Ms,g)^ are analytic subsets in
Mp and (M^g)^ respectively.

The inductive limit is an exact functor. Hence, by (8.8) and (8.10),
Assertion 8. B.I is reduced to

ASSERTION 8.B.2. — The augumented cochain complex

B^ := 0 ̂  Hom(FMp(^),AO ^- Hom(F(M^o)^(^,o)^)

^Hom(F(M^,)p(^,i)^)^----

is acyclic for each i.

For the rest we may fix the suffix i. Let [// be a relatively compact
open neighborhood of Lij in Uj for 1 < j < J . For 71-0 < 71-1 < . . . < TTg,
TTc, G E^, set

^7ro,...,7r, = [7TO, • • • , ̂ q •• U^} U (M^q)^

^o,...^=^o,•••,^:^]n(M^)^
where

^TTO = Uffy X • • • X Uap

U^ = U^ X ... X U'^ TTo = (<Ti,...,<7p) € £P.

Renumber S : S = { s i , . . . , Sm}- For TT 6 S1', define an open set W^ in M
by

_ / x s

^ = V, - (J [7; - L-1 \ (J (M^"1)
P^TT \ff*=*,g€6p+B



696 NARIYA KAWAZUMI

where TT = (TT, a^ , . . . , cr^J e E^^ and </ : M^ -^ M^^ is denned by

i ( x ^ , . . . , X p ) = ( ^ l , . . . , ^p ,5 i , . . . , S , n ) .

{W^}^^p is an open covering of Mp (see [BS] §8).

LEMMA 8.12. — If there exists an element x of W^ satisfying
[71-0, • • - , 7 ^ :X\ eD^,^, then T T ^ T T o and [ 7 T , 7 T o , . . . , 7 T q :X] CA^.,^.

Let {^7r}7rcsp be a partition of unity on Mp subject to the open
covering {W^}^^p. Fix a real valued C°° function ̂  on Mp such that
^7r|supp<^ = 1, supp^ C H^r, and 0 < ̂  < 1. Define a C00 map ̂

^ : (^,9)" -^ ^g+2) x M^ x [0,1]

[71 -0 , . . . , Tip : .r] h-> (7r,7ro,...,7Tg,3;,^(a;)).

If (ME^+I^ is regarded as a subset of S^^2) x Mp in an obvious way,
from Lemma 8.12 follows

LEMMA 8.13.

(1) ^(^) C ̂ +1 x [0,1] U E^+2) x M^ x {0}.

(2) I f T T ^ T T o ,

^([TTO, . . . ,^ : ̂ J) C S^+2) X M^ X {0}.

From a theorem of Grauert ([H] Theorem 5.1.6, Theorem 5.2.10) we
have

LEMMA 8.14. — Let K be a compact subset of a Stein manifold Q
such that K^ = K. Then, for any open neighbourhood 0 ofK, there exists
a Stein open set Oi satisfying K C 0\ C 0.

Consequently Ki (resp.K^q) has a fundamental neighbourhood sys-
tem consisting of Stein open sets in M^ (resp. (Ms qY) by (8.11) (resp.
(8.9)).

Set KI^ = KI and ME,-I = M. Provide a distance dq for each space
{M^^qY'. What we have seen so far implies

LEMMA 8.15. — There exists a relatively compact open neighbour-
hood Vn,q ofK^q in (M^^ for n > 1 and q ^ -1 such that

(1) Vn,q is Stein.
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(2) For each face map 9j : (Ms,g)P -^ (Ms.g-i^ (0 < j ^ q),

W,g) C V^_i.

(3) 7To(T4,g,yn+i,g)=0.

(4) d,(K^,(M^)P-V^)<^.

(5) For any TT € EP,

^r(^n+i,g) C ̂ ,g+i x [0,1] U ̂ p(q+2) x MP x [0,1[.

(6) ^ ,gn[7ro , - - - ,7Tg: (7 , Jc^ .

It follows from (4)

(8.16) 4, = Hom(F(M^,)p(^,g),AO = limKom(F(Vn^),N).
n

A result on the projective limit of chain complexes need to be recalled.

LEMMA 8.17 (Milnor [M]). — Let {C^neN be a projective system of
chain complexes satisfying lim ̂ ^ = 0 for each q. Then we have an exact

sequence

0 -> lim^+i^:1) -^ ^(InnC^) ̂  lim^C^) ̂  0.

Here lim1 is the derived functor of the projective limit.

In view of Proposition 4.12, Lemma 8.15(3)(4) implies

WHom^y^AO^.
n

Hence we have an exact sequence

0 ̂  lim^+^Hom^y^^AO) ̂  Hq(B^)

-^ \imHq(Rom{F(Vn^),N)) -. 0

by Lemma 8.17. Consequently Assertion 8.B.2 is reduced to

ASSERTION 8.B.3. — The inclusion homomorphism

^(Hom(F(y,+i,,),AO) -> ^(Hom(F(y^),AO)

is a zero map for all n.
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Denote by A^Q) the C°° differential forms of (0,a) type on a
complex manifold f^. Consider the augumented double chain complex
^n* = {^;Ja>o,^-i, C^ = Hon^A^y^.AO. Using the column
filtration FpC := Q) C^q and applying Oka-Cartan's Theorem B to the

9^P
Stein manifolds Vn,q-> we obtain

(8.18) ^(TotalC^) = ^(Hom(F(l^),AO).

The spectral sequence associated to the row filtration F^C := Q) C^ is
a^p

given by

^=^(Hom(Aa(y^),7V)).

Hence Assertion 8.B.3 follows from

LEMMA 8.19. — The inclusion homomorphism

^(Hon^A^+i^AO) ̂  ^(Hon^A^^AO))

is a zero map.

Proof. — By the condition (6) of Lemma 8.15, the map

h : Hon^A^+i^AO -. Hon^A^y^+i^AO

h'0, • • • ^q '• f} ̂  y^[7T, 7TO, • • • , TTg '• f • ^7r]
TT

is well defined. By usual calculations h is a contracting homotopy of the
inclusion homomorphism.

This completes the proof of Addition Theorem.

9. Reset nikov spectral sequence.

In this section we introduce a spectral sequence related to the Lie
algebra L(M, S) and originated by Resetnikov [R] for C°° case, and we
calculate two examples.

Let E be a complex analytic vector bundle over a Stein manifold f2.
For an open subset U in f^, E(U) denotes the Frechet space of complex
analytic sections of E over U with the topology of compact uniform
convergence, and Aq(U^E) denotes the Frechet space of C°° sections of
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E (g) /^r*^ over U with C°° topology. 0^(E) is a sheaf of topological
linear spaces. In view of Oka-Cartan's Theorem B ([H] Th.7.4.3),

7r(A*(f2; E)) = F(^) (in dim 0).

Hence, for any Frechet nuclear space F satisfying the conditions of Propo-
sition 4.10, we have

(9.1) 7r(Hom(F,A*(^;F))) = Hom(F,F(^)) (in dim 0),

where Horn denotes the complex continuous linear maps.

Denote by Hom(F, 0^(E)) the sheaf

open
U C f^Hom(F,F(l7))

and by Rom(F,Aq(E)) the sheaf

open
U C ^^Hon^F.A^F)).

Applying (9.1) to a fundamental neighbourhood system consisting of Stein
open subsets and taking the inductive limit, we obtain a fine resolution of
the sheaf Hom(F, 0^ (E))

0 -^ Hom(F, 0^(E)) -^ Hom(F, A°(E)) ̂  • . • -. Hom(F, ̂ (F)) ̂  0.

Using (9.1) once more, we have

LEMMA 9.2. — For any Frechet space F satisfying the conditions of
Proposition 4.10,

jr(^,Hom(F,(9Q(F))) = Hom(F,F(^)) (in dim 0).

This Lemma allows us to apply a standard result of the sheaf
cohomology theory (see [B] IV. 2.5. Theorem) to our situation.

THEOREM 9.3 (Resetnikov spectral sequence). — Let M be an open
Riemann surface and S a finite subset of M. Suppose the Lie algebra
L(M, 6') acts on the sheaf of topological linear spaces 0^{E) continuously.
Then there exists a spectral sequence

E^ =HP(^Hq)
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converging to HP^(L(M, S);E(^)), where W is a sheaf over f2 whose
stalk at x e f2 is given by

Hl=H^L(M^^O^E)^).

For the rest we give two examples.

The first example is the cohomology group

JT(L(M);r,(M)),

where Tn(M) is the L(M) module of complex analytic n-th covariant tensor
fields on a connected open Riemann surface M of finite Betti number.
Denote by Tn the LQ module of germs at 0 C C of complex analytic n-th
covariant tensor fields. Let <^ be a local parametrization of M centered at
s. By Theorem 9.3 we have a spectral sequence

(9.4) E^ = ̂ (M; ̂ (L(M); ̂ r,))

converging to H^L(M);Tn(M)).

From Theorem 5.3, the homomorphism (^ induces an isomorphism

* /*
(9.5) ^*(L(M);^r,)^Af / VoVi)^*(iVi;r,).

^ J H , ( M } /) , ^ s ^ - i - n ) — 1\\ I V Q \ \ ] W n [ V V ^ l n )
/^i(M)

In view of a theorem of Goncharova [Go] [V], the dimension ofHq(W^Tn)^
Hq(Lo', 1^) is equal to

f l i f n = e ( ± g ) o r e ( ± ( 9 - l ) ) ,
[ 0 otherwise,

where e(q) = .(3q2 -\-q).

Thus, if n ̂  e(Z), from (9.4) and (9.5) follows

JT(L(M);r,(M))=0.

In the sequel we assume

n=e(±qo), 90 e No.

Fix a base ̂  of ^°(Lo; In).
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Denote by C7*(Lo;ln)60 the 0 eigenspace of (7*(Lo;ln) under the

action of eo = Z~T Using the interior product int(eo) as a homotopy,

we have an isomorphism

jr^Lo;^)60)^*^;^).

Consider the k-th covariant derivative cochain Vj| associated to a
nowhere zero complex analytic vector field 9 (§3). Lemma 3.1 means the
assignment ^ (g) 1/c i-^ Vj? defines a cochain map

V^ : G*(Lo; In)60 -> C*(L(M);T,(M)),

where ^/c is given by ^(^ z + l— ) = 6k,i (Kronecker delta).
\ CtZ /

We denote by ^n ^ ^90(L(M);^^(M)) the image of (pn under the
map V9. For each s <E M the image of ̂  under the restriction

JT(L(M);r,(M)) -> H^L(M)'^^Tn)
-^ ^*(L(M, {5}); ̂ (Tn/zTn)) = JT(L(M, {5}); 1,)

coincides with (j)s^{^n}' Therefore we have

* r
(9.6) ^*(L(M);^,T,)=^U/\f / VoVi,Vo).

^JH^M) /

Since the RHS of (9.6) lifts to 7-T(L(M);r^(M)),

E^ = I-P(M) ̂ ( ^ n U / \ ( f VoVi, Vo))9
v ^ J H ^ M ) / /

collapses. Consequently we obtain

^*(L(M); r,(A^)) ̂  ̂  U JT(L(M); F(M))

(9.7) =^uf^*(M)^A( /' VoVi,Vo)Vv ^JH^M) / /

The second example treats the configuration space of the complex
line :

Pn = {(Z^ . . . , Zn} G C71; Z, ̂  Z, (z ̂  j)} (n ̂  1)

which is a Stein manifold. For an arbitrary complex manifold f2, we
denote by F{^1) the Frechet space of complex analytic functions on f2 with
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the topology of uniform convergence on compact sets. By the diagonal
action the Lie algebra L(C) acts on the Frechet spaces F(P^) and F^)
continuously.

PROPOSITION 9.8.

7r(L(C);F(P,))

= ̂ *(P,) 0 /\ ( I l+l VoVi, V(/ (1 < z < n, 1 < j < n)}.
\Jzi )

Here the (holomorphic) de Rham cohomology algebra of Pn, ^*(Pn), is
mapped into the algebra ^*(L(C); F(P^)) in an obvious way.'The cocycle
^+1 VoVi is defined by

(/^^)(f^i^)=F^}-F^)

f^=f'WW-f"(z)g\z)

and Vo-7 by

w(f(z)i)=f^•
Proof. — Consider the Resetnikov spectral sequence (9.3)

E^ = ffl(P^ H"(L(C); Op^_^)) ̂  H^(L(C); F(P»)).

Theorem 5.3 implies

jr(L(c);Op^,^) = /\ (\v, f^VoVi),
V ^Zi+e }

which the fundamental group TTiP^ acts on trivially. Hence we have E^ =
E^° (g) E^. Since every element of E^ lifts to ^*(L(C); F(?n)), the ^2
term collapses. This completes the proof.

COROLLARY 9.9. — The inclusion homomorphism

in. ̂ *(^(C); F^)) -^ ^*(L(C); F(P,))

is surjective.
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Proof. — By a result of ArnoPd [A], H"(Pn) is isomorphic to the
subalgebra of the holomorphic de Rham algebra of Pn generated by the 1
forms

dzi — dzi
-1———- ^ < z < J ^ n ) .

Zi - Zj

Every such form lifts to an element of ^(^(C); ̂ (C71)) as follows

d f(z,)-f(z,)
fW dz Zi — Zj

It follows from Proposition 9.8 in is surjective.

It would be very interesting if one can determine whether the sur-
jective homomorphism in is isomorphic or not. This question is answered
affirmatively for n = 2,3.

PROPOSITION 9.10. — The homomorphisms L^ and 13 are isomorphic.

Proof. — If n = 2, by Feigin and Fuks [FF], the Poincare polynomial
of 7:T(L(C); F{C2)) is equal to (1 -12)-1^ +t)3. This is equal to that of
H*(L{C);F(P-2)). Consequently 1-2 is isomorphic.

To show the proposition for n = 3, we consider the spectral sequence
abutting to J^*(Lo; F ^ F ) ̂  7:T(L(C); F(C3)) associated to the decreasing
filtration (^F) (g) F, n € Z>o, whose E^ term is equal to ^*(Lo; In (g) F).
In view of a theorem of Feigin and Fuks (Lemma 3.1. [FF]), the Poincare
polynomial of H"{LQ\ In ̂  F) is given by

^(l+^l-t)-1 if n=e(q}
t^l + t) + ̂ (l + ^)2(i - t)-1 if n = e(-q)
^(l+f) if e(q) < n < e(-q - 1)
0 if e{-q) <n < e{q)

with q e Z^o- Hence the Poincare polynomial of the E\ term is equal to
/ ~°° \(1 +1) (1 + ̂  (6q - l)^9 ) = the Poincare polynomial of JP(L(C); F^)).v 9=1 /

This completes the proof of the proposition.
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Appendix.

Fix p € N and z/o, z / i , . . . , Up e Z. Let A^ be the LQ module of twisted
germs of tensor fields :

N := 1̂  0 C{z,,..., Zp}dz^ .. • dz^ .

Define a LQ submodule Fj,N (k e Z) of N by

FkN •= {!„ ^ /(z)^i'1 • • . dz^ € A^;
the total degree of each component of f(z) > k — z/},

P
where v == ^ ^. {-FA:^V}/.;GZ ls a decreasing Lo-filtration of N . The purpose

%=o
of this appendix is to prove the following theorem.

THEOREM A.I. — For any q G N, there exists an integer kq = kq(N)
such that

H^L^e^FkN)=0

for all k > kq. Here ^f*(Lo,eo; ') denotes the relative (continuous) coho-
mology group of the pair of Lie algebras (Z/o, Ceo)-

We prove this theorem by a method of successive approximation. A
result of Vainshtein [V] plays a role of an a priori estimate. In the sequel
we regard (7*(Lo, eo; FkN) as a subcomplex of (7*(Lo, eo; N) in an obvious
way.

COROLLARY A.2. — H*{LQ^ eo; N) is locally finite^ i.e., for all q G N

dimT^Lo^echAO < +00.

Proof. — From Theorem A.I follows

J^(Lo, eo; N) ̂  H^L^ eo; N / F ^ k ^ N ) .

Since the complex C*(LQ, eo; N / F k ^ k q ^ N ) is finite dimensional, the RHS
is finite dimensional. Therefore H * ( L o , e o ' ^ N ) is locally finite.

COROLLARY A.3. — The cohomology group ^(Lo, eo; N) is isomor-
phic to the projective limit of the system {J^*(Z/o, eo; N/FkN)}k^z '•

^*(Lo,eo;^)^lim^*(Lo,eo;^/F^).
k
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The RHS for p --= 1 is computed by Feigin and Fuks [FF].

To prove the theorem, we denote

Bn•={(z^...^n)^Cn^z,\<l (Vz)}
Fn :--=C{z^...,Zn}= \imF(pBn)

p^o

for n G N. F(-) denotes the Frechet space consisting of all complex
analytic functions on '. We endow Fn with the locally convex inductive
limit topology. W\ acts on Fn by the diagonal action :

^(^)^)/(^l,...^n)=E^)^^l-•-^)•

We need investigate the spaces of all eo-invariant continuous linear map-
pings of Fq to \y (g) Fp {q,p C N,^ G Z).

LEMMA A.4. — The correspondence

0 e Hom(F^ 1, 0 FpY° ̂  ^ 0(^1 • . . C^)^1 • • • z^ G V^
ii,...,iq

is a well denned linear isomorphism Hom(Fg, ly^FpY0 ^ Vy^?- Here Vv,q,p
denotes the closed subspace

{^ ^i...z^i...jp^i'1 • • • ̂ wi^ • • • w^ G F, 0 Fp = Fp^

^i...z,ji...^ = 0 if?i + - - + ^ T^^+J ' I + -"+^}

ofFp^q = \imF(pBp^q).

Proof. — We reconstruct the inverse of the given correspondence. Fix

a = ^ a^...^...^z^1 • • • 2^W1 • • . Wp3^ G V^p.
l l+---+Zq=^+J ' l+---+Jp

Since a is an element of Fp^q = limF(pBp^q), we have

+no">N^l r7 - • • • \n ^ l+•••+ ^q+^l+•••+^
' " / ^ l a ^ l • . • ^ g J l • • . J p l^a

- /) "N^l^- • • • 1 ^ 2o'l+•••+^)— Pa / ^ \a^l...^q3l...3p\Pa
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for some pa > 0. Hence the series

a(z~\ w) = a(p . . . , — , w i , . . . , wp\

=^a^l...^,jl...3^1~^l • ' • Zq~^W^1 • "Wp^

converges absolutely and uniformly on any compact subsets of the domain
{(^ i , . • • ,^wi, . . . ,wp) e O^; \Wk\ < p^\zi\ (\/k^l)}. Thus a continu-
ous linear map ̂  : F(2pBq) ̂  1^ F(p^pBp) is denned by

( \ (1

^(/)(wi , . . . ,wp):=1^0 1 — ) /> a(^-l,w)f(z)dz

2,'K\ I j J\z\=p Z=l-8(^)7a(^•••.^•••^.,...,..)•i^.
Passing to the limit p -^ 0, we obtain the continuous linear map ̂  : Fq -^
1^ 0 -Fp such that

^a(^i11 • • • ̂ ^) = 1. 0 ̂  ̂ ...w.jp^i31 • • • ̂ p.

Clearly ̂  G Hom(F^ 1^ 0 Fp)^ and the linear map

<^ : ̂ ,^p -^ Hom(F^ 1^ (g) Fp)60 a ̂  ̂

is injective.

By Lemma 4.3, an arbitrary 0 e Hom(F^ l^^Fp)60 may be regarded
as a continuous linear map 0 : F(Bq) -^ 1^ (g) F(pBp) for some p > 0.

The series E(Ci^i)11 • • • (C^9 = ̂ L- • • • 1—— with parameter
1 Sl^l -1- ^g^g

C = (Ci , . . • , Cg) ^ ^-Sg converges in F{Bq) uniformly with respect to the

parameter ( e -^Bq. Hence the series

l-.0^^l^l.•.^)C^...C^=:a(Cl,...,C^Wl....,w,)

converges in F(pBp) uniformly with respect to the parameter C e ^B ,

which implies a e ^.,g,p. By our construction we have ̂  = 0.

Consequently 0 is a linear isomorphism and its inverse is equal to the
given correspondence. This completes the proof of Lemma A.4.
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Consider the inner product on the space C[z\,..., Zn] denned by

(f.g)p
( 1 Y [ f ff ' ^———————-^'"dZn

= \^——/=^} \ ' • • f{^,...,Zn)g{z^,...,Zn)————————
^jTTV-ly J\z-,\=p J\zr,\=p ^ " • Z n

f,g^C[z^...,Zn}.

We denote by Hn,p the Hilbert space obtained by completing C[zi , . . . , Zn}
with respect to the norm \\f\\p := ((/J)p)1/2. Since F(pA) C H^p C
F(pBn) for pi > p, we have

(A.5) Fn = lim H^p.
p-^o

By Lemma A.4 we may regard C^Lo, eo; FkN) as a closed subset of
P

^/,g,p C Fp^q, where v = ̂  ^. The space
1=0

Hq^p '= Hp^p H C^Lo, eo; FkN)

together with the inner product ( - , - ) ? is a Hilbert space. Observe

Cq(L^e^FkN)=\lmH^
p~^o

Theorem A.I reduces to the following assertion.

ASSERTION A.6. — For every q there exists an integer ko == ko(q) with
the property that each cocycle c G Hq^,p is represented as the coboundary
of a cochain b € Hq_^^,p '• c == db for any k > ko and any 0 < p < 1/2.

In fact, take an arbitrary cocycle c e Cq{Lo, eo; FkN). By (A.5) c is
contained in Hq^,p for some p < 1/2. But c is a coboundary because of
Assertion A.6. Therefore any cocycle of Cq(LQ,eo•, FkN) is a coboundary.
Theorem A.I follows.

For the rest we prove Assertion A. 6. Set

f q 1
C^ •= i c C C^(Lo, eo; AQ; c(e^ ..., e,J = 0 if ̂  i^ k L

I 0=1 J

where ei = ^^~{~l-^- ^ LQ (z € N). Then we have an orthogonal decompo-

sition

Hq,k,p = C^(B Hq^-{-l,p-
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Furthermore the sum © C? is dense in Ha k o '
l>k i "

The cochain map d : Cq(Lo, eo; N) -^ C^^Lo, eo; A^) is decomposed
as follows :

d = do - {3

(doc)(Xo,...,X,)=^(-l)^c(([X,X,],Xo,.i..^,X,)
i<j

(/3c)(Xo,..., X,) = ̂ (-lY^CiX^X^ . \, X,)
i

where c € Cq(Lo, eo; N), XQ^ ' • • , Xq G LQ. It should be remarked do2 = 0,
do(C4*) C C^ and /3(^(Lo,eo : F^TV)) C C^\L^e^F^N).

We denote by

9=9^^•.Cq,+l-.Cq,

the adjoint operator of do : C^ -^ C^ with respect to the inner product
( - , • ) ? and by

A = ̂ p = do9+9do '.C^C^

the Laplacian of do with respect to the inner product ( ' , • )? . The following
result due to Vainshtein [V] plays a role of an a priori estimate in our proof.

THEOREM (Vainshtein [V]). — The eigenvalues ofAg^,i is given by

^...^^Ef^)- E ia-i^^Mk-^+^iA.
a=l v / l^a<b<q \ a=l /

Here ^ 1 , . . . , iq are positive integers satisfying

^r+l ^ ^r + 3 ^d ^^ ^a = k.

As a corollary there exist an integer k\{q) and a constant C\^q > 0
such that IKA^-i^p)"1!!^ < k^C^^q for all A- ^ k-^(q), because Ag-i^,p ==
Ag-1^,1- Here |[ • \\p denotes the operator norm. Using the inequality
HA"1^!!^ = (A'^doA-1^)^ ^ {^u,u}p for n G 07^ we obtain for
all k ^ k-i(q)

(A.7) IKA,-!,,^)-1^,^!!^ < k-3/2^



ON THE COMPLEX ANALYTIC GEL'FAND-FUKS COHOMOLOGY 709

We introduce another Hilbert space. We define an inner product (^-^on
the space C[zi,..., Zq, w i , . . . , Wp\ by

{f^Yp = ^Zi,-f{^^"^q,w},^Zi——g(Zi,...,Zq,w) )w azi z=i dzl ) p
f,g G C[z i , . . . , 2^wi , . . . .Wp] .

Under the identification induced by (A.4), (•^^Ic'9 = ^C^ ' )p lc ' 9 - Denote
by Wq^p the Hilbert space obtained by completing C[zi,..., Zq, w i , . . . , Wp]
with respect to the norm ||/||^ := ((y,/)^)172. We have

F(piBp+,) C V^ C ^+,,p C F{pB^q)

for p < pi.

Wq^p '= Wq^ H ^(Lo, eo; F^)

is a closed subset of Wq^p.

(A. 7) implies the following.

LEMMA A.8. — There exist an integer k-z(q) and a constant C^^q > 0
such that, for all k > k^(q), the operator

(Ag^) <9g+l,p '' -^g+l, k,p -^ ^q,k,p

is a well defined continuous mapping and its operator norm is bounded by
C2,,fc-1/2.

In terms of Wq^.,p we can estimate the operator f3.

LEMMA A. 9. — The operator f3 defines a continuous mapping

P : ^q,k,p -^ ^g+l,/c,p,

whose operator norm is bounded by a constant independent of k and
0 < p ^ 1/2.

Proof. — 6k € C\Lo) is defined by ̂ ) = ̂ (^+1^) = <^- We
00

have -f3(c 0 n) == ^ (^ U c) (g) C{ek)n for c e C*(Lo) and n ^ N . Hence
fc=i

f3(f^w))dw^ • . •^^ = ̂ ^ f^^-^^/^w)^^ • • •d<^)z—' M — ^w^- dw^- /
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for f(z,w) G Cq{Lo,eo',N) C Vy^p. Clearly the RHS is estimated by the
first derivatives of f(z,w) and max(l — \ZiWj\)~2 = (1 — p2)"2 ^ 16/9.

From Lemmata A.8 and A.9 follows

LEMMA A. 10. — There exists an integer k^(q) such that

/3(Ag_i^) Oq : Hq^k.p —> Hq^^p

is a bounded operator and its operator norm is < - : \\f3(/\q--t^p)~19q\\p <^

_ for any k > k^(q) and any p < 1/2. Especially the operatorli

00

(l-^A-1^)-1^^/^-1^
J=0

is a continuous mapping of Hq^^p to itself.

The operator

P := rfoA-^ : Hq^p -^ Hq^p

is a well defined continuous mapping. In fact P is equal to the projection
onto im do with respect to the Hodge decomposition

Hq^,p == im 9 © im do © ker A.

Let u G Hq^.p (k > k^^q)) be a cocycle. We define a sequence {ui}^Q in
Hq^,p induct ively by UQ = u and

n,+i = Ui - (do - {3)/\~^oui.

Observe

(A.ll.i) Ui C Hq^^p.

In fact, clearly UQ G Hq^.p- Assume (A.ll.i). Let Wi be the C^,^ component
of Ui. Since (do — /3)ui = (do — /3)u = 0, we have doWi = 0 and
z^+i = Wi—do^~19wi = 0 modHq^+i-\-i,p- (A.ll.i+1) follows. Therefore
the sequence {ui}^Q converges to 0 in the weak topology.

On the other hand we have
i-l

u, = (ft^QYu + (1 - P) Y^^^-^YU.
3=0
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Hence the sequence {i^}^o converges to (l—P)(l—/3A - l(9) - lu by Lemma
A. 10. Consequently

(A.12) (1 - P)(l - ftA^Q)-1!! = 0.

Set

v := A-^l - ̂ A-^)-^ e W^^p C ^-i,fc,p.

Then by (A.12) we obtain

u - dv = (1 - P)(l - ̂ A-^)-^ = 0,

which completes the proof of Assertion A. 6 and that of Theorem A.I.
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Notes added in proof : After submission of this paper the author proved that the
homomorphism in in Cor.9.9 is isomorphic for all n ^ 2. For details, see the author's
preprint "An application of the second Riemann continuation theorem to cohomology
of the Lie algebra of vector fields on the complex line" UTMS93-18. Univ. of Tokyo.


