Annales de l'institut Fourier

Victor P. Palamodov
 Harmonic synthesis of solutions of elliptic equation with periodic coefficients

Annales de l'institut Fourier, tome 43, no 3 (1993), p. 751-768
http://www.numdam.org/item?id=AIF_1993_43_3_751_0
© Annales de l'institut Fourier, 1993, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

HARMONIC SYNTHESIS OF SOLUTIONS OF ELLIPTIC EQUATION WITH PERIODIC COEFFICIENTS

by Victor P. PALAMODOV

0. Introduction.

Let $p=p(x, D)$ be a $s \times t$-matrix, whose entries are linear differential operators on \mathbf{R}^{n} with n-periodic coefficients, i.e. $p(x+q, D)=p(x, D)$ for any $q \in \mathbf{Z}^{n}$, where we denote $D=\left(i \partial / \partial x_{1}, \ldots, i \partial / \partial x_{n}\right), i=\sqrt{-1}$. Assuming that p is an elliptic operator, we develop any solution of the system

$$
\begin{equation*}
p(x, D) u=0 \tag{0.1}
\end{equation*}
$$

which satisfies for some $a>0$ the condition

$$
\begin{equation*}
u(x)=O(\exp (a|x|)), \quad|x| \rightarrow \infty \tag{0.2}
\end{equation*}
$$

in an integral over a variety of Floquet solutions. This development is similar to the exponential representation of solutions of (0.1) in the case of constant coefficients [1], [2]. A decomposition of this type was given by P. Kuchment [4] for the case $s=t$. Our approach gives a decomposition of solutions of (0.1) in a global integral over a series of holomorphic families $L_{k}=\left\{L_{k}(\lambda), \lambda \in N_{k}\right\}, k=1,2, \ldots$ of finite-dimensional representations $L_{k}(\lambda)$ of the translation group \mathbf{Z}^{n}. Here for each k the parameter λ runs

Key words : Floquet solution - Representation of translation group - Coherent analytic sheaf - Lasker-Noether decomposition - Noether operator for a coherent sheaf Approximation.
A.M.S. Classification : 35J - 43A.
over an irreducible analytic subset N_{k} of the variety Λ of all characters of the group in the space (0.2). Each representation $L_{k}(\lambda)$ consists of Floquet solutions of (0.1) with quasi-impulse λ and contains only one Bloch solution. It may be thought as a Jordan cell for the given representation of the group \mathbf{Z}^{n} in the space of solutions of (0.1).

To get such a decomposition we use a global Noether operator for the characteristic sheaf of the system (0.1). Note that a similar decomposition obtained in [4] is more involved, since there only the local Noether operators [9] were used. We prove in § 3 that any coherent analytic sheaf on arbitrary Stein space admits a global Noether operator. In § 5 we state an analog of Malgrange's approximation theorem.

1. Main result.

Let \mathbf{C}^{n} the complex dual to \mathbf{R}^{n} and Z^{n} be the subgroup of integer vectors in \mathbf{C}^{n}. Then $\Lambda:=\mathbf{C}^{n} / Z^{n}$ is the dual to \mathbf{Z}^{n} complex Lie group and it is a Stein variety. There is a bilinear form $\Lambda \times \mathbf{Z}^{n} \rightarrow \mathbf{C} / \mathbf{Z}$, which is written as $\lambda \cdot q=\sum \zeta_{j} \cdot q_{j}$, where $\zeta:=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ is any pre-image of λ under the canonical surjection $\chi: \mathbf{C}^{n} \rightarrow \Lambda$. For any $\lambda \in \Lambda$ the function $q \rightsquigarrow \exp (2 \pi i \lambda \cdot q)$ is a character of the group \mathbf{Z}^{n}. This group is represented in the space $D^{\prime}\left(\mathbf{R}^{n}\right)$ by translation operators $T_{q} f(x)=f(x+q), q \in \mathbf{Z}^{n}$. Choose an euclidean norm $|\cdot|$ in \mathbf{R}^{n} and denote by $\|\cdot\|$ the dual hermitian norm on \mathbf{C}^{n}. For any positive a we denote by Λ_{a} the image in Λ of the strip $\|\operatorname{Im} \zeta\|<a / 2 \pi, \zeta \in \mathbf{C}^{n}$.

We assume that operator p is included in an elliptic differential complex :

$$
\begin{equation*}
0 \rightarrow L_{0} \xrightarrow{p_{0}} L_{1} \xrightarrow{p_{1}} L_{2} \longrightarrow \cdots \xrightarrow{p_{m}} L_{m+1} \longrightarrow \cdots, \quad p_{0}=p, \tag{1.1}
\end{equation*}
$$

where $L_{i}, i=0,1, \ldots$ are sheaves of C^{∞}-sections of some finite-dimensional trivial bundles on \mathbf{R}^{n} and p_{0}, p_{1}, \ldots are differential operators with n periodic coefficients.

Theorem 1.1. - Any solution u of (0.1), which is defined on \mathbf{R}^{n} and satisfies (0.2) for some $a>0$, admits for any $b>a$ the following representation

$$
\begin{equation*}
u(x)=\sum_{k} \sum_{j=1}^{r(k)} \int_{N_{k}} f_{k j}(\lambda, x) \mu_{k j}(\lambda), \tag{1.2}
\end{equation*}
$$

where
i) $N_{k}, k=1,2, \ldots$ are closed irreducible analytic subsets of Λ, associated to the characteristic sheaf M of (0.1) (see § 3),
ii) for any $k, f_{k j}(\lambda, x), 1, \ldots, r(k)$ are smooth functions on $N_{k} \times \mathbf{R}^{n}$, which are holomorphic on $\lambda \in N_{k}$ and satisfy the equation (0.1) on x;
iii) for any $k, \lambda \in N_{k}$ the linear span $L_{k}(\lambda)$ of functions $f_{k j}(\lambda, \cdot)$, $j=1, \ldots, r(k)$ is \mathbf{Z}^{n}-invariant and contains a unique invariant onedimensional subspace; its character is equal to $\exp (2 \pi i \lambda \cdot x)$;
iv) $\mu_{k j}$ are C^{∞}-densities on the set reg N_{k} of regular points of N_{k}; $\operatorname{supp} \mu_{k j} \subset \operatorname{reg} N_{k} \cap \Lambda_{b}$. Moreover for arbitrary proper closed analytic subsets $\Omega_{k} \subset N_{k}, k=1, \ldots$ there exist densities $\mu_{k j}$, which satisfies (1.2) such that $\operatorname{supp} \mu_{k j} \subset N_{k} \cap \Lambda_{b} \backslash \Omega_{k}$ for any j and k.

Remark 1.2. - Inversely for any densities $\mu_{k j}$, which fulfil iv), the second term of (1.2) is equal to $O(\exp (b|x|))$ at infinity and satisfies (0.1).

Remark 1.3. - The space E_{p} of solutions of (0.1), which satisfy (0.2), is generally an infinite-dimensional non-unitary representation of \mathbf{Z}^{n}. The equation (1.2) may be considered as a decomposition of E_{p} in an integral over the family of finite-dimensional subrepresentations $L_{k}(\lambda)$. But the densities $\mu_{k j}$ are far from being unique unlike the Stone-Naimark-Ambrose-Godement theorem for an unitary representation, where the spectral measure is unique.

Note that the representation $L_{k}(\lambda)$ is reducible, except for the case $\operatorname{dim} L_{k}(\lambda)=1$, but is not decomposible, i.e. $L_{k}(\lambda)$ is not equal to a direct sum of some invariant subspaces.

Remark 1.4. - It follows from iii) that for any k there exists an integer d such that the identity

$$
\begin{equation*}
\left[T_{q}-\exp (2 \pi i \lambda \cdot q)\right]^{d} f_{k j}(\lambda, \cdot)=0, \quad \forall q \in \mathbf{Z}^{n} \tag{1.3}
\end{equation*}
$$

holds for any $\lambda \in N_{k}$ and $j=1, \ldots r(k)$. This identity implies that for any k, j

$$
f_{k j}(\lambda, x)=\sum_{|s|<d} x^{s} h_{s}(\lambda, x) \exp (2 \pi i \lambda \cdot x),
$$

where all the functions $h_{s}(\lambda, x)$ are n-periodic on x. Hence $f_{k j}(\lambda, x)$ is a Floquet-solution of (0.1) with quasi-impulse λ. Any generator, say $f_{k 1}$, of the unique invariant one-dimensional subspace satisfies (1.3) with $d=1$. It is called Bloch-solution.

2. Analytic lemmas.

Fix an integer k and consider the following family of elliptic complexes with n-periodic coefficients (cf. [4]) :

$$
\begin{equation*}
W_{*}^{k}: 0 \longleftarrow W_{0}^{k(0)} \stackrel{p_{0}^{\prime}(\zeta)}{\longleftarrow} W_{1}^{k(1)} \stackrel{p_{1}^{\prime}(\zeta)}{\longleftarrow} W_{2}^{k(2)} \longleftarrow \cdots \tag{2.1}
\end{equation*}
$$

where W_{i}^{k} denotes the Sobolev space of sections of L_{i} on the torus T^{n}, which are square-summable with its derivatives up to k-th degree,

$$
p_{i}^{\prime}(\zeta):={ }^{t} p_{i}(x, D+2 \pi \zeta)
$$

where ${ }^{t} p$ means the formally adjoint operator to p, m_{i} is the order of p_{i}, $k(0)=0, k(i)=k+m_{0}+\cdots+m_{i-1}, i>0$ and ζ runs over \mathbf{C}^{n}. This is a holomorphic family of Fredholm complexes since (1.1) is elliptic. Denote by \mathcal{W}_{i}^{k} the sheaf of germs of holomorphic functions $f: \mathbf{C}^{n} \rightarrow \mathcal{W}_{i}^{k}$. Then (2.1) generates the following complex of analytic sheaves on \mathbf{C}^{n}

$$
\begin{equation*}
0 \longleftarrow \mathcal{W}_{0}^{k(0)} \stackrel{p_{0}^{\prime}}{\leftarrow} \mathcal{W}_{1}^{k(1)} \stackrel{p_{1}^{\prime}}{\leftrightarrows} \cdots \tag{2.2}
\end{equation*}
$$

We define an action of the group \mathbf{Z}^{n} on the sheaf \mathcal{W}_{i}^{k} by the formula

$$
T_{\vartheta} \psi(\zeta, x)=\exp (-2 \pi i \vartheta \cdot x) \psi(\zeta+\vartheta, x), \quad \vartheta \in Z^{n}
$$

Let $\chi: \mathbf{C}^{n} \rightarrow \Lambda$ be the canonical projection; consider the sheaf $I_{i}^{k} \mid \Lambda$ of invariant sections of \mathcal{W}_{i}^{k}; a section of I_{i}^{k} on an open set $V \subset \Lambda$ is identified with a section φ of \mathcal{W}_{i}^{k} on $\chi^{-1}(V)$ such that

$$
\begin{equation*}
\psi(\zeta+\vartheta, x)=\exp (2 \pi i \vartheta \cdot x) \psi(\zeta, x), \forall \vartheta \in Z^{n} \tag{2.3}
\end{equation*}
$$

The following evident operator identity

$$
p^{\prime}(\zeta+\vartheta)=\exp (2 \pi i \vartheta \cdot x) p^{\prime}(\zeta) \exp (-2 \pi i \vartheta \cdot x)
$$

implies that (2.2) generates for any k a sheaf complex

$$
I_{*}^{k}: 0 \longleftarrow I_{0}^{k(0)} \stackrel{p_{0}^{\prime}}{\longleftarrow} I_{1}^{k(1)} \stackrel{p_{1}^{\prime}}{\longleftarrow} I_{2}^{k(2)} \longleftarrow \cdots
$$

Denote by $H_{*}=\sum H_{i}$ the homology of this complex. All H_{i} are coherent analytic sheaves on Λ, since (2.1) is a holomorphic Fredholm family (cf. [4]). This follows, for example, from [13, Lemma 4.3]. The embedding $I_{*}^{k+1} \rightarrow I_{*}^{k}$ induces for any k sheaf morphisms $h^{k}: H_{*}^{k+1} \rightarrow H_{*}^{k}$.

Lemma 2.1. - For any k, h^{k} is bijective.

Proof. - Fix ζ and choose a parametrix r for the complex (2.1). This is a pseudodifferential operator in the graded space of (2.1) of degree

1 and of order $-m_{i}$, when acting on the term $W_{i}^{k+\cdots}$, which satisfies the equation

$$
p(\zeta) r+r p(\zeta)=\mathrm{id}+q
$$

where q is a pseudodifferential operator of order -1 and of degree 0 as an endomorphism of the complex. It defines a morphism of complexes $q: \mathcal{W}_{*}^{k} \rightarrow \mathcal{W}_{*}^{k+1}$. This equation means that the compositions $e q$ and $q e$ are homotopic to the identity morphisms, where $e: \mathcal{W}_{*}^{k+1} \rightarrow \mathcal{W}_{*}^{k}$ is the natural embedding. This implies Lemma 2.1.

From now on we abbreviate the notation of H_{i}^{k} to H_{i}.
Lemma 2.2. - For any k and $a>0$ there is a natural isomorphism

$$
\begin{equation*}
H\left(\Gamma\left(\Lambda_{a}, I_{*}^{k}\right)\right) \cong \Gamma\left(\Lambda_{a}, H_{*}\right) \tag{2.4}
\end{equation*}
$$

where $H(K)$ means the homology group of a complex K.

Proof. - Consider two spectral sequences for the functor $\Gamma\left(\Lambda_{a}, \cdot\right)$ and the complex I_{*}^{k}; both converge to the hyperhomology. For the first one we have $E^{p q}=H^{p}\left(H^{q}\left(\Lambda_{a}, I^{k}\right)\right)$. This term vanishes for $q>0$, since $H^{q}\left(\Lambda_{a}, I^{k}\right)=0$, because I_{*}^{k} is a holomorphic Banach sheaf [5]. Hence the hyperhomology is isomorphic to the left-hand side of (2.4). For the second spectral sequence we find $E_{2}^{p q}=H^{p}\left(\Lambda_{a}, H_{q}\right)$. These groups vanish for $p>0$ as well, since H_{*} is a coherent sheaf on a Stein space and $\Gamma\left(\Lambda_{a}, H_{*}\right) \cong E_{2}^{0 *} \cong E_{\infty}$. This implies (2.4).

Now we pass in the spectrum $\Gamma_{*}:=\Gamma\left(\Lambda_{a}, I_{*}^{k}\right)$ to the projective limit on k.

Lemma 2.3. - There is an isomorphism

$$
\begin{equation*}
H\left(\Gamma\left(\Lambda_{a}, I_{*}\right)\right) \cong \Gamma\left(\Lambda_{a}, H_{*}\right), \quad I_{*}:=I_{*}^{\infty} \tag{2.5}
\end{equation*}
$$

Proof. - A formal scheme is the same as in the previous lemma. We compare two standard spectral sequences for the hyperhomology of the functor Pr of projective limit and of the spectrum Γ_{*}. The term $E_{2}^{p q}=\operatorname{Pr}^{p}\left(H_{q}\left(\Gamma_{*}\right)\right)$ vanishes for $p>0$ since the spectrum $H_{q}\left(\Gamma_{*}\right)$ is constant in virtue of Lemma 2.2. The term $E_{2}^{0 *}=E_{\infty}$ is equal to the right-hand side of (2.5).

For the second spectral sequence we have $E_{2}^{p q}=H_{p}\left(\operatorname{Pr}^{q}\left(\Gamma_{*}\right)\right)$. These groups vanish for $q>1$, since $\operatorname{Pr}^{q}=0$. Evidently $\operatorname{Pr}^{0}\left(\Gamma_{*}\right)=\Gamma\left(\Lambda_{a}, I_{*}\right)$ hence $E_{2}^{* 0}$ coincides with the left-hand side of (2.5). Now we verify that
$\operatorname{Pr}^{1}\left(\left\{\Gamma\left(\Lambda_{a}, I_{*}^{k}\right)\right\}=0\right.$. For this we need to show that the embedding of Fréchet spaces $\Gamma\left(\Lambda_{a}, I_{*}^{k+1}\right) \rightarrow \Gamma\left(\Lambda_{a}, I_{*}^{k}\right)$ has a dense image ([6]). This density property is easy to check, if we develop an arbitrary section of I_{*}^{k} in Fourier series on x. Therefore the sequence E_{2} degenerates to $E_{2}^{* 0}$, which completes the proof of Lemma 2.3.

For an arbitrary positive b we consider the space S_{b} of C^{∞}-functions φ on \mathbf{R}^{n}, which satisfy the inequality

$$
\begin{equation*}
\left|D^{i} \varphi(x)\right| \leq C_{b^{\prime}, i} \exp \left(-b^{\prime}|x|\right) \tag{2.6}
\end{equation*}
$$

for any $i=\left(i_{1}, \ldots, i_{n}\right)$ and $b^{\prime}<b$. For given b^{\prime} and i take the minimal constant $C_{b^{\prime}, i}=C_{b^{\prime}, i}(\varphi)$. For any $b^{\prime}>0$ the functional $C_{b^{\prime}, i}(\varphi)$ is a norm on S_{b}. This family of norms makes S_{b} a Fréchet space.

The cube $P=\left\{\xi \in \mathbf{R}^{n}, 0 \leq \xi_{j}<1, j=1, \ldots, n\right\}$ is a fundamental domain for the group \mathbf{Z}^{n}.

Lemma 2.4 (cf. [3]). - The formula

$$
\begin{equation*}
\varphi(x)=\int_{P} \exp (-2 \pi i \xi \cdot x) \psi(\xi, x) d \xi \tag{2.7}
\end{equation*}
$$

defines for any $b>0$ an operator $S: \Gamma\left(\Lambda_{b}, I\right) \rightarrow S_{b}$, which is a topological isomorphism, where the sheaf I corresponds to the trivial line bundle L. The inverse operator S^{-1} can be written as follows :

$$
\begin{equation*}
\psi(\xi, x)=\sum_{q \in \mathbf{Z}^{n}} \exp (2 \pi i \xi \cdot(x+q)) \varphi(x+q) \tag{2.8}
\end{equation*}
$$

It follows that for any differential operator r with n-periodic coefficients there is a commutative diagram :

where the operator r^{\prime}, generated by the family $r^{\prime}(\zeta)={ }^{t} r(x, D+2 \pi \zeta)$ as above.

Proof of Lemma 2.4. - The integral (2.7) is evidently a bounded function of x and moreover for arbitrary $\eta \in \mathbf{R}^{n},\|\eta\|<b / 2 \pi$ we have

$$
\varphi(x)=\int_{P+i \eta} \exp (-2 \pi i \zeta \cdot x) \psi(\zeta, x) d \zeta
$$

because of Cauchy theorem and of (2.3). Hence $\varphi(x)=O(\exp (2 \pi \eta \cdot x))$ for $x \rightarrow \infty$, which implies (2.6) for $i=0$. The same conclusion is valid
for any derivative of φ, hence φ is an element of S_{b} and the operator S is continuous.

For any function $\varphi \in S_{b}$ its inverse Fourier transform $\hat{\varphi}(\zeta)$ is a holomorphic function in the strip Λ_{b}, which decreases as fast as $O\left(|\zeta|^{-q}\right)$, when $|\zeta| \rightarrow \infty$, for any q. Hence the inverse Fourier transformation may be written as follows:

$$
\begin{aligned}
\varphi(x) & =\int_{\mathbf{R}^{n}} \exp (-2 \pi i \xi \cdot x) \hat{\varphi}(\xi) d \xi=\sum_{\vartheta \in Z^{n}} \int_{P+\vartheta} \exp (-2 \pi i \xi \cdot x) \hat{\varphi}(\xi) d \xi \\
& =\int_{P} \exp (-2 \pi i \xi \cdot x) \psi(\xi, x) d \xi
\end{aligned}
$$

where

$$
\begin{equation*}
\psi(\xi, x)=\sum_{\vartheta \in Z^{n}} \exp (-2 \pi i \vartheta \cdot x) \hat{\varphi}(\xi+\vartheta) \tag{2.10}
\end{equation*}
$$

It is easy to see that $\psi \in \Gamma\left(\Lambda_{b}, I\right)$ and the operator $R: \varphi \rightsquigarrow \psi$ is continuous. This formula means that R is a right inverse to S. If we prove that S is injective, Lemma will follow. Suppose that $S \psi=0$ for an element $\psi \in \Gamma\left(\Lambda_{b}, I\right)$ and develop ψ into a Fourier series on x :

$$
\psi(\zeta, x)=\sum_{k \in Z^{n}} \exp (2 \pi i k \cdot x) \psi_{k}(\zeta)
$$

Condition (2.3) implies that $\psi_{k}(\zeta+\vartheta)=\psi_{k-\vartheta}(\zeta)$, hence $\psi_{k}(\zeta)=\psi_{0}(\zeta-k)$. Therefore

$$
\begin{aligned}
0 \equiv \int_{P} \exp (-2 \pi i \xi \cdot x) \psi(\xi, x) d \xi & =\sum_{k} \int_{P} \exp (-2 \pi i(\xi-k) \cdot x) \psi_{0}(\xi-k) d \xi \\
& =\int_{\mathbf{R}^{n}} \exp (-2 \pi i \xi \cdot x) \psi_{0}(\xi) d \xi
\end{aligned}
$$

It follows that $\psi_{0}(x) \equiv 0$ and therefore $\psi=0$, q.e.d.
To find out an inverse formula we start from (2.10) and change the integration variables y to $y+x$:

$$
\begin{aligned}
\psi(\xi, x) & =\sum_{\vartheta \in Z^{n}} \exp (-2 \pi i \vartheta \cdot x) \int \exp (2 \pi i(\xi+\vartheta) \cdot y) \varphi(y) d y \\
& =\sum_{\vartheta} \int \exp \left(2 \pi i(\xi \cdot(y+x)+\vartheta \cdot y) \varphi(y+x) d y=\sum \hat{\varphi}_{x \xi}(\vartheta)\right.
\end{aligned}
$$

where $\varphi_{x \xi}(y):=\exp (2 \pi i \xi \cdot(y+x)) \varphi(y+x)$. The right-hand side is equal to

$$
\sum_{q \in Z^{n}} \varphi_{x \xi}(q)=\sum_{q} \exp (2 \pi i \xi \cdot(x+q)) \varphi(x+q)
$$

since of the Poisson summation formula. The proof is complete.

3. Noether operators.

Let A be a commutative algebra, M be a A-module. A prime ideal \mathfrak{p} of A is called associated to $M([7],[8])$, if there exists an element $m \in M$, whose annulet ideal coincides with $\mathfrak{p} . M$ is called \mathfrak{p}-coprimary, if \mathfrak{p} is the only ideal, associated to M; we denote it $\mathfrak{p}(M)$. The Lasker-Noether decomposition of M is a representation of the zero submodule of M in the form

$$
\begin{equation*}
0=M_{1} \cap \ldots \cap M_{J} \tag{3.1}
\end{equation*}
$$

where all $M / M_{1}, \ldots, M / M_{J}$ are coprimary A-modules. This decomposition is called irreductible, if no one of modules M_{j} in (3.1) can be omitted and all the prime ideals $\mathfrak{p}_{j}=\mathfrak{p}\left(M / M_{j}\right), j=1, \ldots, J$ are different. If A is a Noetherian algebra, any A-module M of finite type admits an irreducible Lasker-Noether decomposition. The set of prime ideals $\left\{\mathfrak{p}_{j}, \ldots, \mathfrak{p}_{J}\right\}$ is defined uniquely.

Let K be a field and A be a commutative K-algebra, M, N be A modules. A K-linear mapping $\delta: M \rightarrow N$ is called a differential operator of order $\leq d$, if $(\operatorname{ad} b)^{d+1} \delta=0$ for any $b \in A$, where $(\operatorname{ad} b) \gamma:=\gamma b-b \gamma$.

Definition 3.1 [9]. - Let \mathfrak{p} be an ideal associated to a $n A$-module M; we call $\nu: M \rightarrow[A / \mathfrak{p}]^{r}$ a \mathfrak{p}-Noether operator, if
i) ν is a differential operator in A-modules and $r<\infty$,
ii) $\operatorname{Ker} \nu$ is a submodule of M and \mathfrak{p} is not associated to $\operatorname{Ker} \nu$.

A Noether operator for a module M is a direct sum

$$
\nu=\sum \nu_{j}: M \rightarrow \sum_{j}\left[A / \mathfrak{p}_{j}\right]^{r(j)}
$$

where ν_{j} is a \mathfrak{p}_{j}-Noether operator, $j=1, \ldots, J$ and $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{J}\right\}=\operatorname{Ass}(M)$.

Proposition 3.1. - If A is noetherian, then any Noether operator is injective.

Proof. - We have $\operatorname{Ker} \nu=\cap \operatorname{Ker} \nu_{j}$ and $\operatorname{Ass}(\operatorname{Ker} \nu) \subset \operatorname{Ass}(M)$, since $\operatorname{Ker} \nu$ is a submodule of M. No one of ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{J}$ is associated to $\operatorname{Ker} \nu$, according to Definition 3.1 ii). Hence $\operatorname{Ass}(\operatorname{Ker} \nu)$ is empty. This means that $\operatorname{Ker} \nu=0$, because of existence of Lasker-Noether decomposition.

Recall that analytic algebra A is a \mathbf{C}-algebra, which is isomorphic to a quotient of the algebra $\mathbf{C}\left\{z_{1}, \ldots, z_{n}\right\}$ for some n. It is a Noetherian algebra.

Theorem 3.2. - Let A be an analytic algebra, M, K, L be A modules of finite type, $\lambda: M \rightarrow L, \kappa: M \rightarrow K$ be A-differential operators such that $\operatorname{Ker} \kappa$ is an A-submodule, L is \mathfrak{p}-coprimary and λ vanishes on Ker κ. Then there exist an element $s \in A \backslash \mathfrak{p}$ and a differential operator $\sigma: K \rightarrow L$ such that $s \lambda=\sigma \kappa$.

To check this statement we choose a Noether operator $\nu: K \rightarrow N$ for K and apply the Unicity theorem of [9] to the composition $\nu \kappa: M \rightarrow N$.

Let $(X, O(X))$ be a complex analytic space, M, N are $O(X)$-sheaves; a sheaf morphism $\delta: M \rightarrow N$ is called a differential operator, if for any point $x \in X$ the fibre morphism $\delta_{x}: M_{x} \rightarrow N_{x}$ is a differential operator over algebra $O_{x}(X) ; \operatorname{ord} \delta:=\sup \operatorname{ord} \delta_{x}$.

Fix a point $x \in \mathbf{C}^{n}$ and consider the analytic algebra $A:=O_{x}\left(\mathbf{C}^{n}\right)$ of germs at x of holomorphic functions. Let G be an irreducible germ at x of analytic set in \mathbf{C}^{n}. The ideal $I(G) \subset A$, consisting of function germs, which vanish on G, is prime; vice versa, any prime ideal in A is equal to $I(G)$ for some irreducible germ G. We call such a germ G associated to an A-module M, if so is the ideal $I(G)$. For example, for any analytic germ Y in \mathbf{C}^{n} the germs G_{1}, \ldots, G_{K} associated to A-module $O(Y)$ are all the irreducible components of Y.

Now we pass to the global case and operate with closed irreducible analytic sets in X instead of germs. Recall that a closed analytic subset Y in a complex space X is irreducible, if there is no proper open and closed analytic subset $Z \subset Y$.

Definition 3.2. - Let $(X, O(X))$ be a complex space, M be a coherent analytic sheaf on X. We call an analytic subset $Y \subset X$ associated to M, if
i) Y is closed and irreducible,
ii) for any point $x \in Y$ its germ Y_{x} is an union of some irreducible germs $G_{1}, \ldots, G_{K}, K>0$ associated to the $O_{x}(X)$-module M_{x}.

A collection of all analytic sets associated to M is denoted $\operatorname{Ass}(M)$. If X is a Stein space, for any point $x \in X$ any germ G associated to M_{x} is a germ of a set $Y \in \operatorname{Ass}(M)$. This fact is contained in the following theorem
for semi-local situation and in [10] for the general case :
Theorem 3.3 [9]. - For any coherent sheaf M on a complex space X and any point $x \in X$ there exists a neighbourhood U such that the set $\operatorname{Ass}(M \mid U)$ is finite and for any $Y \in \operatorname{Ass}(M \mid U)$ there exists an $O(X)$ differential operator

$$
\nu_{Y}: M \rightarrow \sum O(Y)
$$

where the direct sum is finite such that the operator

$$
\nu:=\prod \nu_{Y}: M \longrightarrow \prod_{\operatorname{Ass}(M)} \sum O(Y)
$$

is a Noether operator for M_{x} for each $x \in U$.

Definition 3.3. - If Y is an analytic set associated to M, we call Y-Noether operator for M any differential operator $\nu: M \rightarrow \sum O(Y)$, where the direct sum is finite, such that for any point $x \in Y$ and any irreducible component G of Y_{x} the composition ρ_{G} is a G-Noether operator, where $\rho_{G}: \sum O(Y) \rightarrow \sum O(G)$ is the restriction morphism.

In fact the operators ν_{Y} in Theorem 3.2 are Noetherian. Now we prove the following

Theorem 3.4. - For any Stein space X, arbitrary coherent analytic sheaf M on X and any set $Y \in \operatorname{Ass}(M)$ there exists an Y-Noether operator

$$
\nu_{Y}: M \rightarrow \sum O(Y)
$$

which possesses the following property : there exists a holomorphic function $s \not \equiv 0$ on X such that for any element $a \in \Gamma(Y, O(Y))$ there is an $O(Y)$ endomorphism b of $\sum O(Y)$, which satisfies the equation

$$
\begin{equation*}
s(\operatorname{ad} a) \nu_{Y}=b \nu_{Y} \tag{3.2}
\end{equation*}
$$

Lemma 3.5. - Let M be a coherent analytic sheaf on a Stein space X, Y be an irreducible component of $\operatorname{supp} M$ and $\delta: M \rightarrow \sum O(Y)$ be an $O(X)$-differential operator. Suppose that there exists a point $y \in Y$ and an irreducible component W of Y_{y} such that the composition $\partial:=\rho_{W} \delta_{y}$ is an W-Noether operator with the following property : for any element $a \in O_{y}(Y)$ there exists an $O_{y}(Y)$-endomorphism b of $\sum O_{y}(Y)$ such that

$$
\begin{equation*}
\partial a=b \partial \tag{3.3}
\end{equation*}
$$

Then δ is a Y-Noether operator for M.

Proof of Lemma 3.5. - First we verify that the sheaf $K=\operatorname{Ker} \delta$ is an $O(X)$-subsheaf of M. For this we consider the sheaf $D(Y)$ of differential operators $e: M \rightarrow O(Y)$ of order $\leq \operatorname{ord}(\delta)$. It is a coherent sheaf ([9, Prop. 11.3]). Let $\delta_{i}: M \rightarrow O(Y), i=1, \ldots, r$ be the components of the operator δ and I be the subsheaf of $D(Y)$, generated by $\delta_{1}, \ldots, \delta_{r}$. Take an arbitrary holomorphic function a on X and consider the subsheaf A in $D(Y)$, generated by I and operators $\delta_{i} a, i=1, \ldots, r$, where a is considered as an endomorphism of M. The sheaf A / I is coherent and its support is contained in Y. The germ of $\operatorname{supp}(A / I)$ at y does not contain the germ W since of (3.3). Hence $\operatorname{supp}(A / I)$ is a proper analytic subset of Y. Choose arbitrary holomorphic function s, which belongs to the annulet ideal of A / I, but does not vanish identically on Y. All the operators $s \delta_{i} a$ are sections of the sheaf I, hence for any i and any point $x \in Y$

$$
s \delta_{i} a=\sum b_{j} \delta_{j}
$$

with some functions germs b_{j} at the point x. Therefore the equation $\delta(f)=0$ for $f \in M_{x}, x \in Y$ implies that $s \delta(a f)=0$. This implies the equation $\delta\left(a^{\prime} f\right)=0$ for any $a^{\prime} \in O_{x}(X)$, since functions $a \in \Gamma(X, O(X))$ are dense in $O_{x}(X)$ in \mathfrak{m}_{x}-adic topology and any differential operator is continuous with respect to this topology. Therefore K is $O(X)$-sheaf.

This sheaf is coherent in virtue of [9, Th. 2]. Hence supp K is a closed analytic subset of $\operatorname{supp} M$. We need only to check that $\operatorname{supp} K$ does not contain Y. Since Y is irreducible, it is sufficient to show that the germ of $\operatorname{supp} K$ at y does not contain W. We have $(\operatorname{supp} K)_{y}=\operatorname{supp} K_{y} \subset$ $\operatorname{supp} M_{y}$. At the other hand $\operatorname{supp} K_{y}$ is the union of all germs V, associated to the $O_{y}(X)$-module K_{y}. It follows from the condition of Lemma that the germ W is not associated to the $O_{y}(X)$-module K_{y}. There is no other germ $V \supset W$ associated to $\operatorname{supp} K_{y}$, since W is an irreducible component of $\operatorname{supp} M_{y}$. Hence $\operatorname{supp} K_{y}$ does not contain the germ W, q.e.d.

Proof of Theorem 3.4. - We may assume that $X=\operatorname{supp} M$. Otherwise we shrink X to $\operatorname{supp} M$. Let $X_{j}, j \in J$ be the irreducible components of the space X (cf. [11], ch. V]). Each of them is a Stein space and the covering $X=\cup X_{j}$ is locally finite. Therefore it is sufficient to prove Theorem for each sheaf $M \otimes O\left(X_{j}\right) \mid X_{j}, j \in J$ and we may suppose that $\operatorname{supp} X$ is an irreducible Stein space.

Fix a point $x \in X$ and an irreducible component Y of the germ X_{x}. Since of Theorem 3.3 there exists a Y-Noether operator $\mu: M_{x} \rightarrow \sum O(Y)$.

Consider the coherent sheaf $D(X)$ of germs of differential operators δ : $M \rightarrow O(X)$ of order $\leq \operatorname{ord}(\mu)$. Let $\delta_{i}, i=1, \ldots, r$ be its sections on X, which generate this sheaf at x. Consider the following operator

$$
\delta: M \rightarrow[O(X)]^{r} ; \quad \delta(f)=\left(\delta_{1}(f), \ldots, \delta_{r}(f)\right)
$$

Lemma 3.6. - The composition $\delta_{Y}:=\rho_{Y} \delta$ is an Y-Noether operator.

Proof. - First we check that $\operatorname{Ker} \delta_{Y}$ is an O_{x}-submodule of M_{x}. Take arbitrary element $m \in \operatorname{Ker} \delta_{x}$ and function germ $a \in O_{x}$. Choose an embedding of the germ X_{x} in $\left(\mathbf{C}^{n}, 0\right)$ and a function b on the germ $\left(\mathbf{C}^{n}, 0\right)$ such that $\pi(b)=a$, where $\pi: O\left(\mathbf{C}^{n}\right) \rightarrow O_{x}(X)$ is the canonical surjection. Then we can write according to the Leibnitz formula (cf. [9, Prop. 3.1])

$$
\delta_{Y}(a m)=\sum(i!)^{-1} \pi\left(D_{z}^{i} b\right)(\operatorname{ad} z)^{i} \delta_{Y}(m)
$$

where $z=\left(z_{1}, \ldots, z_{n}\right)$ are coordinates on \mathbf{C}^{n} and $(\mathrm{ad} z)^{i}$ means

$$
\left(\operatorname{ad} z_{1}\right)^{i_{1}} \cdot \ldots \cdot\left(\operatorname{ad} z_{n}\right)^{i_{n}} .
$$

We have $(\operatorname{ad} z)^{i} \delta_{Y}=r_{Y}(\operatorname{ad} z)^{i} \delta$ and $(\operatorname{ad} z)^{i} \delta: M \rightarrow \sum O(X)$ is a differential operator of order $\leq \operatorname{ord}(\delta) \leq \operatorname{ord}(\mu)$. Hence $(\operatorname{ad} z)^{i} \delta_{Y}(m)=0$ for each i. This implies that $\delta_{Y}(a m)=0$ and our assertion follows.

We have the inclusion $\operatorname{Ker} \mu \supset \operatorname{Ker} \delta_{Y}$, which follows from the fact that any component of μ belongs to $O_{x}(X)$-envelope of the set $\left\{\delta_{i}, i=\right.$ $1, \ldots, r\}$. This inclusion implies that the germ Y is not associated to the $\operatorname{Ker} \delta_{Y}$, hence δ_{Y} is a Y-Noether operator for the module M_{x}.

Lemma 3.6 implies that δ is a X-Noether operator for M. Set $K:=\operatorname{Ker} \delta ;$ this is a coherent subsheaf of M and for any point $x, O_{x}(X)$ module K_{x} has no associated germs $Z, \operatorname{dim} Z=\operatorname{dim} X$. Now we argue using the induction on the number $\operatorname{dim} \operatorname{supp} F$, hence may suppose that Theorem 3.4 is true for the sheaf K.

Lemma 3.7. - The equation $\operatorname{Ass}(M)=\{X\} \cup \operatorname{Ass}(K)$ holds.

Proof. - One has the trivial inclusion $\operatorname{Ass}(K) \subset \operatorname{Ass}(M)$. For any point $x \in X$ any component of the germ X_{x} belongs to $\operatorname{Ass}\left(M_{x}\right)$, since δ is a X-Noether operator for M. Hence it remains to check that for any point $x \in X$ any germ $Y \in \operatorname{Ass}\left(M_{x}\right)$, which is not a component of the germ X_{x}, belongs to $\operatorname{Ass}\left(K_{x}\right)$. Choose an element $m \in M_{x}$, whose annulet ideal is equal to $I(Y)$. We claim that $m \in K_{x}$. In fact the equation $a m=0$ implies
in view of Leibnitz formula that $a^{k} \delta(m)=0$, for $k=\operatorname{ord}(\delta)+1$. It follows that $\delta(m)=0$, since a^{k} is not a zero-divisor in $O_{x}(X)$. This means that $m \in K_{x}$, which implies that $Y \in \operatorname{Ass}\left(K_{x}\right)$, q.e.d.

To prove Theorem 3.4 we choose for any $Y \in \operatorname{Ass}(M)$ a regular point $y \in Y$ and a Y_{y}-Noether operator ν_{Y} for M. Consider the sheaf $D(Y)$ of all differential operators $M \rightarrow O(Y)$ of order $\leq k:=\operatorname{ord}\left(\nu_{Y}\right)$. It is a coherent sheaf on Stein space X. Choose a finite set $\left\{\varepsilon_{1}, \ldots \varepsilon_{r}\right\} \subset \Gamma(X, D(Y))$, which $O_{y}(Y)$-envelope is equal to the stalk $D(Y)_{y}$. Consider the differential operator $\varepsilon(Y): M \rightarrow \sum O(Y)$ with the components $\varepsilon_{1}, \ldots, \varepsilon_{r}$, and the sheaf $G=\operatorname{Ker} \varepsilon(Y)$. The stalk G_{y} is an $O_{y}(Y)$-module of finite type and the set $\operatorname{Ass}\left(G_{y}\right)$ does not contain the germ Y_{y}. This can be proved by the arguments of Lemma 3.6. Hence the germ of $\varepsilon(Y)$ at y is a Y_{y}-Noether operator, satisfying (3.3). Lemma 3.5 implies that $\varepsilon(Y)$ is a Y-Noether operator for M.

To check the property (3.2) we choose an arbitrary function $a \in$ $\Gamma(Y, O(Y))$ and for any $i=1, \ldots, r$ consider the operator $\varepsilon_{i} a: M \rightarrow O(Y)$. It belongs to the O_{y}-envelope of the operators $\varepsilon_{1}, \ldots, \varepsilon_{r}$ since of the construction. It follows that there exists a function $s \in \Gamma(Y, O(Y))$ such that the operator $s \varepsilon_{i} a$ belongs to $\Gamma\left(Y, O(Y)\right.$)-envelope of $\varepsilon_{1}, \ldots, \varepsilon_{r}$ (see proof of Lemma 3.5). Therefore the operator $s(\operatorname{ad} a) \varepsilon_{i}=s \varepsilon_{i} a-s a \varepsilon_{i}$ belongs to this envelope as well. This prove (3.2).

Theorem 3.8. - Let M be a coherent sheaf on a Stein space X, ν_{N} for each $N \in \operatorname{Ass}(M)$ be a N-Noether operator for M and $S(N)$ be an arbitrary proper closed analytic subset of N such that $\operatorname{sing} N \subset S(N)$. Then for any open set $U \subset X$ the linear operator
$\nu:=\prod \nu_{N}: \Gamma(U, M) \longrightarrow \prod\left\{\sum \Gamma(U \cap N \backslash S(N), O(N)), N \in \operatorname{Ass}(M)\right\}$ is an isomorphism onto its image, when the second space is endowed with the topology induced from the distribution spaces $D^{\prime}(U \cap N \backslash S(N))$.

Proof. - Firstly we suppose that U is a closed subspace of the open unit polydisc Δ in a coordinate space \mathbf{C}^{n} and there is a morphism $\alpha: K \rightarrow L$ of free coherent $O\left(\mathbf{C}^{n}\right)$-sheaves on Δ such that $\operatorname{Cok} \alpha \cong M$. This implies the following exact sequence

$$
\Gamma(\Delta, K) \xrightarrow{\alpha} \Gamma(\Delta, L) \xrightarrow{\pi} \Gamma(\Delta, M) \longrightarrow 0
$$

where the canonical surjection π is an open operator. For any $N \in \operatorname{Ass}(M)$ the composition

$$
\nu_{N} \pi: \Gamma(\Delta, L) \longrightarrow \prod_{N} \sum \Gamma(\Delta \cap N, O(N))
$$

is a differential operator on Δ. It may be written in the following explicit form :

$$
\nu_{N} \pi(u)=\sum a_{i} D^{i} u
$$

where $a_{i} \in \Gamma\left(\Delta, L^{\prime}\right), L^{\prime}:=\operatorname{Hom}\left(L, \sum O(N)\right)$ and $a_{i}=0$ if $|i|>\operatorname{deg} \nu_{N}$ (cf. [9]). Each operator D^{i} acting on \mathbf{C}^{n} is continuous since of the Cauchy inequality. Therefore $\nu_{N} \pi$ is continuous. The same is true for ν_{N}, because π is open.

In the general case the topology of $\Gamma(U, M)$ is the supremum of topologies, induced from the spaces $\Gamma\left(\Delta, \varphi_{*}(M \mid Y)\right.$), where (Y, φ) runs over a set of analytic polyhedrons, which covers U, and $\varphi: Y \rightarrow \Delta$ is a closed embedding. Hence the general case is reduced to the case $X=\Delta$, $M \cong \operatorname{Cok} \alpha$. It is obvious that ν is still continuous in this case. To prove the openness of ν we use

Lemma 3.9. - For any point $z \in \Delta$ and its neighbourhood $U \subset \subset \Delta$ there exist a neighbourhood $V \subset U$ of z, a neighbourhood $W(N)$ of $S(N)$ and a constant C such that for any $f \in \Gamma(U, L)$ there exists a section $g \in \Gamma(V, K)$, which satisfies the inequality

$$
\begin{align*}
& \sup (|f+\alpha g|, z \in V) \\
& \leq C \max \left\{\sup \left(\left|\nu_{N} f(z)\right|, z \in U \cap N \backslash W(N)\right), N \in \operatorname{Ass}(M)\right\} . \tag{3.4}
\end{align*}
$$

The maximum in the right-hand side is well-defined since $U \cup N$ is empty, except for a finite subset of $\operatorname{Ass}(M)$. Lemma 3.9 implies Theorem 3.8, since we can choose a polyhedral covering for X, consisting of neighbourhoods V, which satisfy (3.4) and the sup-norm in the righthand side is majorized by the topology induced from the distribution space $D^{\prime}(U \cap N \backslash S(N))$.

Proof of Lemma 3.9. - In fact it is proved in [1, ch. IV] for a special Noether operator $\lambda, \lambda_{N}: M \rightarrow \sum O(N)$. We have for any N

$$
\begin{equation*}
\lambda_{N}=s^{-1} \sum \sigma_{N \Lambda} \nu_{\Lambda} \tag{3.5}
\end{equation*}
$$

where according to Theorem $3.2 \sigma_{N \Lambda}: \sum O(\Lambda) \rightarrow \sum O(N)$ is a differential operator in a neighbourhood of z and $\bar{s} \in O\left(X_{z}\right) \backslash I\left(N_{z}\right)$. Note that $\sigma_{N \Lambda} \neq 0$ only if $N \subset \Lambda$, since $\sigma_{N \Lambda}$ is a differential operator. Applying [1], we get the estimate

$$
\begin{align*}
& \sup (|f+\alpha g|, z \in V) \\
& \leq C \max \left\{\sup \left(\left|\lambda_{N} f\right|, z \in U^{\prime} \cap N \backslash W(N)\right), N \in \operatorname{Ass}(M)\right\} \tag{3.6}
\end{align*}
$$

for a section g of the sheaf K, some neighbourhoods $V, U^{\prime} \subset \subset U$ of z. We may assume that the set $S(N)$ contains $s^{-1}(0)$. Then we need to prove the inequality

$$
\begin{align*}
& \sup \left\{\left|\lambda_{N} f\right|, z \in U^{\prime} \cap N \backslash W(N)\right\} \\
& \leq C^{\prime} \max \left\{\sup \left(\left|\nu_{\Lambda} f\right|, z \in U \cap \Lambda \backslash W(\Lambda), \Lambda \supset N\right\}\right. \tag{3.7}
\end{align*}
$$

Combining it with (3.6), we get (3.4). To prove (3.7) we use (3.5), the inequality $\left|s^{-1}\right| \leq$ const on the set $U \cap N \backslash W(N)$ and the estimate

$$
\sup \left\{\left|\sigma_{N \Lambda} h\right|, z \in U^{\prime} \cap N \backslash W(N)\right\} \leq C \sup \{|h|, z \in U \cap \Lambda \backslash W(\Lambda)\}
$$

for any holomorphic function h on $U \cap \Lambda$. To check this estimate we apply the Cauchy inequality. Lemma 3.9 and hence Theorem 3.8 are proved.

4. End of the proof of Theorem 1.1.

Now we apply Theorem 3.4 to the sheaf $M:=H_{0} \equiv \operatorname{Cok} p_{0}^{\prime}$, denoting N_{1}, N_{2}, \ldots all the elements of $\operatorname{Ass}(M)$. Thus for any k there exists a $N_{k^{-}}$ Noether operator

$$
\nu_{k}: \Gamma(\Lambda, M) \longrightarrow \sum \Gamma\left(N_{k}, O\left(N_{k}\right)\right)
$$

possessing the property (3.2). Moreover Theorem 3.8 implies that the continuous operator

$$
\nu=\prod \nu_{k}: \Gamma\left(\Lambda_{b}, M\right) \longrightarrow \prod_{k} \sum \Gamma\left(\Lambda_{b} \cap N_{k}, O\left(N_{k}\right)\right)
$$

is an open mapping onto its image, when the first space is equipped with the canonical topology and the second one is endowed with the topology induced from $\Pi \sum D^{\prime}\left(\Lambda_{b} \cap N_{k} \backslash \Omega_{k}\right)$, where $D^{\prime}(\cdot)$ means the space of distributions and Ω_{k} is any proper closed analytic subset of N_{k} such that $\operatorname{sing} N_{k} \subset \Omega_{k}$. We may assume that for any k this set satisfies the condition : $s \neq 0$ on $N_{k} \backslash \Omega_{k}$, where s is holomorphic function, which appears in (3.2). Combining this mapping with the morphism $\pi: \Gamma\left(\Lambda_{a}, I_{0}\right) \rightarrow \Gamma\left(\Lambda_{a}, M\right)$, we get for any $a>0$ the complex

$$
\begin{equation*}
\Gamma\left(\Lambda_{b}, I_{1}\right) \xrightarrow{p_{0}^{\prime}} \Gamma\left(\Lambda_{b}, I_{0}\right) \xrightarrow{\nu \pi} \prod_{k} \sum \Gamma\left(\Lambda_{b} \cap N_{k}, O\left(N_{k}\right)\right) . \tag{4.1}
\end{equation*}
$$

It is exact, since $\operatorname{Ker} \pi=\operatorname{Im} p_{0}^{\prime}$, because of Lemma 2.3 and of Proposition 3.1. The composition $\nu \pi$ is an open operator onto its image, since π is open by the definition of the topology of $\Gamma\left(\Lambda_{a}, M\right)$ and ν is open, because of the aforesaid.

Now take an arbitrary solution u of (0.1), which satisfies (0.2). It may be considered as a functional on S_{b} for arbitrary $b>a$. This functional vanishes on $\operatorname{Im}^{t} p$. Let S^{*} be the adjoint to the operator S (see Lemma 2.4). Then $S^{*}(u)$ is a continuous functional on $\Gamma\left(\Lambda_{b}, I_{0}\right)$, which vanishes on the subspace $\operatorname{Im} p_{0}^{\prime}=\operatorname{Ker} \nu \pi$, because of (2.9). Consider the operator

$$
\rho: \Gamma\left(\Lambda_{b}, I_{0}\right) / \operatorname{Ker} \nu \pi \longrightarrow \operatorname{Im} \nu \pi
$$

generated by $\nu \pi$. It is a topological isomorphism, since $\nu \pi$ is open, hence we may consider a continuous functional $v:=\left(\rho^{-1}\right)^{*} S^{*}(u)$ on $\operatorname{Im} \nu \pi$. Applying Hahn-Banach theorem, we take a continuous extension w of v to the space $\prod \sum \Gamma\left(\Lambda_{b} \cap N_{k}, O\left(N_{k}\right)\right)$. It can be written as a finite sum

$$
w=\sum_{k} \sum_{j=1}^{r(k)} w_{k j}
$$

where $w_{k j}$ is a continuous functional on $\Gamma\left(\Lambda_{b} \cap N_{k}, O\left(N_{k}\right)\right)$. Then we use Hahn-Banach theorem once more to extend $w_{k j}$ to a continuous functional $\tilde{w}_{k j}$ on the space $D^{\prime}\left(\Lambda_{b} \cap N_{k} \backslash \Omega_{k}\right)$ and write it as an integral

$$
\tilde{w}_{k j}(f)=\int f \mu_{k j}
$$

with a smooth density $\mu_{k j}$ such that $\operatorname{supp} \mu_{k j} \subset \Lambda_{b} \cap N_{k} \backslash \Omega_{k}$. Hence

$$
\begin{equation*}
u(\varphi)=v(\psi)=w(\nu \pi(\psi))=\sum_{k, j} \int \nu_{k j} \pi(\psi) \mu_{k j} \tag{4.2}
\end{equation*}
$$

where $\varphi \in S_{b}, \psi:=S^{-1}(\varphi)$ and

$$
\nu_{k j}: \Gamma(\Lambda, M) \longrightarrow \Gamma\left(N_{k}, O\left(N_{k}\right)\right), \quad j=1, \ldots, r(k)
$$

are components of ν_{k}. The equality (4.2) coincides with (1.2) if we set

$$
f_{k j}(\lambda, \varphi):=\delta_{\lambda} \delta_{k j}(\psi), \quad \delta_{k j}:=\nu_{k j} \pi: \Gamma\left(\Lambda, I_{0}\right) \longrightarrow \Gamma\left(N_{k}, O\left(N_{k}\right)\right),
$$

where $f_{k j}(\lambda, \varphi)$ means the value of the distribution $f_{k j}(\lambda, \cdot)$ on a test function φ and δ_{λ} denotes the delta-distribution supported by the point $\lambda \in N_{k}$. The distribution $f_{k j}(\lambda, \cdot)$ satisfies (0.1) since it may be written in the form (4.2) with $\mu_{k j}:=\delta_{\lambda}$. This a smooth function on $x \in \mathbf{R}^{n}$, since the equation (0.1) is elliptic. This solution is weakly holomorphic on ζ and therefore is a smooth function on $N_{k} \times \mathbf{R}^{n}$. This implies ii). Properties i) and iv) were proved earlier.

To check iii) we choose arbitrary $q \in \mathbf{Z}^{n}$ and compute for arbitrary k and j

$$
T_{q} f_{k j}(\lambda, \varphi)=f_{k j}\left(\lambda, T_{-q}(\varphi)\right)=\delta_{\lambda} \delta_{k j}\left(e_{q} \psi\right), \quad e_{q}(\lambda):=\exp (2 \pi i \lambda \cdot q)
$$

$$
\delta_{k j}\left(e_{q} \psi\right)=e_{q} \delta_{k j}(\psi)+\left(\operatorname{ad} e_{q}\right) \delta_{k j}(\psi)
$$

The operator $\gamma:=s\left(\operatorname{ad} e_{q}\right) \delta_{k j}$ belongs to the linear span of operators $\delta_{k i}$, $i=1, \ldots, r(k)$ over algebra $\Gamma(\Lambda, O(\Lambda))$ since of (3.2) and ord $\gamma<\operatorname{ord} \delta_{k j}$. We have

$$
s(\lambda) \delta_{\lambda} \delta_{k j}\left(e_{q} \cdot \psi\right)=s(\lambda) e_{q}(\lambda) \delta_{\lambda} \delta_{k j}(\psi)+\delta_{\lambda} \gamma(\psi)
$$

therefore for any $\lambda \in N_{k} \backslash \Omega_{k}$ whe have

$$
T_{q} f_{k j}(\lambda, \varphi)=e_{q}(\lambda) f_{k j}(\lambda, \varphi)+s(\lambda)^{-1} \delta_{\lambda} \gamma(\psi)
$$

hence

$$
\left[T_{q}-\exp (2 \pi i \lambda \cdot q)\right] f_{k j}(\lambda, \cdot)=g(\cdot)
$$

where g is an element of the linear span of functions $f_{k i}(\lambda, \cdot), i=1, \ldots, r(k)$. Applying this computation to g and so on, we come to (1.3), which implies iii). The proof is complete.

5. Approximation.

Theorem 5.1. - Suppose that a set $\Phi \subset \Lambda$ has a non-empty intersection with N_{k} for each k. Then the set of Floquet solutions of (0.1) with quasi-impulses $\lambda \in \Phi$ is total in the space of all solutions, which satisfies (0.2) for some $a>0$.

Remark. - The similar result for differential equations with constant coefficients is due to Malgrange [12].

Proof. - The statement is equivalent to the following : for $\varphi \in$ $\Gamma\left(\Lambda_{a}, I_{0}\right)$ the system of equations

$$
\begin{equation*}
\gamma_{\lambda}(\varphi)=0, \quad \lambda \in \Phi \tag{5.1}
\end{equation*}
$$

implies that $\varphi \in \operatorname{Im} p_{0}^{\prime}$, if γ_{λ} runs over the set of linear functionals over $\Gamma\left(\Lambda, I_{0}\right)$ supported at λ, which vanish on the image of the operator p_{0}^{\prime} in (4.1). To prove this implication we note that for any k, any $\lambda \in \Phi \cap N_{k}$ and any functional δ over $\sum \Gamma\left(N_{k}, O\left(N_{k}\right)\right)$ supported at λ, the functional $\gamma_{\lambda}:=\delta \nu_{k} \pi$ vanishes on $\operatorname{Im} p_{0}^{\prime}$. Hence the system (5.1) implies the equation $\delta\left(\nu_{k} \pi \varphi\right)=0$ for any δ. This means that the image of $\nu_{k} \pi(\varphi)$ in $\sum \widehat{O}_{\lambda}\left(N_{k}\right)$ vanishes, where the symbol ${ }^{\wedge}$ denote the completion in \mathfrak{m}_{λ}-adic topology. If follows that the germ at λ of the function $\nu_{k} \pi(\varphi)$ is equal to zero, since the canonical mapping $F_{\lambda} \rightarrow \widehat{F}_{\lambda}$ is an injection for any coherent sheaf F.

This implies the equalities $\nu_{k} \pi(\varphi)=0, k=1, \ldots$, since N_{k} is irreducible for any k. Therefore $\varphi \in \operatorname{Im} p_{0}^{\prime}$ because (4.1) is exact and Theorem 5.1 follows.

BIBLIOGRAPHY

[1] V.P. Palamodov, Linear differential operators with constant coefficients, Moscow, Nauka, 1967, Springer-Verlag, 1970.
[2] L. Ehrenpreis, Fourier analysis in several complex variables, N.Y., 1970.
[3] I.M. Gel' FAnd, Eigenfunction decomposition of equation with periodic coefficients, Doklady ANSSSR, 73, n 6 (1950), 1117-1120 (Russian).
[4] P.A. Kuchment, Floquet theory for partial differential equations, Russian Math. Surveys, $37, \mathrm{n}^{\circ} 4$ (1982), 1-50.
[5] L. Bungart, On analytic fibre bundles I. Holomorphic fiber bundles with infinite dimensional fibres, Topology, 7 (1968), 55-68.
[6] V.P. Palamodov, The projective limit on the category of linear topological spaces, Mathematics of the USSR Sbornik, 4 (1968), 529-559.
[7] O. Zariski, P. Samuel, Commutative algebra, Ch. IV, Van Nostrand, 1958.
[8] N. Bourbaki, L'algèbre commutative, Paris, Hermann, 1967.
[9] V.P. Palamodov, Differential operators in coherent analytic sheaves, Mathematics of the USSR Sbornik, 6 (1968), 365-391.
[10] Y.T. Siu, Noether-Lasker decomposition of coherent analytic subsheaves, Trans. of A.M.S., 135 (1969), 375-385.
[11] R. Gunning, H. Rossi, Analytic functions of serveral complex variables, Englewood Cliffs, Prentice Hall, 1965.
[12] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations des convolution, Ann. Inst. Fourier, Grenoble, 6 (1955-1956), 271-355.
[13] V.P. Palamodov, Deformation of complex spaces, Russian Math. Surveys, 31 (1976), 129-197.

Manuscrit reçu le 9 janvier 1992,
révisé le 4 mai 1993.

Victor P. PALAMODOV, Moscow State University
Department of Mathematics Moscow 117234 (Russia).

