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ALGEBRAS OF DIFFERENTIABLE FUNCTIONS IN THE PLANE
by K. de LEEUW (Stanford University)

and H. MIRKIL (Dartmouth College) (1)

1. — Introduction.

We denote by Co the Banach space of all complex-valued
continuous functions on the plane that are zero at infinity,
supplied with the supremum norm [ | . [ | ; and by D the dense
subspace of Co consisting of infinitely differentiable functions
with compact support. 3 is the set of all differential operators
of the form

(1.1) Sa,,̂ /^" ̂ y\

where the a^n are complex constants.
If A is (1.1) its formal adjoint A is the operator

S(— l)7"4-^^71/^ ̂ y\

For f in Co, the statement « Af is in Co » will be interpreted
in the sense of the theory of distributions; Af is defined to be
the function h in Co (unique if it exists) satisfying

f^g)f=fhg, g^D.

For a subset <t of 3, we define Co(<^) to be the space of all
fin Co which are such that Af is in Co for all A in dl. A subspace
B of Co will be called a space of differentiable functions if B is

(1) Dedicated to Professor Charles Loewner on the occasion of his 70 th birthday.
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Co(<t) for some subset <t of 2. Each space of differentiable
functions is translation-invariant; those that are furthermore
invariant under rotations of the plane will be called rotating
spaces of differentiable functions.

Certain of these spaces are familiar, namely the spaces C?
consisting of those functions in Co that have all derivatives of
order <^ N in Co, and the space C^, which is n C?. A rotating
space of differentiable functions will be called proper if it is
not C^ and not one of the C?.

The main result of this paper is Theorem 1.1, which classifies
the rotating spaces. A somewhat surprising consequence of
the classification is Corollary 1.2, which observes that rotating
spaces are automatically closed under pointwise multiplica-
tion.

We use the standard notations,

^^_1_/^_ .^\
^z~ 2 \bx lby/
j^J_/^i .^_\
^z 2 \6x ^^y}'

THEOREM 1.1. — If a is a proper subset of

(1.2) {^^l^z^ : m + n == N j = ̂

for N a positive integer, then CQ(<X) is a proper rotating space
of differentiable functions between C? and C?"1. If ̂  and dig
are distinct proper subsets of (1.2), then Co(<^i) and CQ^^) are
distinct. Each proper rotating space of differentiable functions
lies between some adjacent pair of improper rotating spaces C?
and C?~1, and is a Co(<t) for some proper subset a ofS{^.

COROLLARY 1.2. — Let B be a rotating space of differentiable
functions. Then B is an algebra of functions, and B is a Banach
algebra unless B is C?.

Theorem 1.1 is proved in section 5, and Corollary 1.2 in
section 6. The first three sections are devoted to prelimi-
nary material; in sections 2 and 3 we establish the basic
properties of spaces of differentiable functions, and in section
4 we classify the spaces of differentiable functions between
C^ and C?-1.
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Our work is based on the existence and non-existence of
certain supnorm estimates for constant-coefficient differential
operators. These results appear in [2]; in section 7 we state
the results from that paper, together with certain of their
consequences, that will be used here.

An announcement of the results of this paper has appeared
in [1]. In a subsequent paper [3] we shall study the analogues
of rotating spaces of differentiable functions on Riemann
surfaces.

2. — Properties of spaces of differentiable functions.

For a subset a of 2, we shall consider Co(<t) to be a topological
linear space under the topology given by the semi-norms

and
f^m

/•--^IA/U Ac a.

Since ^ is countable-dimensional, the topology can be given by
a countable number of semi-norms and is thus metrizable.
If dl is finite dimensional, Co(<^) is normable.

PROPOSITION 2.1. — The topological linear space Co^) is
complete.

Proof. — Let \fn\ be a Cauchy sequence in Co(<t). Then in
particular there is a function f in Co with fn—>f uniformly.
Let A e dt. \^.fn\ is uniformly Cauchy so there is a function h
in Co with A/n -> h uniformly. It suffices to show that A/* === h.
But A is continuous in the distribution topology, and in that
topology fn -> /*, A.fn "̂  h. This proves Proposition 2.1.

Co(^t) is metrizable, so by Proposition 2.1 is a Frechet space,
and even a Banach space if €L is finite dimensional. In parti-
cular, the closed graph theorem is applicable to Co(<^).

Suppose now that B is a space of differentiable functions,
B === Co(di) and B == Co^g)- The topologies we have given
Co(<^i) and Co(<^2) are both stronger than pointwise convergence,
so by the closed graph theorem, they must be the same.
Thus we may speak of the topology of B without reference to
any a for which B ==== Co(a), This topology will be denoted
byr(B).

5
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PROPOSITION 2.2. — Let B be a space of difterentiable func-
tions. Then D is dense in B.

Proof. — Let B == Co(<^). We may assume the identity
operator in a. Let f e B, £ > 0 and A^, ..., A^ in (^L. We
must find a function g in D with

||A^—A,/I]<£, i=l, .... n.

Choose m in D, positive, f m == 1, with support so close to 0
that

(2.1) \\m^{^f)—A,f\\<^ i=l, . . . ,n,

where * is convolution. If h = m * /*, then A is infinitely
differentiable, it and all of its derivatives vanish at infinity,
and (2.1) becomes

||M—A,/'||<£, i=l, . . . , n.

Now let k be a function in D, identically 1 near 0. For r > 0
define /Cp by

7 / \ ? / ^ y \k^y) =h(-^> ^-)'

Then as r —> oo, each derivative of k^h converges uniformly to
the corresponding derivative of A, so we may take g == kyh
for r sufficiently large.

PROPOSITION 2.3. — Let BI and Bg be spaces of differentiable
functions. Then the following are equivalent:

l °B icB2;
2° Restricted to D, the topology r(Bi) is stronger than the

topology T(Bg).

Proof. — (1° implies 2°). By the closed graph theorem,
the injection Bi —> Bg is continuous.

(2° implies 1°). The identity map, from D in r(Bi) to D in
T(Ba), being continuous, extends to the completions, which
are Bi and Bg by Propositions 2.1 and 2.2. The resulting
map is clearly the injection of Bi into Bg. Hence Proposition
2.3 is proved.
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Suppose that Bi == Co(<ti) and Bg == Co^)- Then 2° in the
above can be rephrased as follows. For each A in (tg there
are Ai, . . ., A^ in (ft^ so that

(2.2) IJAgI) < K(||g|| + (IA^H + • • • + IIA^lj), g «= D.

Thus problems of classification of space of differentiable
functions are more or less equivalent to questions of the
existence of estimates of the form (2.2). The results that
we shall need concerning such estimates are given in
section 7.

Each space of differentiable functions is a Co(<t) for many <X.
It is convenient to have a notation for the largest such (X. If
B is a space of differentiable functions, we shall denote by €L^
the subspace of 2 consisting of all A for which Af is in Co, all
f in B. Clearly B == C()(<XB); and any other a satisfying
B === Co(<x) must be a subset of (XB. Note that B is a rotating
space of differentiable functions if and only if <XB is rotation
invariant.

PROPOSITION 2.4. — Let B be a space of differentiable func-
tions. Then the following are equivalent:

1° B is a Banach space;

2° For some N, C?cB;
3° <XB is a finite-dimensional subspace of 3.

Proof. — (3° implies 1°) Clear since B = Co^a).
(1° implies 2°) Let | [ . H B be a norm for B. The injection

CS° -> B is continuous by the closed graph theorem. Thus,
by the definition of the topology of C^°, there is a finite subset
€i of 2 and a constant K so that

i|g||B<K(||g||+ S ||Ag[|), geD.
A6(Sf

It then follows from Proposition 2.3 that B contains Co(<X)
and thus B contains C? if N exceeds the order of all the opera-
tors in dl.

(2° implies 3°) If (XB is not finite-dimensional, it contains
operators of arbitrarily high order. By Corollary 7.2 this
cannot occur if B contains C? for some N.
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3. — Properties of rotating spaces of differentiable functions.

In what follows we shall denote by 2^ the subspace of 2
consisting of those differential operators of order ̂  N.

It will be convenient to have a notation for rotation of
functions and operators in the plane. Let w be a complex
number of modulus 1. For f in Co, we denote by R^/* the
function defined by Ru,/'(z) == f{wz). For A in 2, R^A is
defined to be the operator in 3. satisfying

(R,A) (g) == A(R^), geD.
Note that

(3.1) R^^+^z^z") = ̂ --V-^z^z".

LEMMA 3.1. — Let A be an operator in 2, s an integer. Then
the following are equivalent:

1° R^A == w'A for all w with \w\ == 1 $
2° A. is a linear combination of the ^""^/^z^z" with m — n === s.

Proof. — (2° implies 1°) This is immediate from (3.1.)
(1° implies 2°) Let M be a non-negative integer, AM the

homogeneous part of A of degree M. As a consequence of
1°, and since rotation preserves homogeneous parts,

(3.2) R,AM == W'AM, \w\ = 1.
But AM is of the form

S a^+^z^y,
m4-n == M

so because of (3.1), the equality (3.2) cannot hold unless
a^ = 0 for m — n -=f=^ s. This proves Lemma 3.1.

The operators A in 2 satisfying the conditions of Lemma 3.1
for some integer s will be called rotating operators.

Now let B be a rotating space of differentiable functions, so
that <9LB, is a rotation-invariant subspace of 2. We want to
show that <^B is spanned by the rotating operators it contains.
We need the following well known result.

PROPOSITION 3.2. — Let G be a commutative compact group
and a -> Vy a continuous representation of G on a finite dimen-
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sional complex linear space V. Then V is spanned by common
eigenvectors', i.e., there is a basis ?i, . . ., ̂  of V one? characters
Xi? • * * ? 7.n °̂  G 50 ^a^

u^ ̂  Xi^)^ a- e G, i == 1, . . ., n.

Let N be a positive integer. Then dp n 2^ is a finite-
dimensional rotation-invariant subspace of 2. Proposition
3.2 applied to the representation w —> Ry, of the circle group
^w : \w = 1 \ on OB n 2^ yields the following.

COROLLARY 3.3. — Let B be a rotating space of differentiable
functions. Then OB n QN has a basis of rotating operators.

Let us first consider the case when dta is not finite-dimen-
sional. Then by Corollary 3.3, OB must contain rotating
operators of arbitrarily high order. As a consequence of
Corollary 7.6 below, OB contains each QN and thus all of 3.
So we have proved.

PROPOSITION 3.4. — The only rotating space of differentiable
functions B having €L^ infinite-dimensional is the space CS°.

So now let B be a rotating space of differentiable functions
having OB finite-dimensional. Let N be the largest integer so
that OB contains an operator of order N. By Corollary 3.3.
cla == <^B n 2^ must contain a rotating operator of order N.
Thus, by Corollary 7.6, OB contains Q^-i, and as a consequence
each function in B has all derivatives of order <; N in Co.
We have proved.

PROPOSITION 3.5. — Let B be a rotating space of differentiable
functions that is not C(T. Then there is a positive integer N so
that

C^ c B c C^-1.

4. — Spaces between C? and C?-1.

In view of Proposition 3.5, to complete the classification of
rotating spaces of differentiable functions, it remains only to
study those between C? and C?~1. In this section we obtain
a classification of all of the spaces (not only the rotating ones)
between C? and C?~1. The next lemma provides the main
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tool by showing that when B is such a space, then die contains
none but the expected operators. (And we note in passing
that a general space B, not contained between adjacent C?
and C?~~1, is intractable precisely because its ^LB is not easy
to describe).

LEMMA 4.1. — Let B = Co(<t) be a space of differentiable
functions satisfying C? c B c C?~1. Then c^a is the linear
subspace of 2 spanned by (X and S^-r

Proof. — Let A e OB. f -> A/*(0) is a continuous linear
functional on B = Co^n)? and thus, since B === Co(dt), there
are Ai, ..., A^ in €i so that

|Ag(0)|<K(||A,g||+--+||A,g[|), g < = D .
Since C? c Co(<9L), the A, are of order < N by Corollary 7.2.
Because of Theorem 7.1 below, A is of order ^ N, and the
homogeneous part of A of order N is a linear combination of
the corresponding homogeneous parts of the Ar Thus A is
in the linear subspace of 2 spanned by dt and S^-i. Since
it is clear that the linear subspace of 2 spanned by €i and
QN-I is contained in €LB, the proof of Lemma 4.1 is complete.

THEOREM 4.2. — Let N be a positive integer. Then the
mapping

(4.1) a -> Co(a)
establishes a one-one correspondence between the linear subspaces
€i of 2 satisfying

(4.2) Vi c ̂  c ^N
anrf (Ao^e spaces B o/* differentiable functions satisfying

(4.3) C? c B c C?-1.

T/ie inverse of the mapping (4.1) i5

(4.4) B -̂  OB.

Proo/1. — That C? c CoW c C?-1 if a satisfies (4.2) is
clear. Let B be any space of differentiable functions satisfying
(4.3). Since B = Co(<^B), to show the mapping (4.1) is onto, it
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is only necessary to show that S -̂i c OB c 2^. That
QN-I c OB is clear, and OB c 3^ follows from Corollary
7.2 below. Finally, for any linear subspace a of 2 satisfying
(4.2), a == OLco(Cl)5 by Lemma 4.1, so the mapping (4.1) is one-
one and has (4.4) for its inverse as claimed.

The above proof of Theorem 4.2 actually shows somewhat
more. We shall denote by CK the subspace of Co consisting
of those functions having compact support. If Bi and Bg
are distinct spaces of differentiable functions, it is still possible
that they are the same locally; i.e., that Bi n CK = B2 n CK.
This is the case, for instance, when Bi == Co^2/^)!/, 6/to)
and Bg = Co^2/^^/). Indeed, let Dg resp. C^/bx^y) consist
of the functions in D resp. Co(^/^2/) having support in the
ball of radius 1/£. Then the closure of Dg in Co^f^y)
contains at least Cae^2/^;^/). Hence we need only compare
the norms of Co(^/^y) and Co(^/^by, ^l^x) on each fixed
De. And then it is evident that

^f f M ^ ^ ^f I j ^ 2 ^f—(a? b) < —-1^/<—sup—L-
^ J-i/g ̂ y\ y ^ £ A ^y

The following proposition shows, however, that such collap-
sing of norms can not occur on the spaces we are studying
in this paper.

PROPOSITION 4.3. — Let Bi and Bg be distinct spaces of
differentiable functions between C? and C?~1. Then Bi n CK
and Bg n CK are distinct,

Proof. — Assume that Bi n CK = Bg n CK. Let

^=={f:f^B,,f(z)=0 if z |> l j , / = 1 , 2 .

Then E^ == E2. Ej is a closed linear subspace of the Banach
space By and is thus a Banach space in the induced topology.
By the closed graph theorem, the Bi topology on Ei = Eg is
identical with the Bg topology. Since Bi -=f^ Bg, then a^ =7^= OB,.
We may assume that there is an operator A in a^ that is
not in (Sla,. The mapping

f^A.f(0), /eE,=E,,

is a continuous linear functional, and thus there are Ai, ..., A,
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in 0i^ and a constant M so that
|Ag(0)| < M(!|A,g|| + . . . +|IA,g||)

for all g in D with g(z) == 0 for z| ,> 1. Thus by Theorem 7.1,
the homogeneous part of A of degree N is a linear combination
of the corresponding homogeneous parts of the A(. But
since OB, is a linear subspace of 2 containing 2^_i, A is in
^LB<. Contradiction.

5. — Classification of rotating spaces.

This section is devoted to the proof of Theorem 1.1, which
classifies the rotating spaces of differentiable functions.

There are three things to be established :
1° If (X is a proper subset of ^ix, then Co(<^) is a proper

rotating space of differentiable functions between C^ and C?~1.
2° Ifd^ and €i^ are distinct proper subsets O/*^N, then Co(<^i)

and Co(<^2) are distinct.
3° If B is a proper rotating space of differentiable functions,

then B == Co(^t), where ex is a proper subset of S{^ for some N.

Proof of 1°. — Let a be a proper subset of ^%N. Since a
spans a rotation-invariant subspace of 2, Co(<^) is a rotating
space of differentiable functions. By Corollary 7.5, Co(<^) c C?'"1.
And by Corollary 7.2, Co(a) ̂  C?-1. That C;? c Co(a) is
clear. Since C? c Co(<^) c C?~1, by Lemma 4.1, <^Go(($t) ls the
linear subspace of 9 spanned by <X and QN-I and is thus not
all of QN, so Co(a) ̂  C?.

Proof of 2°. — Let <fl be a proper subset of (1.2). We know
that C? c Co(d) c C(?~1, so by Lemma 4.1, <^Co((fl) ls the linear
subspace of ^ spanned by a and ^-i. Thus if a^ and Og
are distinct proper subsets of ̂ , ^CoCO,) and ^CoCO,) are distinct,
so Co(^i) and €0(^2) must be distinct.

Proof of 3°. — Let B be a proper rotating space of differen-
tiable functions. Then by Proposition 3.5, there is a positive
integer N so that C? c B c C?~1. Let €L be the intersection
of Sty and dip. We will show that a is a proper subset of
^ and B == Co(<^). First it is necessary to relate a and da.
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Let ^ be the linear subspace of ^ spanned by a and 2^_i.
We will show a' == OB. First, d c OB, and 2^_i c dta since
B c C?~1, so a' c (XB. We have to demonstrate the reverse
inclusion. By Corollary 3.2, OB has a basis of rotating opera-
tors. Let A be one. This A is of order <; N, for if not, by
Corollary 7.2, B = Co(aa) would not contain C?. Let
A == AI + Ag, where order Ai = N, order Ag < N. Since
2^_i c OB, A2 e OB, so Ai e OB. But Ai is a constant multiple
of some operator in a, so A e a'. This shows that da c <^,
which completes the proof that da == Ct'. a is not all of
^IN since B =/= C^~1. There must be some operator of order
N in da, for otherwise we would have OB c 3^_^; and thus
B = Co(OB) ^ Co(2N-i) == C?-1. Thus, since OB = a', a is
non-empty. So we know a to be a proper subset of ̂  and
it remains to show B == Co(<^). Part 1° of the proof shows
that C? c Co(a) c C?~1, so by Lemma 4.1, ^(dl) = <^'. But
a' == OB, so B = Co(aa) = Co(a') = Co^a)) == Co(a). This
completes the proof of Theorem 1.1.

6. — Rotating spaces as algebras.

In this section we show that the rotating spaces of diffe-
rentiable functions are all algebras (and that all except C?
are Banach algebras). Because of Proposition 3.5 it is enough
to show that each space of differentiable functions between
C? and C?~1 is a Banach algebra.

LEMMA 6.1. — Let A be an operator in ^ of order N. Then
there are A^ and A^ in 3 of order <; N so that

A/g = /Ag + gA/* +1 A,/A,g for all /•, g e D.
k

Proof. — It suffices to prove the assertion for A = ^n4"?^/^rm6^/n.
The result is true for m + n = 1. And it is simple to establish
the induction step : If the assertion is valid for b7714-71/̂ ^",
then it is valid for bw+n+l/^w+l^l and ^^/^^i/7^1.

LEMMA 6.2. — Let B be a space of differentiable functions
between C? and C?~1. Let A e OB. Then there are A^ and A',,
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in 2 of order less than the order of A so that, for all f and g in B,
the distribution Afg is equal to the continuous function

/•Ag+gA/"+SA,/A^.
k

Proof. — We use the A^ and K[ given by Lemma 6.1. We
shall prove that

(6.1) /(/Ag + gAf + S ̂ fWh ==ffg^h, h e D,

for all /"and g in B. Once (1.1) is established, by the definition
of the distribution L/g, we are done. Fix h in D. By the
choice of the LK and LK, (6.1) holds for f and g in D. D X D
is dense in B X B by Proposition 2.2. Both sides if (6.1)
are continuous in (/, g) in the topology of B X B, so (6.1)
holds for all /*and g in B.

PROPOSITION 6.3. — Let B be a space of differentiable func-
tions between C? and C?~1. Then B is a Banach algebra.

Proof. — By Lemma 6.2, B is an algebra. Let a be a basis
for OB. Define the norm |]-[[B on B by

MB= S IIA^l, f-B.
Aea

Then |]«|]B gives the topology of B, and it is clear, because of
Lemma 6.2, that there is a constant K so that

ll/•gl|B<K||/>|lB|lg|lB, A geB.

This completes the proof of Proposition 6.3.
Corollary 1.2. now follows immediately from Proposition 6.3

and Proposition 3.5.

7. — Sup norm estimates.

In this section we give the results concerning sup norm
estimates on which our work is based.

The first theorem is a strengthening of Propositions 1 and 2
of [2].
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THEOREM 7.1. — Let AI, . . ., A^ be operators in 3 of order
<; N. Let A 6e an operator in 2 /or which there is a constant K
so that

(7.1) |Ag(0)| <K(||A,g[|+ ... +||A,g||)
for all g in D with support in \z: \z\ <; I j . TAen A has order
<; N and the homogeneous part of A of order N is a linear combi-
nation of the corresponding homogeneous parts o/*Ai, . .., A^.

Proof. — We denote by Di the subspace of D consisting
of those g in D with support in t^:|z| < I j . Take D^ as
domain for each of the A^ and by the mapping g->(Aig, .. . , A^g)
embed their joint range in the direct sum ©^"Co of m copies of
Co. Because of (7.1), the functional

(A^, ..., A,g)->Ag(0)

on the embedded joint range is continuous with respect to
the natural topology of C^o. By Hahn-Banach this func-
tional extends to the whole space e^Co. And by the Riesz
representation we can write

(7.2) Ag(0) = S fA.gd^, geDi ,

for some measures (J^, . . ., (JL^ of finite total mass. Write A
and the Aj^ as sums of their homogeneous parts

A==SA^, A,==SA^.
e e

Substituting into (7.2) we have

(7.3) S A^(0) = S S /A^^, g e Di.

For r > 1 and g in D^ define gr in Di by

gr^ y) = g(rx, ry).
Then we have

A^) = ^(A-g), A^(g,) = r^g), g e D^,

so by (7.3),

(7.4) ^reAeg{0}= ^frWg)^, g^D,.
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Let M == max | N, degree A|. Dividing (7.4) by r^ and
letting r —>• oo, we have

(7.5) A^O) = S c^g(O), geDi,
k

where c^ is the measure assigned to the origin by p^. If
M > N, (7.5) is impossible, since each of the A^ is zero. Thus
M = N, so

^=lc^

is a consequence of (7.5).

COROLLARY 7.2. — Let A be an operator in Q of order N.
Then there exists an f in C?~1 with Kf not in Co.

Proof. — Suppose that this were not the case. Then we
would have C?~"1 c Co( |A^) . By the closed graph theorem,
the injection C?~1—> C o ( ^ A j ) is continuous. Thus, by the
definition of the topology of C?~1, there must be Ai, . . ., A^
in 3 of order ̂  N — 1 and a constant K so that

l|Ag|i < K(HA,g|| + • • • +||A,g||), geD.
Since A is of order N, this is impossible by Theorem 7.1.

The next result is half of Proposition 5 of [2].

THEOREM 7.3. — Let A be an elliptic operator in 2 of order N.
If Ao is an operator in 2 of order << N, then there is a constant
K so that

||Aog||<K(||Ag||+||g||), g e D .

COROLLARY 7.4. — Let A be an elliptic operator in 4 of
order N. Then Co( { A ^ ) c C?-1.

Proof. — By Theorem 7.3, for every Ao in S of order <; N,
there is a constant K so that

||Aog||<K(||Ag||+||g|l), g^D.
Thus, by Proposition 2.3, Co( |A^) is contained in C?~1.

COROLLARY 7.5. — Let A = ̂ ^zW. Then Co( \ A }) c C?^-1

Proof. — A is elliptic, so Corollary 7.4 is applicable.
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COROLLARY 7.6. — Let B be a space of differ entiable functions.
Ifd^ contains a rotating operator A of order N, then €i^ contains
Q
^N—l*

Proof. — Since A is rotating of order N, its homogeneous
part of order N must be a multiple of some ^^"/hz7"^?1, for
m -(- n = N. Thus A is elliptic, so by Corollary 7.4,

CoQADcCi?-1.

But B = C o ( O B ) c C o ( t A j ) since Ae^a, so B c C?-1. Equi-
valently, 2y_-^ c OB.
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