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ON THE AXIOMATIC OF HARMONIC FUNCTIONS I
by C. CONSTANTINESCU and A. CORNEA (Bucarest)

The aim of the present paper is to present some remarks
on Brelot's axiomatic of harmonic functions [2] and to show
that any space, which locally has a countable basis and on
which there exists a positive superharmonic function, pos-
sesses a countable basis.

1. Let X be a locally compact connected space and Wo a
sheaf on X, of real vector spaces of continuous functions (1)
called harmonic functions. An open set U c X is called regular
if it is non-empty, relatively compact and, if for any continuous
function f on the boundary ^)U of U, there exists a unique
function on U equal to f on ^)U and harmonic on U, non-
negative if f is non-negative. The restriction of this function
on U will be denoted by HJ?. For any x e U the functional

f-^W
is linear and non-negative on the real vector space of conti-
nuous functions on ^)U. There exists therefore a measure
co^ == co^ on ^U, called harmonic measure, such that

n^x)=ffd^
for any continuous function f on ^U.

We assume that 96 satisfies the following axioms.
AI. The regular domains form a basis of X.
Ag. The limit of any increasing sequence of harmonic func-

tions on a domain is either harmonic or identically infinite.

(1) The term « function » means, in this paper, « real finite function ».
18



374 C. CONSTANTINESCU ET A. CORNEA

If u is a non-negative harmonic function on a domain U,
then it follows from Ag, considering the sequence \nu\^ that
u is either positive or identically zero.

THEOREM 1. — Let °ll he an increasingly directed set of
harmonic functions on a domain U; the least upper bound of
H is either harmonic or identically infinite.

We shall prove the assertion using an idea from R. NEVAN-
LINNA (Uniformisierung, Springer Verlag, 1953).

Let us suppose the least upper bound of ll is not identi-
cally infinite and let a; be a point of U at which it is finite.
There exists an increasing sequence \u^\ of ^i such that

lim Un(x) == sup u{x).
n^w n e ̂

We denote
UQ == lim u^.

n>oo

Then u^ is harmonic by Ag. Let y be a point of U different
from x and |^nj be an increasing sequence of ^ such that
Un ̂  Vn ̂ d

lim ^(y) = sup u(y).
n><» ue^

We denote
^ == lim P^.

n>°o

Since ^o is finite at x it is harmonic. Obviously UQ ̂  Vy Since
Ug and ^ are equal at x they coincide everywhere. It follows
that

^Q/) = ̂ P u(^/)•ue<U

y being arbitrary, UQ is the least upper bound of U.
The theorem shows that axiom Ag is equivalent to axiom 3
[2].

2. A lower semi-continuous numerical function (2) s on
an open set V, which does not take the value— oo, is called
hyperharmonic if for any regular domain U, U c V, and x e= U

s{x) >f,?AoS.

(2) « Numerical function » will mean a function whose values are real numbers
or ± oo.
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A hyperharmonic function on the open set V is called super-
harmonic if it is not identically infinite on any component
of V. A function s is called hypoharmonic (resp. subharmonic)
i f — s is hyperharmonic (resp. superharmonic). A non-negative
hyperharmonic function is called a potential if its greatest
harmonic minorant is zero. A set A is called polar if for any
x e X there exists a positive superharmonic function on a
neighbourhood U of x infinite on U n A.

THEOREM 2. — Let U c X be an open non-compact (3) set on
which there exists a positive superharmonic function. Then any
superharmonic function on U non-negative outside a compact
subset of U is non-negative.

Let SQ be a positive superharmonic function on U and s be
a superharmonic function on U non-negative outside a compact
set. For any positive real number a we denote

Ka = [x e U| s(x) + a^(^) < 0 { .
Ka is a compact set and we have Ka c Kp for a ̂  ? and

K. = nK?
a>p

Suppose s negative at a point. Then since inf s > — oo
there exists a real number a > 0 such that K.a =^ ^ and
Kp == ^ for P > a. The function s + a^o is superharmonic
and non-negative. Let a; be a point of Ka and V the compo-
nent of U which contains x. Since s + ^o vanishes at x it
vanishes on the whole V ([2] Theorem 3 (i)). It follows V c K.a
which is a contradiction since V is non-compact. Hence s
is non-negative.

COROLLARY 1. — Let U c X be an open non-compact set
and SQ a superharmonic function on U such that

inf SQ > 0.

Then any superharmonic function s on V for which
lim inf s(x) ̂  0,
x^-a^

where a\j is the Alexandroff point of U, is non-negative.

(3) This means either X non-compact or U ̂  X.
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Indeed for any £ > 0 the function s + s^o ls non-negative
outside a compact set and therefore non-negative on U.

THEOREM 3. — Let f be a lower semi-continuous numerical
function on X, which does not take the value — oo. The greatest
lower bound of the set of hyperharmonic functions which domi-
nate f is hyperharmonic, continuous at any point x where f is
continuous; if, moreover, it is superharmonic and different at x
from f(x) then it is harmonic on a neighbourhood of rc(4).

Let ^ denote the set of hyperharmonic functions which
dominate /*, SQ be its greatest lower bound, U a regular domain
and y e U. We have

So{y) == inf s{y) ̂  inf | s d^ ^ / SQ Ao^.
SG^ Sf=^ J J

From this relation it follows that the regularised function So
is hyperharmonic ([2] Theorem 7). Since fis lower semi-conti-
nuous SQ €= ^, SQ == SQ.

Let re be a point at which f is continuous and s e if such
that

s{x)^f(x).

There exists a harmonic functions u, defined on a neigh-
bourhood of x, for which

f(x) < u(x) < s{x).

Let U be a regular neighbourhood of x, where these inequa-
lities still hold. For any y e U we have

fsd^^fu d^ = u{y) > f{y)

and therefore the balayaged function of s relative to

X-U, ^-u,

belongs to tf. Herefrom it follows that if So is superharmonic
and So{x) -=f=- f(x), then SQ is harmonic on a neighbourhood
of x. Further we get

lim sup ^(y) < lim sup R^y) = R^{y) < s{x).
y-^x y-s

(4) This theorem, was proved in the classical case by M. BRELOT, Journ. de M.ctth.
Pures et Appl., 24, 1945, 1-32.
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Let U' be a domain, K a compact set in U' and /*' the func-
tion defined on U' equal to f on K and equal to s^ on U' — K.
We denote by 9" the set of hyperharmonic functions on U'
which dominate f and by Sy its greatest lower bound.
Obviously SQ ̂  SQ on U' and SQ == SQ on U' — K. The function
on X equal to SQ on X — K and equal to SQ on U' is hyper-
harmonic ([2] Theorem 4) and dominates f. Hence SQ = SQ
on U'.

We take V as being a regular neighbourhood of x and K
a compact neighbourhood of x. For any £ > 0 we have

and
SQ+eH^^y

SQ(x)+eHV,\x)^f\x).

From the preceding considerations we have, since f is conti-
nuous at x,

lim sup So(y) = lim sup So(y) < s^x) + ̂ \x)
= ̂ ) + sHTO.

£ being arbitrary s is continuous at x.

COROLLARY 2. — A superharmonic function which dominates
a continuous function is equal to the least upper bound of the
set of its continuous finite superharmonic minorants.

COROLLARY 3([2] Proposition 12). —Let F be a closed set
with a non-empty interior. If there exists a potential on X then
there exists a continuous positive potential on X harmonic on
X — F.

It is sufficient to take f as being a continuous non-nega-
tive function, f=/=.0y whose carrier lies in F.

3. We shall denote by ^ {resp. jp) the class of spaces (X, 56)
for which there exists at least a positive potential (resp. a posi-
tive harmonic function) on X. The type ^ (resp. S^) of X is
not altered by the multiplication of all the functions of 96
by a positive continuous function. An open set U c X is
said to be of type ^ {resp. j?) if any component of U belongs
to ̂  (resp. ^)). The spaces of type ^ u ^ (resp. ^) are exactly
those on which there exists a positive superharmonic (resp.
positive superharmonic non-harmonic) function. On a space
of type ^ — ̂  any two positive superharmonic functions are
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proportional. If X e ̂  (resp. <<?) and U is a domain in X,
then U e ̂  (resp. ^)). This is trivial for fy and for ^3 it results
from the fact that there exits a positive superharmonic func-
tion on X which is not harmonic on U. If U c X, U e ̂  and
X — U is polar, then X also belongs to ^3 since any poten-
tial can be extended to a superharmonic function on X, ([2]
page 125) which is obviously a potential. This result does
not hold if we take S^ instead of ^8.

Let Xi denote the real axis and Xg the unit circumference
in the complex plane and let 3-6i (resp. 9S>^) be the sheaf of
solutions of the equation u" + QLU = 0 on Xi (resp. Xg),
where a is a real number. If a is positive, no positive super-
harmonic function exists on the spaces (Xi, <%i), (X^, 3^a)-
If a is positive and irrational, the only harmonic function
on Xg is identically zero. For a == 0 we obtain examples of
spaces of the type SQ —s?. For a <; 0, Xi belongs to ^ n ^
and Xg belongs to ^ — jp. We do not know if there exists
non-compact spaces of the type ^}— ^).

LEMMA 1 (5). — If9(o satisfies axiom Ai the axiom A^ is equi-
valent to the following assertion. Let U be a domain, V c U an
open set, K c V a compact set and x e U. There exists a positive
number a == a (U, V, K, x) such that for any non-negative
superharmonic function s on U harmonic on V

sup s(y) ̂  Qis{x).
yeK-

SuppOSe Ag fulfilled. If a does not exist there exists for any
natural number n a non-negative superharmonic function
Sn on U, harmonic on V and such that

i
sup Sn(y) > n, s^(x) < ,
yeK n

This leads to a contradiction since the function
00

2^n
n==l

is superharmonic on U and infinite on a component of V.

(5) This lemma was inspired by a similar result of R.-M. HERVE ([3] n° 2; pro-
priete 7).



ON THE AXIOMATIC OF HARMONIC FUNCTIONS 379

Suppose now the existence of an a asserted in the lemma,
and let [u^\ be an increasing sequence of harmonic functions
on U. If there exists a point x e U for which \ u^x) I is conver-
gent, then \u^{x)—i^_i(^)| converges to zero. Hence

\ Un —— U^_i }

converges to zero uniformly on any compact set of U. It
follows immediately that lim u^ is harmonic.

n-^-oo

The axiom Ag can be strengthened by requiring

lim a(U, U, K, x) = 1.
1^-^x

This assertion was called axiom 3' ([2], page 147). From this
axiom it follows that the positive harmonic functions on U
equal to 1 at a point of U form an equicontinuous set of func-
tions.

LEMMA 2. — Let x e X, I be an increasingly directed ordered
set and for any i e I let U^ be a domain on X containing x, V\
be an open subset of U and s^ a non-negative superharmonic
function on U harmonic on Vi equal to 1 at x. We suppose
Ui c U ,̂ V, c V^ for any i < x. Let U be an ultrafilter on I
finer than the filter of sections of I (6). If 96 satisfies the axiom 3'
then 5( converges uniformely along U on any compact subset
of^J V( to a harmonic function.

ie!
Let K be a compact set in [ J V^ and x e I such that K c Vy..

^el
Since ^|i;>xj is an equicontinuous family of functions
on K, s, converges uniformly along U on K. Its limit is there-
fore harmonic on [ J V;.

ie!

THEOREM 4. — Let X be non-compact. If 3€ satisfies the
axiom 3' and any relatively compact domain of X belongs to
^ then X belongs to ^.

Let x e X, I be the set of relatively compact domains
containing x ordered by the inclusion relation and for any
i e I denote U, == Vi == i and let ^ be a positive harmonic

(6) This is filter generated by the family of sets j ie I|i ^>x | ^ei-
4
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function on U^ equal to 1 at x. By means of lemma 2 one can
construct a positive harmonic function on X.

COROLLARY 4 [3] (7). — If 96 satisfies the axiom 3' and X
belongs to ^ and is non-compact, then X belongs to ,ip.

THEOREM 5 [3] (7). — I f 96 satisfies the axiom 3' and X belongs
to ^3 then there exists for any point x e X a positive potential
on X harmonic on X — { x } '

Let p be a positive potential on X and I be the set of compact
neighbourhoods of x ordered by the inverse inclusion relation.
For any i e I we denote

u,=x, v , = x — i ,
.=-A-,

Rp(^o/
where XQ is a fixed point different from x. Let U be an ultra-
filter on I finer than the filter of sections of I and for any y e X

s{y} =lim s,(y).
i,u

By lemma 2 s is harmonic on X— [ x ^ .
Let U be a regular neighbourhood of x and y e U. Since

by lemma 2 ^ converges uniformly along U to u on ^U we
have

s(y) == lim s^y) >lim js^ d^ = j s ^(0?-

The regularised function s of 5 is therefore superharmonic.
From the above uniform convergence we deduce the existence
of a positive number a and a x e I such that

s, < op

on ^)U for any i ̂  x. It follows ([3] Lemma 3.1)

s, <^ ap, 5 ̂  ap

on X — U. Hence s is a potential. It cannot be harmonic
on a neighbourhood of x since then it would be harmonic
on X and therefore zero.

(7) Th^oreme 16-1.
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THEOREM 6. — On a compact space of the type ̂  any super-
harmonic function is a potential. Particularly any superharmonic
function is non-negative.

If s is a superharmonic function then—min (^, o) is a subhar-
monic function. Since the space is compact and of type ^
it is dominated by a potential. Hence it vanishes and s is
non-negative. The greatest harmonic minorant of s vanishes
being dominated by a potential, s is therefore a potential.

REMARK. — A space of the type ^ n JQ is non-compact.

THEOREM 7. — Let X e= ̂  u S^ and U be a domain on X. If
X — U is non-polar then U e ̂  n ^).

Let s be a positive superharmonic function on X. Suppose
its restriction on U is a potential. There exists then a positive
superharmonic function s/ on U such that

lim s ' ^ x ) ==oo
Vsx-^^V

([1] Lemma 1). If we extend 5' to a function on X equal to
+00 on X — U we obtain a superharmonic function. This
is a contradiction since X — U is non -polar. Hence the restric-
tion of 5 on U is not a potential and U e ^p.

6U is non-polar. This is obvious if bV == X — U. If

6U ^= X — U,
^U is non-polar since X — bV is non-connected. There exists
therefore a point x e bU such that the intersection of any
neighbourhood V of x with ^V is non-polar in V. Let V be
a regular domain which contains x and K be a compact non-
polar set, K c V n bU. The reduced function (R?)v of s relative
to K, where the operation is made on V, does not vanish, it
converges to zero at the boundary of V and is harmonic on
V — K. The function s ' on U equal to s on U — V and equal
to s—(R?)v on V n U is superharmonic and non-proportional
to s. Hence U e ̂

COROLLARY 5. — //'X e s? u ^ and U is an open non-connected
set, then V is of the type ^ n ^).

Let V be a component of U. Since X — V has interior points
it is non-polar. V is therefore of the type ̂  n jp.
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4. LEMMA 3. — The sum of a sequence of potentials convergent
at a point is a potential.

Let t p n j be a sequence of potentials such that

^ - 5 Pn
n=l

be finite at a point. Let u be a harmonic minorant of s. We
shall prove inductively that

U < 2 Pn'

Suppose

< 2 Pn.

Then u — ^ Pnls a subharmonic minorant of pn and there-
n==w-+-l

fore non-positive.
A sequence ^ U^ of relatively compact domains on X is called a

pseuso-exhaustion of X if

for any n and
U.cU^

00

x-U^
is polar.

THEOREM 8. — Any space of the type ^ u jp possesses a
pseudo-exhaustion.

Let K c X be a compact non-polar set such that X — K
contains only a finite number of components, let p be a
positive potential on X — K and ^ be the set of functions
(^""^X-K? where U is a relatively compact domain which
contains K. The greatest lower bound of if, being a non-
negative harmonic minorant of p, is equal to zero. There
exists therefore a sequence |U^ of relatively compact domains
containing K, such that for any n U^ c U^+i and

S (ft^X-K
n==l

is a superharmonic function on X—K, infinite on X— [ J U^.
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THEOREM 9. — If Xe^S and \\]^\ is a pseudo-exaustion
of X there exists a continuous potential on X, which is infinite

00

exactly on X — I J U .̂
n=l

Let p be a continuous finite potential on X and, for any n,
let fn denote a continuous non-negative function on X equal
to 0 on U^ equal at most to p on U^i — U^ and equal to p
on X — U^i. The function

P. = ̂
is a continuous finite potential, harmonic on U» (Theorem 3)
and p^^>pn+i. Let u denote the limit of the sequence j p n j .

00

The function u is locally bounded and harmonic o n l j u ^ .
00

I I n==l

Since X — ^ J Un is polar there exists a harmonic function on
re==l °°

X equal to u on ̂ J U^. Being a harmonic minorant of p it
n=l °°

vanishes. Hence u is equal to zero on I J U ^ . We may therefore
assume that the function ^i

00

PO = S Pn
n==l

is finite at a certain point. Since p^ is harmonic on
00

U^, pois continuous and finite on [ J U^. According to lemma 3
n=l °°

p is a potential and it is equal to infinite on X — [ J U ^ .
ra=l

COROLLARY 6. — Let f be a finite non-negative upper semi-
continuous function on X e ̂ . Rf is the greatest lower bound
of the set of continuous hyperharmonic majorants of /*. If R^
is a potential^ RJ^ is the greatest lower bound of the set of continuous
potentials which dominate /*.

Let x e X and s be a superharmonic majorant of /*. Let
00

further [Vn} be a pseudo-exhaustion of X, Ui s x, U = [ J U ^
n=l

and let p be a continuous potential on X finite at x and equal
to oo on X — U. Since U is a normal space there exists a
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continuous finite function g on U, f <^ g ̂  s. Let go be the
lower semi-continuous function on X equal to g on U and
equal to 0 on X — U. The function R^ is superharmonic
and continuous on U according to theorem 3. Hence the func-
tion SQ = R^ + SP is a continuous superharmonic majorant
of f for any £ > 0 and we have

S^X) < S{x) + £p(^).

In order to prove the last assertion it is sufficient to show
that there exists a potential which dominates f. The function

u = lim ft.7-17"
n->-<»

is a harmonic function on U. Since R^ is locally bounded u is
locally bounded. There exists therefore a harmonic function
on X equal to u on U. This function is a minorant of ft^.
Hence u vanishes on U. We may therefore assume that

2 Rf-^x)
n==l

is convergent. Let us denote

U o = ^ G,==U^—U^.
We have

30

S RW < oo.
n==l

The function

p+ip^"
71=1

is a potential which dominates f.

5. LEMMA 4. — Let X be a locally compact locally connected
space, F a closed nowhere disconnecting set in X, and ^ a car-
dinal number. If X — F possesses a basis whose cardinal is
at most equal to ̂  and if there exists a set of continuous functions
on X whose cardinal is at most equal to ^ and which separates
the points of F, then X possesses a basis whose cardinal is at
most equal to ^.

Let U be an open set on X and | U^iei the family of compo-
nents of U. Since F is nowhere disconnecting, ^LL.—Fj ig i



ON THE AXIOMATIC OF HARMONIC FUNCTIONS 385

are exactly the family of components of U — F. Since X — F
possesses a basis whose cardinal is most equal to S^, the cardi-
nal of I is at most equal to i<.

There exists a set 9 whose cardinal is at most equal to i<
of continuous functions on X which separates the points of X.
For any fe 9 and any two rational numbers a, ? we denote

U(/1; a, (3)= ^eX|a</^)<(^.

Let SB' denote the family

SB' == {V(f, a, ?)[/•€ 9, a, j3 rational numbers \.

The cardinal number of 33' is at most ^. Let us denote by SB
n

the system of components of the sets of the form f^ U,,

U; e SB'. According to the above remark the cardinal number
of SB is at most equal to ^.

We want to prove that SB is a basis of X. Let x be a point
of X and U be a relatively compact neighbourhood of x.
For any ye. ̂ U let fy be a function of 9 such that

W^fAyY
There exist two rational numbers oiy, ^y such that

^eU(/,; a,, (y, y^V{fy', a,, p,).

Since ^U is compact we may find a finite number of points
\Vi\i =1, ... n\ on bU such that

^e nu^ ̂  p^ (nu^ ̂  u}n 6U = ̂
i==l \ i==l /

n

Let V denote the component of ^ ^ U(^; a^, ?^) which contains
i=l

x. Since V n bU == ftwe have V c U. SB is hence a basis, since
VeSB.

THEOREM 10. — Let X e ^3 u ^), F be a closed polar set on X
and let ^ be a cardinal number. If for any point of X — F there
exists a neighbourhood which possesses a basis whose cardinal
is at most equal to ^, then X possesses a basis whose cardinal
is at most equal to M
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Since any space of the type ^ u ^ can be covered with a
finite system of domains of the type s?, it is sufficient to prove
the theorem for the case X e ̂

Let {Vn} be a pseudo-exhaustion on X — F . Since F is
00

polar | Un} is a pseudo-exhaustion of X. We denote U == [ J Un
l °° I n=l

and assume F == X — i J U. Let p be a continuous potential
n==l

on X such that p is infinite exactly on F. Since any U^ possesses
a basis whose cardinal is at most equal to }<, U possesses a
basis S3 whose cardinal is at most equal to {<. For any two
relatively compact sets V, We®, V c W, let /v,w denote a
continuous function on X, 0 <; /v,w ̂  1, equal to 1 on V and
equal to 0 on X — W. We denote by 9 the set of functions
of the form

max /v,,w,.
l̂ î n

The cardinal number of 9 is at most equal to t<. We denote
further for any f e 9

^f=^p
and tf== \s;\f€.9\.

The cardinal number of if is at most equal to ^. Hence, accor-
ding to the preceding lemma, it remains only to prove that
if separates the points of F.

Let x, y e F, x =7^= y and V be a neighbourhood of x, y ^ V.
We denote by ^v the family of functions Sj- e if for which the
carrier of/*is contained in V. ^v is an upper directed family of
superharmonic functions. Its least upper bound s is there-
fore superharmonic. We have

s < R;, s(y) < R;(y) < ^

and s == p on V — F. Since F is polar we have s == p on V
and therefore s(x) == oo. There exists therefore an Sf e tfy
such that

s/^x) > s^y).

COROLLARY 7. — If X e ̂  u ̂  and any point of X possesses
a neighbourhood with a countable basis, X possesses a countable
basis. Particularly if X is a manifold, and X e= ̂  u ̂ , X posses-
ses a countable basis.
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There exist for any cardinal number t< examples of spaces
on which the constants are harmonic and which possess
points for which the cardinal number of any fundamental
system of neighbourhoods is at least equal to t<. Let M be
a set whose cardinal is ^ and F the set of points of the
complex plane ^e18] 9 real number j . For any finite set I c M
we denote by Xi the topological space obtained from the
topological space F X I, where I is considered with the dis-
crete topology, identifying the points (1, i) with i e I. We
denote by ai this point of Xi. The harmonic functions on
Xi— |ai| will be the functions which are linear in 9^. A
continuous function u defined on a neighbourhood of a\
is harmonic if it is harmonic outside \a^\ and for sufficiently
small £ > 0

^——SWS O+u^, Q],
^Miel

where n is the cardinal number of I. It is easy to verify that
the harmonic functions satisfy the axions Ai, Ag.

For anv I c J we denote by yu the map Xj —> Xi defined
by

/ \ {(z, l) if l e I , ,
9i.j( ,̂ l) == jai if ^ V yl>j^ == a1'

The system ^Xi, y i j j is a projective system of topological
spaces. Let |X, < p i j , be its projective limit and a the point
of X corresponding to the points ai.X is compact and the
cardinal number of any fundamental system of neighbourhoods
of a is at least equal to ^{. The harmonic functions on X will
be the functions of the form u o <pi, where u is a harmonic
function on Xi. It can be verified that the sheaf of harmonic
functions on X satisfies the required axioms (and even the
axiom 3').

THEOREM 11. — The set of non-relatively compact compo'
nents of an open set on X e= ̂  u ^ is at most countable.

Let tGi j ig i be a family of pairwise disjoint domains on X
and U be a relatively compact domain on X. We denote
by Iu the set of i e I for which

G, n U ̂  ^ G, — U ̂  ^
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For any ie Iu we denote by /\ the function on oU equal to
1 on Gi n oU and equal to 0 on oU — Gr This function is
resolutive with respect to U [1] and let H}( denote its solu-
tion. This function doesn't vanish since in the contrary case
there would exist a non-negative superharmonic function s
on U converging to infinite at any point of G^ n ^)U. The func-
tion on U u Gi equal to s on U and equal to infinite on G[ — U
would be a superharmonic function infinite on an open set.
This is a contradiction. From

2 H/° < HF
ielu

is follows that Iu is at most countable.
Let G be an open set |G^igi be the family of its non-rela-

tively compact components and |U^ be a pseudo-exhaustion
00

of X. From the above proof its follows that I == [ J Iu^ is
at most countable. "=i
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