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APPLICATIONS OF THE p-ADIC
NEVANLINNA THEORY

TO FUNCTIONAL EQUATIONS

by A. BOUTABAA & A. ESCASSUT

Introduction.

Let K denote an algebraically closed field of characteristic zero,
complete for an ultrametric absolute value, let a be a point of K, let R
be a positive number and let d(a^R~) be the disk {x\ \x — a\ < R}. We
denote by A(K) the ^-algebra of entire functions in K and by M.{K) the
field of meromorphic functions in K^ i.e., the field of fractions of A(K). In
the same way, we denote by A(d(a, R~)) the JC-algebra of analytic functions
in d(a, JR~), i.e., the set of power series converging inside d(a, R~), and by
M{d{a^ R~)) the field of meromorphic functions in d(a, -R~), i.e., the field of
fractions of A(d(a,R~)). Furthermore, here we consider the J^-subalgebra
Ab(d{a^ R~)) of bounded analytic functions inside d(a, R~), and we denote
by M.b{d(a, R~)) its field of fractions.

Given (m,n) € N x N \ {(0,0)} we denote by (m,n) the greatest
common divisor of m and n.

For every n € Z, |n|oo will denote the archimedean absolute value
of n.

In [3] we stated an improvement to the p-adic Nevanlinna's second
Main Theorem which is exactly what we need for applying this theory to the
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752 A. BOUTABAA & A. ESCASSUT

present study devoted to functional equations of the form gQ(f) = P(f)
in M(K) and in M(d(a,R~)). On the other hand, there does exist a
Nevanlinna Theorem for p-adic unbounded analytic functions inside a disk
such as d(a, R~). We will recall and use it in order to obtain similar results
for such functions. However, most results are somewhat weaker because
the p-adic improvement mentioned above when applying to meromorphic
functions in all K, no longer works for functions just defined in d(a, R~).

Our study will be applied to certain curves and to differential equa-
tions.

Parametrization of curves.

We denote by D an infinite bounded set included in a disk d(a, r), for
some r < R. Theorems 1 and 2 may apply to curves of genus 0 as well as
curves of genus ;> 1.

THEOREM 1. — Let P,Q G K[X] be two relatively prime polyno-
mials of degrees s and t respectively, let n be the number of distinct zeros
ofQ, let m e N*, and let g e M(d(a,R~)) be a non constant function
all poles of which have order > m. Suppose that there exists a function
f C M(d(a,R-)) satisfying g(x)Q(f{x)) = P(f(x)) for every x 6 D which
is not a pole off or g .

i) Assume that f ^ Mb{d{a, R~)). Then mn < t + 2m. Moreover, if
s > t, then mn < mm(t + 2m, s + m).

ii) Assume f,g e M(K). Then mn < t + 2m. Moreover, if s > t,
then mn < mm{t 4- 2m, s + m).

Examples. — 1) Let F be the curve of equation y^(x — bf){x — b") =
{x - c)3 (with 6', y, c all distinct) and let /, g e M(d(a, R~)) be such that
(f{u),g(u)) C r for all u e D. Then by Theorem 1 /, g e Mb{d(a, I?-)).

2) Let r be the curve of equation y^{x - bf)(x - b"} = (x - c)3 (with
V, y, c all distinct) and let /, g <E M{K) be such that (/(n), g(u)) e F for
all u C D. Then by Theorem 1 /, g are constant.

THEOREM2. — LetP(X)=A^tl(^-a.)s^,Q(X)=B^^l(^-
bjY^ be two relatively prime polynomials of K[X\ of respective degrees s
and t. Let m € N*. Let /, g e M(d(a,R-)) satisfy (^(a;))^/^)) =
P{f(x)) for all x e D .
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a) ^A;+n>l+^((mj5-^|oo)+^(m,^)+E;=i(^^)) then
both f and g lie in Mb(d(a, R~)).

Moreover, iff lies in A(d(a, R~)), and ifk+n > 1+^ (^Li(m, s,)+

E^=i(^-)) then f € Ab{d(a,R-)) and g e Mb(d(a,R-)).

13) If both f,g lie in M(K\ and ifk-^-n>l + ^((m, |s - t\^) +

Z^=i(77^ •^) + Z^L^771^'))? ^en both / and g are constant.

Finally, iff, g e M(K)\Kandifk+n^ 1 + ̂ (l + Eti(^^)+

E^i(m,^)j, then / admits at least one pole of order < m.

Examples. — 3) Let c',c" C ^ (with c' ^ c") and let F be the
curve of equation y3 = (a* - c')2^ - c"). Let f,g e ^(J^) be such that
(f(u),g(u)) C r for all u € -D. If / and ^ lie in A(K), they are constant.
If / and g are not constant, then / admits at least one pole of order 1 or
2. Here the genus is clearly 0, therefore there exist f,g € K{u) satisfying
93 = U- c')\f - c").

4) In the same way, let r be the curve of equation y3^ — b)2 = (x—c)
(with b ^ c) and let f,g G M{K) be such that (f(u),g{u)) G F for all
u C D. If / and g lie in A(K), they are constant. If / and g are not
constant, then / admits at least one pole of order 1 or 2.

5) Let r be the curve of equation y^^x — b)2 = (x — c')2 (x — c")
(with ^.c^c" all distinct) and let f,g e M(d{a,R~)) be such that
(f(u),g{u)) e r for all u e D. Then by Theorem 2 f,g e Mb{d(a,R-)).

6) Let r be the curve of equation y2^ — b'){x — b") = (x — c) (with
y.y'.c all distinct) and let / e A{d{a,R~-)) and let g e M{d(a,R-))
be such that (f(u),g(u)) e F for all u e D. Then by Theorem 2
/ € Ab(d(a,R~~)) and ^ e A^^^^-R")).

Remark. — The conclusion appears without determining the genus
of curves of equation y^^Q^x} = P(x). However, Theorem 2 lets us easily
obtain Picard Berkovich's Theorem [1] as far as curves of genus 1 and 2 are
concerned. Actually, Corollaries A) and B) are even more general because
they also apply to analytic functions in d(a,R~).

COROLLARY A. — Let r be an algebraic curve on K of genus 1 or
2 and let f,g G M(K) be such that (f(u),g(u)) € F Vn € D. Then f and
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754 A. BOUTABAA & A. ESCASSUT

g are constant.

COROLLARY B. — Let r be a non degenerate elliptic curve on K
and let f,g € A(d(a,R~)) be such that (f(u),g(u)) € r W e D. Then f
and g are bounded.

COROLLARY C. — Let r be an algebraic curve on K of genus 2 and
let f , g e M(K) (resp. f,g € M(d(a,R~))) be such that (f(u),g{u)) € r
\/u € D. Then both f and g are constant (resp. lie in A4b{d(a,R~))).

Indeed, every algebraic curve of genus 1 (resp. 2) is birationally
equivalent to a smooth elliptic (resp. hyperelliptic) curve [14]. So, we can
apply Theorem 2 with m = 2 , ^ = = 0 , 5 = n = 3 i n Corollary A), and s > 4,
n >_ 4 in Corollary C). Corollary B) is obvious.

Here we take this opportunity to recall that there exists no parametri-
zation of conies with a center, by entire functions, on the field K. Such a
result cannot be extended to bounded analytic functions as show the func-
tions sin and cos defined in d(0, (p~~p:ZI)~') when the residue characteristic
of K is p (resp. d(0,1~) when the residue characteristic of K is 0).

PROPOSITION A. — Let T be a non degenerate conic with a center
in K, and let f,g C A{d(a,R~)) be such that (f(u),g{u)) € F \/u C D.
Then f and g are bounded in d{a,R~). Moreover, if both f and g lie in
A(K), then they are constant.

Remark. — There exists no generalization of the p-adic Nevanlinna
Theorem to bounded analytic functions.

Equality f^-{-g" = 1.

In [4] it was proven that the equation /m + g71 = 1 in M.{K) leads to
/,p C K as soon as the least commun multiple q of m and n satisfies:
-L- + -1- + -L ^ 1 and that in A(K) it leads to f^g G K as soon as
min(m, n) > 2. Here we are now able to generalize these conclusions.

THEOREM 3. — Let f,g e M(d(a, R~)) satisfy g^ + /n = 1, with
min(m.n) ^ 3, max(m,n) > 4. Then both f and g lie in Mb(d(a,r)).
Moreover, if f^g e M(K), and ifmin(m,n) ^ 2, max(m,n) ^ 3 then f,g
are constant.

ANNALES DE L'lNSTITUT FOURIER
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THEOREM 4. — Let f,g C A(d{a,R~~)) satisfy g^ + /n = 1, with
min(m,n) :> 2. Then / and g are bounded in d(a^R~).

On the other hand, in order to complete results in this domain, we
have the following proposition:

PROPOSITION B. — Let f,geA(d(a,R~)) and let heAb{d(a,R~))
satisfy f2 + g2 = h. Then f and g are bounded inside d(a, R~).

Remark. — The p-adic functions sin and cos are bounded inside
d(0, (p"^"1) ) when the residue characteristic is p (resp. inside d(0,1~)
when the residue characteristic is 0) and satisfy sin2 x -h cos2 x = 1.

Applications to certain differential equations.

As a corollary of Theorem 1, we have Theorem 5:

THEOREM 5. — Let P, Q € K[X] be relatively prime, let g € N*, let
F G K[Xo,X^ ...XJ \ K[Xo,X^ ...Xg_i], let n be the number of distinct
zeros of Q, s = deg(P) and t = deg(Q).

i) Let f € M{d{a, R~)) \ Mb(d(a, R~)). Suppose that the equation
F(y,yf,y/f,...y{q))Q(f) = P(/) admits a solution in M{d(a,R~)). Then
{q + l)n < t + 2q + 2. Moreover, if s > t, then we have (q 4- l)n <
m i n ( ^ + 2 g + 2 , 5 + 9 + 1).

ii) Let f C M(K)\K. Suppose that the equation F ( y , y ' , y" , . . . . y^)
Q[f) = ?(/) admits a solution in M(K). Then (q + l)n < t 4- 2q + 2.
Moreover, if s > t, then we have (q 4- l)n < mm{t + 2q + 2, s + q 4-1).

In [2], it was shown that if the p-adic Yoshida equation (f) (y^^ =
F{x,y) (with F{x,y} € K{x,y)) admits solutions in M.(K) \ K{x), then
F 6 K{x)[y}, and deg (F) ^ 2m. Moreover, in [4], it was shown that if
F € K[y\, then any solution of the equation lying in A(K) is actually a
polynomial.

Here we extend this last result by studying all meromorphic solutions
of the equation when F € K(y).

THEOREM 6. — Let F(y) C K(y) and suppose that there exists
a non constant solution f € M(K) of the differential equation (8)
o/r = w
TOME 50 (2000), FASCICULE 3
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Then F is a polynomial A(y—b)d (0 < d <, 2m) such that m—d divides
m. In that case the solutions f 6 M.{K) \K of (8) are the functions of the
form f{x) = b + X(x - a)^, where A satisfies >rn~d{-^]Zd)rn = A.

In particular, when m = 1, we obtain the solutions of Malmquist's
equation when F e K(y):

COROLLARY D. — Let F € K(y) be such that the equation yf =
F(y) admits a non constant solution in M(K). Then either F(y) is of the
form A{y — b)2 and then the solutions in M{K) are the functions of the
form ————\ + b, or F is a constant A and then the solutions are the^±{x—a)
functions y = Ax + c, with c € K.

Now, what is true in the field K for meromorphic functions, (and in
particular for rational functions), also holds in any algebraically closed field
of characteristic zero, as far as rational functions are concerned, because
we have an obvious isomorphism from a finite extension E of Q containing
all coefficients of all rational functions involved in 8^ into K.

COROLLARY E. — Let L be an algebraically closed field of carac-
teristic zero. Let F e L(y). If the equation (y')171 = F(y) admits a non
constant solution f G L(x), then F is a polynomial of the form A(y — b)d

(0 < d <: 2m) such that m — d divides m. In that case the solutions
f € L(x) \L of (<?) are the functions of the form f(x) = b + \(x — a)771-^
where A satisfies A7"-^^)77" = A.

Remarks. — 1) In [12] (§31), two similar examples of Corollary E)
are considered, when m = 2.

2) Generalizing Theorem 6 to analytic functions in d(a, R~) does not
seem easy because there is no reason to think that F is a polynomial. Yet,
should it be a polynomial, when applying the Nevanlinna inequality to such
analytic functions, we no longer get a contradiction.

The proofs.

DEFINITIONS AND NOTATION. — Let log be the real logarithm
function of base p > 0. In K, the valuation v is defined as v{x) = — log \x\.
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Given an interval I , and functions /, g from I to R, we will write
f(r) < g(r) + 0(1) Vr e I if there exists a constant A > 0 such that
f(r) < g(r) + A Vr € I .

Given f C A(d(a, R~)) (resp. f e A(K)), f is the derivative of f.

Given f(x) = E^o^^ C A{d(0,R-)), (resp. e A(K)), we denote
by v ( f ^ p ) the valuation function defined by v(f,^) = mfn^v{an) + ̂
fi > — \ogR (resp. fi e R). This valuation can be extended to .M(d(0, R~))
(resp. to M(K)) by setting v(^ p) = v(f, fi) - v(g, fi).

LEMMA 1. — Let f e A(d(0,R~)). Then f e Ab(d(0,R~)) if and
only ifv(f^ fi) admits a lower bound when fi tends to — \ogR.

Let a G K and h = ^ € M(d{a,R~)) (with f,g € A(d(a, R~))).
If h has a zero (resp. a pole) of order q at a, we put uja(h) = q (resp.
^a(h) = —q). If h(a) -=/=- 0 and oo, we put uJa(h) = 0.

Let / = ^ € A^(d(0,J?-)) such that o;o(/) = 0, /i(0) = 1, g and
/i having no common zeros. Let r €]0, R[. Then Z(r, /) will denote the
counting function of zeroes of / in the disk d(0,r), which is also equal to
—v(g^ —logr) 4- v(^(0)), and N(r^f) will denote the counting function of
poles of / in the disk d(0, r), which is also equal to —v(h^ — logr).

For each integer k > 1, Z^](r,/) (resp. A^;j(r, /)) will denote the
counting function of zeros (resp. poles ) of / in the disk d(0, r), where such
zeros (resp. poles) are counted with the same order as in / when this order
is ^ k, and with order k when it exceeds k in /. In particular, Z^(r, f)
(resp. 7V[i](r,/)) is just denoted Z(r, /) (resp. N(r,f)).

Finally, in a p-adic field, as noticed in [7], the Nevanlinna's function
T(r, /) previously defined in [3], is also equal to

T^,-) = max(-v(^,- log r),-v(h,- logr)),

when cy(0) = /i(0) = 1.

LEMMA 2. — Let f C M(d(0, R-)) (resp. f € M(K), with /(O) + 0
and oo, and let I =]0,J?[, (resp. I =]0,+oo[^. Then T(r,/ - k) <
r(r,/) + 0(1) (r e /), VA: € K , Z(r,/ - k) ^ T(rJ) + 0(1) (r G I )
V/c € J^, A^(r, f-k)^ T(r, /) + 0(1) (r € J) VA; C ̂ .

Let 5 be a finite subset of K , and let h e .M(d(0,.R-)). We will
denote by Z^(r,/i') the counting function of zeros of h/, excluding those
which are zeros of h — c for any c C S.

TOME 50 (2000), FASCICULE 3
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In [3] we gave this improved p-adic Nevanlinna Theorem for mero-
morphic functions in K. The main improvement holds in the term - logr.
It comes from the intervention of the valuation function of a logarithmic
derivative in the classic proof of the theorem. Moreover, in order to obtain
the most powerful form of the theorem, one has to keep 7V(r, /) inside the
inequality, rather than replacing it prematurely by T(r, /). If we now con-
sider meromorphic functions inside / € M{d(0,R~)), We saw in [6] that
the same inequality holds and we obtain this more general theorem:

THEOREM N. — Let ai,...,0g G K, and let S = {ai,...,aj.
Let f e M(K) (resp. f e M(d(0,R~))) be non constant, such that
/(O) i SU {O.oo}. Let I =]0,+oo[ (resp. I =]^R[. Then

(9-l)^(r,/)<7V(r,/)+^^(r,/-a,)-Zo5(^n-logr+0(l)(reJ).
i=l

However, if / e Mb(d(0,R-)), then T(r,/) is bounded in J, so the
inequality is trivial. And if / e M(d(0, R-))\Mb(d(0, R-)), the inequality
is not trivial but the term - log r is no longer efficient when applying the
theorem because r is now bounded.

Lemma 3 is immediate and comes from Lemma 1:

LEMMA 3. — Let f e M(d(0,R-)) \ A^(d(0, R-)) be such that
/(O) i S U {0, oo}. Then T(r, /) is unbounded when r tends to R.

Remark. — When applying Theorem N to functions h(t}, we will
be able to make a change on the variable t of h so that the condition
"/i € M(K) non constant, such that /i(0) ^ 5'U{0, oo}" be satisfied without
loss of generality.

We will also use the following classical lemmas.

LEMMA 4. — Let a € K and let f e M(K) be such that f(x) ̂  a
\/x C K. Then there exists h € A(K) such that f = - + a.

LEMMA 5. — J fa ,6 ,m,seN* satisfy sa = mb, then a >, ——.

General notation in the proofs of all theorems. — When /, g are
supposed to belong to M(d(a,R~)) but are not supposed to belong to
M(K), we put I =]0, R[, and when f,g are supposed to belong to M(K),
then we put I =]0, +oo[.
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In Theorems 1 and 2, functional equalities true whenever x e D
obviously hold for all x e d(a, R-) (resp. for &ll x € K when /, g € M(K))
provided x is not a pole for / or g. Besides, without loss of generality, we
will assume a = 0.

Proof of Theorem 1. — If n < 2, the inequality mn < t + 2m is
trivial. So we suppose n ̂  2. Let Q(X) = H^(X - b^. Since P and
Q have no common zeros, each zero a of Q(f(t)) is a pole of g(t), and
therefore it is a zero of order at least m of Q(f(t)). As a consequence, for
each zero a of / - bj we have t^(/ - bj) ̂  m hence

W Z(r, f- b,) ̂ Z(r, /-&,).
m

But since Z(r,f - by) < T(r,f) + 0(1) (r e I), by (1) we have
n

(2) ^Z(r,f-b,)^-^T(r,f)+0(l) (re/).
j=i m

Then, by Theorem N, we obtain

(3) (n - l)T(r, /) < ^T(r, /) + N(r, f) - logr + 0(1) (r e /).

In particular, this implies

(4) (n-2)T(r,f)^-t-T(r,f)-logr+0(1) (r £ I)
l i b

and therefore, by Lemma 3, if / does not lie in Mb(d(0, R-)), we have
m(n - 2) < t. And if f,g lies in M{K), then when - logr tends to +00 it
is seen that the inequality (4) implies (n - 2) < -t-.

Now, suppose that s > t. Then each pole a of / is a pole of g and
therefore satisfies uJa{f)(s - t) = uJa{g), hence N(r,f) <, ^(r,/)(^).
Consequently, Relation (3) becomes m

(5) (n-l)^(r,/)<^^(r,/)+(s^)7V(r,/)-logr+0(l) (r e J),

and so we have (n - 1) < ^ + ̂  thereby mn < min(5 + m,t + 2m).
Finally, if in addition , / and g lie in M(K), as r tends to +00, inequality
(5) becomes strict and therefore mn < min(s + m, t + 2m), which finishes
the proof.

Proof of Theorem 2. — It is clear that if / is constant so is g. Suppose
that / is not constant. Then we have s = ̂  5,, t = ̂ , t,. For each

TOME 50 (2000), FASCICULE 3



760 A. BOUTABAA & A. ESCASSUT

% == 1,..., k, every zero a of / — a^ is a zero of g , and therefore is a zero of
order (Ja(f — ^) = ̂  But by Lemma 5, we have ^a(f — ^i) ^ (rr^s-y
In the same way, for each j = 1,.... n, every zero f3 of / — ^ is a pole of g ,
and therefore is a zero of order cc^(/ — bj) = rnctJ^9) ^ and by Lemma 5 we

have ̂ (5) > 7- .̂ So, we havetj {m,tj)

(6) ^/-^^"^r^.O+OO) (r€J),
?/t»

(7) z^y-^i^r^.O+OO) (re/).

Then, applying Theorem N to / at the points <xi, ...,0^;, bi, ...bn and
using (6) and (7) we obtain

(8) (k+n-l)T(r,f)
- k n

< -(^(m,Si)+^(m,^))r(r,/)+lV(r,/)-logr+0(l) (reJ).
'̂ v . - . - /

1=1 J==l

We will now find an upper bound of A^(r, /). Let 7 be a pole of / we
have

(9) {s-t)^(f)=m^(g).

In the same way, from (9) we obtain |^(/)|oo ^ /^ ^^—y and
therefore

(10) N(r, f) r. ̂ '^^^(r, /) < ̂ l^l00^ /).

We will prove (II):

(fc + n - l)T(r, /) ^ ̂  ((m, |s - A|^)

k n

(11) + ̂ (m, s,) + ̂ (m, t,))r(r, /) - logr + 0(1) (r e J).
i=i j=i

If s = t we just have the inequality 7V(r, /) < A^(r, /) < T(r, /). Then
from (8) we obtain

(k+n-l)T(rJ)
^ k n

<_^+^(^^)+^(^^.))T(r,/)-logr+0(1) (r € J).
Z=l J=l
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But in this case we have (m, \s — tjoo) = ^- So, we obtain (11). And if
s ̂  t^ by (8), we obtain relation (11) again.

Thus, from relation (11), using Lemma 3, if / does not lie in
A4b(d(O^R~)) we can get

- k n

(12) (k + n - 1) < - ((m, \s - t\^) + ̂ (m, s,) + ̂ (m, ̂ )),
m 2=1 j=i

a contradiction with the hypothesis. Hence / must lie in .Mb(c?(0,r~)) and
so must g.

Now, suppose /, g € A^X). When r tends to +co we can see that the
inequality (12) becomes strict. Therefore, if the inequality is not satisfied,
/ and g are constant. Conversely, suppose that / is not constant, and that
all poles of / have order > m. By (11) we have

(A;+n-l)r(r,/)

< 1 (E(̂  sl) + E(̂  ̂ V^ /) + 1T^ /) - ̂  + °W
i=l j=l

(r € J), which implies k+n-1 < ^( l+ Ez^Li^^) + E^=l(m^J))•
Hence, if this inequality is not true, / must admit at least one pole of order
< 771.

Finally, suppose / € A(d(0,R~)). Then (8) becomes
(13)

- k n

(A;+n-l)r(r,/) ^ -(^(m,^)+^(m,^))r(r,/)-logr+0(l) (r e J),
^'^i j=i

and then, if / does not lie in Ab(d(O^R~)), by Lemma 3 we obtain
k+n-K ^(E^tl(^^)+E^=l(^^J•)).henceA;+?2-l^ ^(s+t),
a contradiction. This finishes the proof.

Proof of Proposition B. — It is easily seen that /2 4- g2 factorizes
in the form (/ + ig)(f — ig) with %2 == —1. Suppose that \f(x)\ + \g(x)\ is
not bounded in d(a, R~). At least one of the functions / + ig, f — ig is not
bounded. But, by classic results on analytic functions [9], A{d(a,R~) \
Ab(d{a^R~) is stable for the multiplication. Therefore, f2 + g2 is not
bounded.

Proof of Proposition A. — If the equation of F is of the form
ax2 + by2 = U, with U € K, proof is provided by Proposition B. Now,
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we consider the general case. Since F has a center, by a suitable change
on variable of the form u = x — a, w = y — /3, we may assume that the
equation is of the form au2 + bw2 4- 2cuw = M. Moreover, since F is non
degenerate, we know that M -^ 0. We first notice that if a = b = 0, then /
and g are invertible in A{K), and therefore are constant. Thus, since a and
b play the same role, we may assume, for instance b 7^ 0. In this way, g is a
solution (in A(K)) of the equation bY2+(2cf)Y-{-{af2 -M) = 0. Thereby,
the reduced discriminant ^(c2 — ab) + bM must be equal to (bg — cf)2.
Consequently, putting h = bg — cf, we check that h2 = f2^2 — ab) + bM.
Thus, / and h satisfy an equation of the form A/2 -+- tih2 = v. But since
bM ̂  0, and since h lies in A{K), we come back to the first case, proving
that / and h are constant and therefore so is g. This ends the proof.

Lemma 6 will be useful in the proofs of Theorems 3 and 4.

LEMMA 6. — Let 77i, n G N* satisfy max(m, n) >_ 3 and min(m, n) >
2. Then we have
(14) mn >_ m + n + (m, n)

(15) mn > m + n.

Moreover, ifmin(m,n) >_ 3 and max(m,n) > 4, then

(16) mn > m + n + (m^nn).

Proof. — Without loss of generality, we can assume m < n. If
771 ;> 3, then mn > m + n + (m,n). Now, suppose m = 2, n > 4.
Then, mn = 2n > n + 2 + (n,2). Thus, (14) holds when m > 3, and
when m = 2, n ^ 4. It also holds when m = 2, n = 3, and so (14) is
proven and (15) is an obvious consequence. Now, suppose m > 3, n > 4.
If m > 4, then mn > 3n ^ m -h n + (m,n), and if m = 3, n > 4, then
mn = 3n > 3 -h n + (3, n), and this finishes the proof of (16).

Proof of Theorems 3 and 4. — Without loss of generality we may
obviously replace n by A:, and ^m by —(g^. Thus we assume that / and g
satisfy g^ = / k — 1. We will apply Theorem 2 in the case when Q(X) = 1,
P(X) = Xk — 1. We first place ouselves in the hypothetis of Theorem 3.
By Lemma 6, (16) is satisfied, hence we have k > 1 + ^((m, k) + k), and
then by Theorem 2, a), both /, g lie in A4b(d(a^R~)). Now suppose f^g
lie in M{K). If max(m.fc) ^ 3, min(m,A;) ^ 3, min(m,A;) > 2, then by
Lemma 6, (14) is satisfied, so we have k > 1 + ^;((m, k) + A;), and therefore
by Theorem 2, /3), / and 5' are constant. This finishes proving Theorem 3.
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We now assume the hypotheses of Theorem 4. We notice that if
m = k = 2, then by Proposition B / and g are bounded. We now suppose
max(m,A;) ^ 3. By Lemma 6, (15) is satisfied, hence we have k > 1 + k-
and then by Theorem 2, a), / and g are bounded. This finishes the proof
of Theorem 4.

Proof of Theorem 6. — Let / G M(K) \ K be a solution of equation
(e). Let b be a pole of F(X) and (3 a zero of / - b. Then (3 is a pole
of F o /, which contradicts the fact that / is a solution of the equation
(<?). As a consequence, / must avoid poles of F{X). Therefore F(X)
admits at most one pole b and then, is of the form R(X) = Qm,, with
Q(X) e K[X}, Q(b) + 0 and v G N*. In this case, by Lemma 4, / is
of the form / = b + ^ with / e A(K) \ K. From (S) we deduce that
h satisfies (/^m = (-l^h^^Q^ + ^). Since /z € .4(7^), and is not a
constant, h admits at least one zero 7, and then we can find M e R such
that M < v{^), and v(h^) < -v(b) V/^ < M. Then, v(b + ̂ ) = ^(6)
V/, < M, hence ^(Q(& + ^)) = ^(Q(6)) V/^ < M. As a consequence we
have mv^^) = (2m + ^)v(h^) + ^(Q(^)) V^ < M. But it is known
that v ( h ' , p ) > v(h^) - ^ V^ € R, (for instance th. 13.5 in [9]), hence
m(y(h, ̂ ) - /^)) ^ (2m + ^)v(/^, p) + ^(Q(6)), and therefore

(17) 0 < (m + v)(v(h, ̂ ) + p. + v(Q(&)).

Now, since M < ^(7), by classical results ( see for example Th. 23.18
in [9]) the function m{v(h,p) + p.) + v(Q(b)) is strictly increasing and
tends to -oo with ^ a contradiction to Relation (17). Thus F(X) has no
poles and is a polynomial P(X) = OQ + a^X + ... + adXd. Then using the
inequalities T(r, /') < 2T(r, /) and T(P o /, r) = dT(/, r) + 0(1), (r c 7)
(given in [2]), we deduce from (8) that d < 2m.

Now, if a is a zero of P(X) of order 6 and a is a zero of / - a of order
s, we have

(18) 5 = ———- and m > 6.m — 6
So all zeros of / - a are multiple and have the same multiplicity order. If
f3 is a pole of / of order t, we have

(19) t = —m— and m < d.
a — m

So all poles of / have the same order.

Suppose that P has k, (k > 2), distinct zeros ay of order <^,
(1 < 3 < k). By (18) for each j = 1,...,A;, m - ̂  divides m, hence
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m - 6j<, ^, therefore ^ ^ ^. Suppose / € A{K). By Proposition 1.9. in
[4], / belongs to K[X] \ K. Let u = deg(/). Then ud = {u - l)m, hence
H == ^m^, so m— d divides m. But since d = ̂  -^ <5y and since ̂  > 2- we
have ^1+^2 > '^1 and finally m < d. Thus, either / ^ ^.(X), and then (by
(19)) m < d, or / € A(jFC), and then m <, d. Consequently, since d—m > 0,
by (19) we obtain (20)

(20) N^f)=d^N^f)<d^T^f)+0(l\ (re I ) .

And by (18), we have

(21) z(r,f-aj)=m-^Z(r,f-a,).

Applying Theorem N, we have
k

{k - l)r(r,/) < Y^Z(rJ- a,) 4-^(r,/) - logr + 0(1), (r € J).
j=i

Now by (20) and (21) we obtain
k _ . ,_

(A:-l)^(r,/)<^m^^^(r,/-a,)+--^^(r,/)-logr+0(l),(re^
7 /6 »/('

J=l

And finally

(22) (^-l)T(r , / )^(A;-l)r(r , / )- logr+0(l) , (r € I ) .

This contradiction shows that P does not have several distinct zeros. So,
P is a polynomial of the form P{X) = A(X — a)d.

Now, since d = 6, by (18) and (19), f —a cannot have simultaneously
zeros and poles. As a consequence, either / e A{K) \ K and then, as it
was just said, / C ^[-^] \ K^ or / — a has no zeros and therefore / is of the
form a + ^ with h € A(K) \ K.

Suppose first that / C K[x} \K. Let i = deg(/) and let a be a zero of
f —a of order s. We have: (£—l)m == ^d, (s—l)m = sd, hence s = £ = m .
Then / is of the form \(x - aY + a, with X^^ = A^^ .

Conversely, given £ and A satisfying the above relations, one checks
that, for every a € K, the polynomial fa == \(x — aY + a is a solution of
the equation {y')^ == A(y — a)d.

Now suppose that / is of the form a + ^ with h G K[x] \ K. Then h
satisfies /I'771 = (-l)mA/l2m-d. Hence by [4] h lies in K[x}. We deduce that
h = ̂ {x-^ with f3,fi,keK such that A; = ̂  and ^ = (-l)mA(d^)m.
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Reciprocally, given k and ^ satisfying the above relations, one checks
that, for every f3 C K, the rational function f^ = a + •^L^ is a solution
of the equation (y^^ = A{y - a)<

Remark. — If we consider Equation (<f) in An(d(a,R-)), Relation
(21) no longer leads to a contradiction. This is why we cannot generalize
Thoerem 6 to functions in Au(d(a,R~)).

Acknowledgement. — We are very thankful to the referee for sug-
gesting us to generalize several results to functions defined in open disks.
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