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AUTOMATA, ALGEBRAICITY
AND DISTRIBUTION OF SEQUENCES OF POWERS

by J.-P. ALLOUCHE, J.-M. DESHOUILLERS,
T. KAMAE, T. KOYANAGI

1. Introduction.

Let K be a finite field of characteristic p. Let K ( (x) ) be the field of
formal Laurent series in x. We call f E K((x)) algebraic if it is algebraic
over the rational function field K (x) . We say that

where fn - 0 if n is sufficiently small, is p-automatic (see for example
[4] and the references therein), if there exists a finite automaton M =

(~, 0, T) over the alphabet ~p~ : ~0,1, - - - , p - 1 ~ such that

for any nonnegative integers n and L with

Keywords: Distribution of powers - Algebraic formal Laurent series - Automatic

sequences.
Math. classification: 11K41 - 11B85 - 68R15.
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where 1: is a finite set, uo E ~, ~ : ~ x ~p~ - 1: and T : E 2013~. In this case,
we say that M recognizes f. The elements in 1: are called the states and
o-o is called the initial state of M. We call T the output function of M.

Remark l. - The usual definition for that M recognizes f is different
from ours, but is that ( 1 ) holds for any nonnegative integers n and L with
(2) together with If we have a finite automaton M like this, then
we can modify it to have a finite automaton M’ = (~ x E, 0’, 
which recognizes f in our sense. In fact, we define

and

Thus, f is recognized by some automaton in our sense if and only if f is

recognized by some automaton in the usual sense.

The notion of "(p-)automaticity" does not change if automata read
the highest digit first, i.e., if we replace (1) by

In this case, we say that M dually recognizes f. If M recognizes f, then
the dual automaton M* dually recognizes f (Section 6).

It holds that

THEOREM 1 ([3], [4]). - The series f E K((x)) is algebraic if and
only if it is p-automatic.

This theorem was generalized to the multi-dimensional case by Salon:

THEOREM 2 ([12], ~13~). The formal power series F(x, y) E K [ [x, y] ]
is algebraic if and only if it is p-automatic.

F. von Haeseler and A. Petersen [8] and F. von Haeseler [9] also

discussed the multi-dimensional generalization. In fact, they proved the
equivalence between finite kernel property and automaticity in a general
setting which essentially implies our Theorem 6, which generalizes the "only
if" part of Theorem 2 for
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Here, e K for any n, rra E Z with m ~ 0 and it holds that for any
m ~ 0, there exists no (m) such that = 0 for any n  no (m) . The
meaning of "p-automatic" for such an F(x, y) is that there exists a finite
automaton M = (E, 0, ao, T) over [p] x ~p~ such that

for any nonnegative integers n, m and L with the following (4):

The reader may compare the definition with [I] and [9]. Our definition of
p-automaticity does not involve the part of with n  0.

We apply this theorem to discuss the distribution of the sequence
for f E K((x)), where If I is the nonnegative part of f, i.e.,

The following result was proved by Allouche and Deshouillers [2] (see
Deshouillers [5], [6], [7] for more precise results if f is rational).

THEOREM 3 ([2]). - For any algebraic f E K((x)), the logarithmic
distribution exists and its support has Hausdorff dimension
zero.

In the above, a Borel probability measure p on K [ ~x] j is called the

logarithmic distribution of a sequence in K[[x]] if for any
finite sequence (b &#x3E; 0) of elements in K, it holds that

Here, we call p simply the distribution of a sequence in K[[xl]
if for any finite sequence of elements in K, it holds that
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It is clear that, if a sequence has a distribution, then it has a logarithmic
distribution and both distributions coincide.

In Section 2, we obtain the generic distribution of for

random f E K((x)) such that min~n; fn # 0}  0. The generic distribution
is not the Haar measure on K[[x]] but is equivalent to it, which is proved
in Theorem 4 in Section 2.

In Section 3, we consider = when f E K[[xl].
In this case, there always exists a continuous distribution if 0 and

f =1= f o . Moreover, the distributions of f-l and coincide. In particular,
if f o = 1, then f and have the same distribution.

In the further sections, we consider

for an algebraic f (x) E K((x)). We give an alternative proof of Theorem 3
using the fact that F(x, y) is algebraic, and hence, p-automatic. In fact,
we prove that the support of the logarithmic distribution is not only
of Hausdorff dimension zero, but also of sublinear (block-)complexity.
We construct a finite automaton which recognizes F(x, y) for a rational
f (x) E K ( (x) ) to discuss the distribution of the sequence ( ~ f m ~ ) m~0 Using
it, we obtain a sufficient condition for the distribution to be the Dirac
measure at 0 in the case where either the denominator or the numerator

is a monomial. This generalizes results by Houndonougbo [10] and by
Deshouillers [6] as well as simplifies the proofs.

2. Generic distribution.

For any n e Z, denote Kn = If E I~((x)); f2 - 0 for any i  n~,
which is identified with the product space Let An be
the uniform distribution on Kn. That is, An is the product measure

(~K ) ~n’n+1’n+2’ ~ ~ ~ ~ , where AK is the uniform probability measure on K. The
following theorem is essentially due to De Mathan [11] (see Théorème 3 bis,
p. 40).
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THEOREM 4. - For any n  0 and for almost all f E Kn B Kn+1 with
respect to an, the distribution of (If -1),n_,o exists and is equal to

where T : K[[x]] ~ K[[x]] is defined by T(f) = E:o fixpi. Hence, J-l is

equivalent to Ao and the support is the whole space K[[x]].

COROLLARY 1. The logarithmic distribution of for

f E K[[x]] or algebraic f E K((x)), for which we know that the sup-
port has Hausdorff dimension 0, is singular with respect to this generic
distribution /-t.

Remark 2. - The uniform distribution Ao cannot be a logarithmic
distribution of the sequence for any f E K((x)), since the
relative frequency of m such that ( f m ) 1 = = 0 is at least 1 /p
as = = 0 ( j = 1, 2, ...) . On the other hand, the Ao-measure
of the set of g E K[[x]] such that gi = gp+1 = 0 is at most 1 /p2 .

Proof of Theorem 4. - Let f = r_i,,, Zixi be a random variable on
Kn B where Zn+2, Zn+3, ~ ~ ~ are independent random variables
uniformly distributed on K and Zn is a uniformly distributed random
variable on K B 101 which is independent of Zn+2, Z.+3, - - ’- Take
any m &#x3E; 0 which is not a multiple of p. Then, for any i &#x3E; 0, we have

where E I~ and E K B ~0~ are random variables determined by
Zn, Zi-n(m-l)-l. Therefore, for any k and (co, c1, ~ ~ ~ , Ck-1) E
K k we have
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where denotes the number of elements in K. Now let us estimate

the variance of where we denote by
a(M) the set of the least M positive integers not divisible by p. We denote
A = (~K)-1 and B = n . Then we have

The last equality in the above holds since for any m, h E a(M) with
m - h &#x3E; B, the term

can be written as the sum of terms:

which has 0 expectation since all the terms but A) are

determined by Zn, ~+1,’ " , while as above

Thus the variance of is at most

(2B + 1) /M and we have the law of large numbers. That is, with prob-
ability I, converges to Ak. Since this
holds for any finite sequence (co?ci,’’’ E it holds with proba-
bility 1 that the distribution of is Ao , where a(oo) is the set
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of positive integers which are not multiples of p. Since

the distribution of is Ao with probability 1. In the

same way, the distribution of is Ao o T-2 with probability
1. Hence, the distribution of is

which completes the poof. D

3. Case K[[x]].

In this section, we consider the case where f E K[[x]]. That is,

For a positive integer N, let , Let G be a transformation

on the finite set K[O,N) := 191N; 9 E K[[x]]l defined by G(g) := (9f)IN-
Then, since we have for m = 0,1, 2, ~ ~ ~, the sequence

E in m is ultimately periodic. We have 3 cases.

If fo == 0, then = 0 for any m ~ N.

If f = f o ~ 0, then since (I) = 1, I N is purely periodic in m
with period p - 1.

Assume that f # f o 7~ 0. Let n E N satisfy that p’-l  N ~ pn.
Then since 1, is purely periodic in m with period
(p - Let cN be the least period of the sequence fmlN in m. Then
we have (p - 1 ) pn  p(p - It is clear that if

1m -  cN . Hence, f has a distribution, say ltf, and pf is continuous

We prove that pj is continuous if f # 0. Assume that

Let no be the least positive integer such that f no =1= 0. Let cN =

pL c’ with c’ which is not a multiple of p. Since ( f ~~ ) no ~ 0, and
1, we have pLno &#x3E; N. Hence, pL &#x3E; N/no and CN ---t oo as

N - oo. Thus, pf is continuous.
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The complexity of a closed subset Q of K[[x]] is defined by

Let Q( f) be the topological support of the measure pf on K[[x]]. Then it
is clear that = cN for any N = 1,2,’ -.

When we discuss the Hausdorff dimension of subsets in K[[x]], it is

with respect to the metric p defined by

for any w # w’ E K[[x]]. For the a-Hausdorff measure A~ of Q(f), we have

for any a &#x3E; 0. Thus, = 0.

THEOREM 5. - For f E K[[x]], the sequence ({ f m~)m=0,1,~~. has a
distribution I-Lf. If fo = 0, then /-If is the Dirac measure at 0 E K((x)). If

0 and fo, then pf is a continuous distribution supported by Q(f)
while Q(f) has a sublinear complexity and hence 0-Hausdorff dimension.
In fact,  for any N = 1 , 2 , .... Moreover, in this case,
it holds that /-If-l == Ilfo-2f.

Proof. We only have to prove that pf It suffices to

prove this in the case f o = 1. Since fpk lpk = 1, fPk = f-mlpk for any
k = 1 , 2, ... and m with 0 ~ m  p~ . This implies that 0

4. Construction of automata.

For i E ~p~ , define the linear operators Xi and x on ~((~)) [[?/]] by
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and

LEMMA 1.

if n - i and m _--_ j mod p,
otherwise.

Proof. - Assertions (i) and (ii) are clear from the definition. For the
proof of (iii), it is sufficient to remark that G(x, y)P = G(xP, yP) holds for
any G E K ((x)) [ [y] ]. El

We state now a theorem to be compared with [3], [4], [9], [12], [13].
The proof either follows from them or at least is essentially the same. But
for the readers’ convenience, we give the proof.

THEOREM 6. - IfF E K((x)) [[y]] is algebraic, then it is p-automatic.
Proof. - Assume that a nonzero element F C I~((x)) ~~~~~ is algebraic

over K(x, y) with degree ho. Then, the elements F, FP, FP2, ~ ~ ~ , are

linearly dependent over K(x, y). Let h be the least integer such that
F, FP, F~ , " ’, are linearly dependent over K(x, y). Then, there exist
Ao, ~i~2?’ " , Ah E K[x, y] with at least one of them nonzero such that

We may also assume that Ao, A1, A2, ~ ~ ~ , Ah have no nontrivial common
factor.

We prove that 0. Suppose that Ao = 0. Then we have

Since at least one of ~1,~2?’ " Ah is nonzero, there exist i, j E [P] such
that at least one of is nonzero. Then,
by Lemma 1,

which contradicts the minimality of h.
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Thus, we have (7) with 0. Let G : = F/Ao E K((x))[[y]]. Then,
it holds that

Note that S ( f ) is a finite set containing F. For any i, j E ~p~ and
H E S(f) with

it holds by Lemma 1 that

since, for any k = 0,1, - - - , h - 1,

be the finite automaton over [p] x [p] such that

for any H E 8(f) and i,j E ~p~. Let 8(f) be the set of
states in S(/) which are attainable from the initial state F in M( f ), i.e.,
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the set of states S’ E S( f) such that there exists a finite sequence of inputs
in [p] x [p] which sends the state F to S. Let M( f ) : (S( f ), 0, F, q) be the
automaton obtained from M( f ) by restricting the set of states to be 8(f).

We prove that M( f ) recognizes F. Take any nonnegative integers
n, m and L with (4). It holds that

which completes the proof. D

5. Rat ional functions.

Let

9 x - 
P(x) where F E K x are co rime(9) f(x) = &#x3E; where P,Q ~ &#x3E; are coprime
OM 

I

be a rational function in K((x)). Then, F(x, y) defined in (5) satisfies

Let

Let S( f) be the set of all H E K~x~ with max{degP,degQ}.
Define 0 : E x [p] x [p] ~ ~ by

Let T : ~ ~ K be T (H) - ( ~ )o, i.e., the coefficient of H E K((x)) of
degree 0. Thus, we define a finite automaton (S’( f ), ~, Q, T) over [p] x [p].
Let S(f) be the set of states in 3(f) which are attainable from the initial
state Q in this automaton. Let M( f ) . (S’( f ), ~, Q, T) be the automaton
obtained from (8(f), 0, Q, T) by restricting the set of states to be 8(f).

THEOREM 7. - The .finite automaton M( f ) recognizes F(x, y).
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Proof - For H E S f ) and i, j E [p], it holds by Lemma 1 that

Take any nonnegative integers n, rrz and L with (4). Then it holds that

which completes the proof. D

Let f be as in (9), F be as in (5) for this f, and the finite automaton
M := M( f ) be as above. For each i E [p], let Mi . := be

the finite automaton over (P] such that O(H, i, j) for any j E (P]
and H E S f ). Then, the sequence (Fn,m )m~o in K for a fixed nonnegative
integer n with (2) is "recognizable" by the sequence of automata related
to n:

in the sense that

for any nonnegative integers m and N &#x3E; L with

THEOREM 8.

(i) The distribution of the sequence is equal to 60, the

Dirac measure at 0 E K((x)) if in the finite automaton Mo as above, 0
is attainable from any state in S f).
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(ii) If P = 1 and Q 7~ 0 satisfies Q(O) = 0, then the distribution of the
sequence is equal to bo.

(iii) If Q - x~ 1, P(o) ~ 0 and for some k = 1, 2, ~ ~ ~, P~
lacks the term xku, i.e., (pk)ku = 0, then the distribution of the sequence

equal to bo.

Proof - (i) Assume that 0 is attainable from any state in ,5’( f ) in
Mo. By the above consideration, 0 is the only "sink" of the sequence of
automata related to any n &#x3E; 0. Since T(0) = 0, this implies that for any
n &#x3E; 0 the frequency of 0 in the sequence is equal to 1. Thus,
the distribution of the sequence is equal to bo .

(ii) Since is if p ~ c and 0 otherwise,

only if p~ ~ I c. Therefore, for any H E S( f ) and for any sufficiently large
integer k, it holds that

Assume that H = C (constant). Then, since

the relation J(O) = 0 follows from the assumption Q(0) = 0.

Thus, 0 is attainable from any element H in ,S’( f ) in Mo by reading
(p - 1) sufficiently many times followed by reading (p - 2) once and again
(p - 1 ) sufficiently many times.

(iii) Assume that (pk)ku = 0 for some k = 1, 2, .. ’. Since 0) is
and 0 otherwise,

only if pi I c - u. Therefore, for any H E S’( f ) and for any sufficiently large
integer j, it holds that
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Therefore, for any state in S(f), there exists C E K such that Cxu is

attainable from it. Hence, it suffices to prove that 0 is attainable from xu.

Therefore, 0 follows from the assumption 0. Thus, 0 is

attainable by applying the preceding procedure again, which completes the
proof. D

Remark 3. - To cover the case where one of P or Q is a monomial,
we have to consider the following subcases in addition to (ii) and (iii) in
Theorem 8:

The distribution is 60 in the cases (v) and (vii), since ( f m ) n - 0
if m &#x3E; n. In the cases (iv) and (vi), the distributions are continuous by
Theorem 5 if f is nonconstant. In the case (viii), the distribution is always
continuous by [6]

The case (iii) in Theorem 8 is due to Deshouillers [6]. Here we gave
an alternative and simpler proof.

Example 1 (Pascal triangle). - Let p = 2, K = f 0, 11 and f = 1 + x,
(P = 1 + x, Q = 1). Then, the table is the Pascal triangle
modulo 2. In the automaton M = M( f ), the initial state is 1, S( f ) _ ~0,1~,
and it holds that

, , - - - _
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Figure 1. - Automaton in Example 1.

for any i, j E [2]. Therefore, Mo has two sinks 0 and 1. Furthermore we

have T(O) = 0 and 7-(1) = 1.

The distribution p for this f is determined using the automaton. In
fact, we have

Define a partial order on the nonnegative integers by

n ~ m if and only if ni - m2 for all i,

where we use the notation in (4). Then, for any fixed m ~ 0, the function
defined by Fm(n) == is monotone decreasing with respect to the

partial order ~ on the set of nonnegative integers. It is not difficult to

see that Q (f ) consists of all gnxn such that the function n ~ gn
is monotone decreasing in this sense. The distribution is the uniform

distribution on Q( f) in some sense.

By the arguments in Section 3, the function m H is purely
periodic with least period at most 2~ for k = I, 2, . ". In our case, it is

exactly 2k since otherwise, there exists m with 0  m  2~ such that

Fmbk = Fo 12k = 60. But this is impossible since Fm,m = 1

by (11). The p-measure of the cylinder determined by Fmbk is 2 - k for

77~=0,1,’’’,2~2013 1 using the periodicity.
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Figure 2. - Automaton in Example 2.

Example 2. - Let p = 2, K = {O, I} and f = (1+x2)/x, (P = l+x2,
Q = x). Then, we have

In this case, f has a distribution equal to 60.
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6. Dual automata and complexity.

Let M( f ) : (S( f ), 0, F, q) be the automaton constructed in Section 4
which recognizes F in (5) for an algebraic f E K((x)). We construct the
dual automaton M(f)* := (S(/)*,~*,?7,F*) over [p] x [p] which dually
recognizes F.

Let

where 8(f) - 8(f) is defined by 0 (H, i, j), VH E 8(f).
Let 8(f)* be the set of all states which are attainable from the initial
state Ti in the automaton (S(/) ,*,,F*) over [p] x [p]. Let M(f)* :==
( S ( f ) * , ~* , r~, F* ) be the restriction of this automaton.

Then for any nonnegative integers n, m and L with (4), we have

Thus, M ( f ) * dually recognizes F.

THEOREM 9. - If f is algebraic, then it holds that

for any n = 1, 2, 3, ~ ~ ~, where the notation is as in (6). In particular, the
logarithmic distribution of the sequence is supported by S2( f )
which has Hausdorff dimension zero.

Proof. - Since the table for 0 with
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is determined by

there exist at most different tables as above. Hence, there exist at
most different sequences among (v - 0,1, 2, ~ ~ ~ ) .
Take any positive integer n. Then, there are at most different

sequences among (v - 0, 1, 2,...), since there exists a

positive integer k such that n  pn. Thus, we have

for any n = 1, 2, 3, .... For the a-Hausdorff measure A~ of ~(/), we have

for any a &#x3E; 0. Thus, dim 0.(f) = 0. D

Problem. - It seems to be true that if f E K((x)) is algebraic, then
the sequence (If - 1),,,&#x3E;o has a distribution which is either bo or continuous.
We do not have a proof of this assertion.
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