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Lp-Lq ESTIMATES FOR FUNCTIONS

OF THE LAPLACE-BELTRAMI OPERATOR

ON NONCOMPACT SYMMETRIC SPACES. III

by M. COWLING, S. GIULINI &#x26; S. MEDA

Ann. Inst. Fourier, Grenoble
51, 4 (2001), 1047-1069

Dedicated to the memory of Nanda

This paper is the third of a series on semigroups of operators related
to the Laplace-Beltrami operator on a symmetric space of the noncompact
type. The heat and the Poisson semigroups, together with some variants
and applications, were studied in and [CGM2]. Here we study the
Poisson semigroup in complex time.

Let G and K be a connected noncompact semisimple Lie group with
finite centre and a maximal compact subgroup thereof, and consider the

symmetric space G/K, which we also denote by X. There is a canonical
invariant Riemannian metric on X; denote by - £’0 the associated Laplace-
Beltrami operator. By general nonsense, £o is positive and essentially self-

adjoint on (7~(~); let ,C be the unique self-adjoint extension of ,Co and
the spectral resolution of the identity for which

where b = (p, p), p being the usual half-sum of the positive roots.
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For 8 in ~0,1~, the (complex-time) 8-Poisson semigroup is

defined by

If I  p, q  oo and an operator T satisfies a norm inequality of the
form

then T is said to be LP-Lq-bounded. If I x p, q x oo, we denote by Ill’Tlllp;q
the norm of the linear operator T from LP (X ) to We write )))T)) )p
instead of IIJEJ11p;p. As usual, p’ will denote the index p/(p - 1) conjugate
to p.

The operators for T in R+, form the Poisson semigroup consid-
ered by J.-Ph. Anker [Al], by Anker and L. Ji [AJ], and in [CGM2]. In
[AJ], optimal upper and lower bounds for the kernel of P,,o were found,
while in [CGM2], the behaviour of as 7 tends to 0 and to 00 for

all p and q in for which P,,o is Lp-Lq-bounded was described. In

this paper we consider the operators Pr,o in the case where 8 = 1 and T
is complex and Re T &#x3E; 0, and study the behaviour of This in-

volves finding explicit formulae for the kernel, so in some sense our work
also develops that of [AJ]. We remark that the shifted Laplace-Beltrami
operator -£ + b, corresponding to the case where 0 = 1, occurs naturally
in geometry, as it is conformally invariant; see, e.g., S. Helgason [H2]. An
analysis of the operators in the case where 0  0  1 will be carried

out in a forthcoming paper.

For brevity, in the rest of this paper we write Pr instead of P,,,.
Our main theorem describes the behaviour of for various

possible values of p and q and for T in various subsets of the right
half of the complex plane. This description is nearly complete, but when
p  2  q and ITI is large but T is nearly imaginary, our methods do not
yield good estimates. To formulate the theorem, we need three definitions:
H = (T E C : Re 7 &#x3E; 01, while if T is in R+, then DT and HT are defined
by

and

The first of the regions is a half disc, while the second is the area to the
right of a hyperbola.

It is obvious if T E H, then Par is bounded on L 2(X) , and
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THEOREM 1. - Suppose that 1 ~ p, q x oo and T E R+ - Then the
following hold:

and further

(v) ~0~ and PT is LP-Lq-bounded, then p = 2 = q.

We use two distinct approaches to describe the behaviour of 
For the case where T is in HT, we use spectral methods, similar to those of
our previous papers [CGMl] and [CGM2]. The proofs of Theorem 1 (i)-(iii)
are given in Section 2.

When T is in DT, we write the kernel of 7~T in terms of the wave
propagation operator b) 1 ~2 ) . This technique was developed by
J. Cheeger, M. Gromov and M. Taylor [CGT] and by Taylor [T], in

their studies of functional calculus for the Laplace operator on general
Riemannian manifolds with bounded geometry. Subsequently, J.-Ph. Anker

[A2] adapted this method to estimate the kernels of certain functions of L
on noncompact symmetric spaces. However, the estimates of these authors
follow from the finite propagation speed of the wave operator, while we
need more refined information to estimate the local part of the kernel.

Essentially, we write the kernel of the wave propagation operator as a sum
of certain explicit distributions and a remainder term which is relatively
smooth and well behaved. The main results we obtain using wave equation
methods are Lemma 3.3 about the "local part" of the operator 7~- when T
is in DT, and Propositions 3.6 and 3.7 establishing Theorem 1 (iv) and (v).
We obtain upper estimates for for all T, but we do not know how
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good these are when the imaginary part of T is arbitrarily large, because
we are not able to expand the kernel of the wave propagation operator with
uniform estimates of the remainder over arbitrarily large sets. We believe
that this is a very interesting problem.

Applications of our results to the study of the regularity properties
of the wave equation for fixed time will appear in a forthcoming paper.

1. Notation and background material.

We use the standard notation of the theory of Lie groups and
symmetric spaces, as in the book of Helgason ~H1~ . Our notation here is also
consistent with our papers [CGM1] and [CGM2], to which we refer several
times. In particular, G denotes a noncompact semisimple Lie group with
finite centre, NAK an Iwasawa decomposition of G, and X the Riemannian

symmetric space We identify functions on X with K-right- invariant
functions on G in the usual way. Thus, if f is a K-right-invariant function
on G, we say that f is supported in the ball B(o, 1), the closed ball in X
centred at the origin o in X of radius 1, when the corresponding function on
X has this property. Similarly, for x in G, we define Ix to be the geodesic
distance between xK and o in X. We denote by n the dimension of X, by
.~ its rank, and by v the "pseudo-dimension" 2 1 E 0 + + 1, where is the
cardinality of the set of the positive indivisible roots of (g, a) .

For any x in G, we denote by A(x) the element of a such that x is
in NexpA(x)K. For any linear form A : a -4 C, the elementary spherical
function ON is defined by the rule

The spherical transform f of an L1(G)-function f is defined by the formula

Harish-Chandra’s inversion formula and Plancherel formula state that
I-

for "nice" K-bi-invariant functions f on G, and
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where dp(A) = cG 1(.-B) ,-2 dA, and c denotes the Harish-Chandra c-function.
For the details, see, for instance, [HI], IV.7.

We often deal with the inversion formula and the Plancherel formula

with radial integrands. Using polar co-ordinates in a*, it is easy to see that
there exists a real analytic function on R+ such that if g : [0, oo) -~ C
and f(A) = for all A in a*, then

provided the integrals converge. In [CGM1], §2, it is shown that

Let Wi be the interior of the convex hull in a* of the images of p
under the action of the Weyl group of (g, a). For 6 in (o,1 ) , we denote by
W 8 the dilate of WI by 6 and by T 8 the tube over the polygon W6, i.e.,
T5 = a* + W5 and T 8 denote the closures of these sets in a* and
aê respectively.

For T in H, we denote by pr the K-bi-invariant function (or distribu-
tion) on G such that pT - PT, where

Then

Note that Pr does not continue analytically to the tube TE, for any

positive 6. Define (formally) the operator ,C1 by the formula

By spectral theory, PT f = for all f in L2(X).

Frequently, we deal with operators which are defined by convolution
with K-invariant kernels on G; when we do, we usually indicate the kernel
and spherical Fourier transform corresponding to the operator TZ by r and
R respectively.

Positive constants are denoted by C; these may differ from one line
to another, and may depend on any quantifiers written, implicitly or

explicitly, before the relevant formula, and on any written explicitly after.
The expression
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where D is some subset of the domains of A and of B, means that there
exist constants C and C’ such that

The expression A(t) ~ B(t) as t - to means that A(t) /B (t) 
We denote the integer part function by [].

2. Norm estimates for P,.

In this section we prove Theorem 1 (i)-(iii). For the readers’ conve-
nience, we recall the statements.

THEOREM 1. - Suppose that 1 ~ p, q  oo and T E R+. Then the

following hold:

and further

Remark. - To prove (ii) and (iii) we use estimates for III Pt 111,;, for
real t, namely, 

and

These are corrected versions of estimates in [CGM2]. In [CGM2], we
assumed implicitly that 0  1 in the proofs of the results (if not in the
statements). The correct statement of [CGM2], Lemma 3, for the case where
9 = 1 is that
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and

The proof of these estimates is easier than the proof of the corresponding
estimates for p’,g when 0  B  1 given in [CGM2], Lemma 3. When these
corrected estimates are used, the estimates for given above follow

by the argument used to prove [CGM2], Theorem 1.

Proof. We first prove (i). The condition that p  q is a generali-
sation of [H61], Theorem 1.1. Denote by h, the fundamental solution of the
heat equation at time 1. If q  2 and 7~- is Lp-Lq-bounded, then (Prhi) 

~

must be analytic in T2/q-1- This implies that q &#x3E; 2. The condition that

p  2 follows by duality.

To prove (ii), we first consider the case where p  2 = q. By spectral
theory, Pijm, is an isometry on L2 (X ) , /!!2 for all f in
LP(X). Thus,

as required. We argue similarly in the case where p = 2  q. We now prove
the upper estimate for part (iii). Clearly,

Finally, we prove the lower estimate for (iii). As a preliminary, note
that if m is in R+ and I~ (r) ~  C rm for all r in R+, then

Now observe that

By passing to polar co-ordinates, we see that
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For an appropriate constant c, ~(r) ~ c rv-1 as r -4 0, and so

where for all r in R+. Thus

and so

as T tends to 0o in HT. Combining these estimates, it follows that

for all T in HT such that IT is large enough; it follows
that this estimate holds for all T in HT by a compactness argument. D

3. Analysis of PT when T is small.

In this section, we study 7~T when T is small. Our approach is like that
of [CGT], but we use a more sophisticated device than finite propagation
speed. We prove the last parts of Theorem 1 in Propositions 3.6 and 3.7.
We begin with a little real analysis. 

,

For T in H, we define the function p~ : Il~ -~ C by the formula

Clearly

By spherical Fourier analysis

Thus, by spectral theory,

We will expand using the Hadamard parametrix, and then

integrate term by term. In order to control the errors, we have to restrict the
range of integration, which involves decomposing pR into a local part, where
it may be large, and a part "at infinity", where it is uniformly small. We
will need some results about p~, which we present in Lemma 3.1, and some
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results about the distributions which appear in the Hadamard parametrix,
which we present in Lemma 3.2. Then we return to the symmetric space
X.

LEMMA 3.1. - Suppose is in IIg+ and n is in N, such that

-y = 1 and n &#x3E;, 2 &#x3E; 1 and n &#x3E; 2~, and, for T in R+ and T in DT,
define T, T) by the formula

Then

uniformly for T in R+ and T in DT, with bounds Cl and C2 which depend
on n and -y .

Proof. We eiØ. The change of variables r - 
shows that

Observe that

Therefore, if so that

Similarly, if , so that
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Finally,

It is easy to check that

and the above estimates combine to give the required result. 0

We define the analytic family of locally integrable functions ~x+ :
Re z &#x3E; 0} on R by the rule

This family admits an analytic continuation as distributions to the whole
complex plane.

Given a bounded continuous function f : IR+ -4 C such that

where -y is in (1/2, oo), we may define the function
by the formula

Later, we will also use * to denote convolution on R; it will be clear from
the context which use of the symbol * is intended.

LEMMA 3.2. - Suppose that the function f and its derivative f’ are
both continuous, and that = and If’(v)1 = O(v-~’), where -y
is in (1/2, oo). Then
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If T is in DT and f = p~, then

Proof. The first result is a standard convolution manipulation:

Now suppose that T is in DT and f = p~. The change of variables
w = (T’ + (v - u) shows that

The last integral is equal to 7r, and the desired formula is proved. 0

Now we work in the symmetric space X. We denote by br the ball

in p with centre 0 and radius r and by ,5’p the unit sphere in p, equipped
with surface measure a ; the exponential map exp : p -~ X gives geodesic
co-ordinates in X centred at o, and exp br is the ball of radius r centred at o
in X. Let J denote the Jacobian of the exponential map from p equipped
with Lebesgue measure to X equipped with Riemannian measure.

Suppose that U is in C°°(p) and s is in R+. Given z in C, we define
to be the distribution on X which acts on smooth compactly

supported functions V) by the formula

This formula is defined as a convergent integral when Re z &#x3E; 0, and by
analytic continuation (using the second expression) for other values of z.
When Re z &#x3E; 0, then z) is given by an integrable function on X, and
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For s in R+, let denote the K-invariant distribution on X, whose
spherical Fourier transform (when viewed as a K-bi-invariant distribution
on G) is given by

The Hadamard parametrix construction, applied to the hyperbolic operator
at + £1 , gives the following formula 

where Uj is a smooth K-invariant function on X for all nonnegative
integers j (see [B], Proposition 27 or, for more details about the method,
~Ho2~ , 17.4-17.5). Further, the function Uo is positive and bounded above
and away from zero on all compact sets.

Write

If ,S’ is in R+, then, by [Ho2], 17.5.4 and the considerations thereabouts,
there exists a constant CS such that

Thus we may write

where

We decompose pr. Let cv : R - ~0,1~ be a smooth even function,
supported in [-3T, 3T], which is equal to 1 in [-2T, 2T]; in order to

establish estimates which are uniform in T, we also assume that the
derivatives of w satisfy Ilw(j)" 00 CN when j = 0,1,..., N. Let aT and



1059

bT denote the K-bi-invariant functions whose spherical Fourier transforms
are defined by

and

Notice that pT - aT + bT and that aT is supported in B(o, 3T), by finite
propagation speed. The analysis of aT is quite difficult and is carried out
in Lemma 3.3. This is done by using the asymptotic expansion of the wave
propagator near the point o. The idea is simple but the details are rather
involved. The analysis of the mapping properties of the operator hinges
on easy estimates of bT and bT ; this is carried out in Proposition 3.4.

The analysis of the operator ~T is carried out in Proposition 3.5 and

Proposition 3.6.

We now prove our main result concerning aT .

LEMMA 3.3. - Suppose that T is in R+. The function aT is smooth,
K-bi-invariant and supported in B(o, 3T), for all T in DT. Further,
(2)

where c = 1/2 if n is even and 1 if n is odd, and the error term E satisfies
the inequality

uniformly for T in DT. Finally, for a1l q in [1, oo],

Proof. First we show that aT is smooth. The spherical Fourier
multiplier AT corresponding to aT is given by the formula A, (A) = 0152T(BÀI),
where 

,

then 0152T is the Fourier transform of a hence lies in the

Schwartz space S(R), and is even. It follows that AT lies in the Schwartz
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space S(a), whence aT lies in Harish-Chandra’s Schwartz space S2 (G), so
is smooth.

Observe that

where is interpreted distributionally by analytic continuation.
Define El (Y, T) by the formula

Lemma 3.1 and formula (1) imply that

if n &#x3E; 2; if n = 2 then the expression in square parentheses on the right
hand side of the inequality must be replaced by log(T/ Re T) + 1.

We now consider

Define the functions q, : R+ - C and rR : R+ - C by the formulae

Suppose that h is in N. To simplify the formulae, we often write u in place
of |Y|2 in the rest of the proof. Differentiation with respect to a real variable
is denoted by D, or by Dv to indicate that the variable is v. If Re z &#x3E; 0,
then

by definition of x+ .

Suppose that n is even. By analytic continuation, the definition of q~
and rt, and Lemma 3.2, it follows that
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We take h equal to (n - 2j)/2 in the preceding formula, multiply by
Uj, and sum over j, to conclude that, for even n,

where

Define E(Y, T) to be T) + E2 (Y, T). Then, in order to prove formulae
(2) and (3) for the case where n is even, it remains only to estimate E2 (~, T).

We claim that /~ 1/2 * rR is smooth and that -~ 1/2 * DhrR is bounded
in R+ for all h in N. To see this, note first that, by Leibniz’s rule, DhrR
is a sum of terms involving derivatives of p$ (%) and 1 - w( vf"), and recall
that 1 - w (s) vanishes unless 1 &#x3E; 2T 1, while D3cJ(s)
vanishes unless and Note also

that, if
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It therefore follows that, if h  N, then
l...

We deduce that

This proves our claim, from which it follows immediately that

as required to complete our proof of formulae (2) and (3) in the case where
n is even.

If n is odd, the argument to prove (2) and (3) is similar but easier,
and we just outline it. By analytic continuation of formula (4), if h is in N,
then 

--

We take h equal to (n - 2j - 1)/2 in the preceding formula, multiply by
Uj, and sum over j, to conclude that, for odd n,
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where

Define E(Y, T) to be El (Y, T) + E2 (Y, T). Then, in order to prove formulae
(2) and (3) for the case where n is odd, it remains only to estimate E2 (~, T).
This is a simpler version of the estimate for E2(~, T) in the case where n is
even.

We now prove the rest of the lemma. It is easy to check that the

term in which j = 0 dominates all the other terms in the expression for aT .
Further,

Therefore

If 1  q  oo, we integrate in polar co-ordinates and use (2) to obtain

as required. D

To complete the analysis of Par for T small, we have to analyse 
We do this by using spectral methods.

PROPOSITION 3.4. - If T is in H and is LP-LQ -bounded,then
Further, if T E R+ and 1 ~ p x 2 ~ q x oo, then

there exists a constant CT such that

Proof. Since Pr + and is Lp-Lq-bounded whenever

I x p x q x oo while is not Lp-Lq-bounded unless 

it follows that if is Lp-Lq-bounded, then 

The spherical Fourier multiplier BT corresponding to is given by
the formula Br (A) = (3,(IÀI), where
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We claim that ( = O ( (t2 -f- 1 ) - N ) for all N in N, uniformly for T in
DT.

Assuming our claim, it is immediate to check that Br lies in L (a; 
the Lebesgue space relative to the Plancherel measure, and in L2 (a; and

L° (a; /-t), uniformly for T in DT. The inversion formula and the Plancherel
formula for the spherical Fourier transformation then imply that bT lies in

L2 (G) and in L°° (G), and that convolution with b, is bounded on L2 (G),
uniformly for T in DT. From this, by [CGMI] , Theorem 2.2, it follows that

is Lp-Lq-bounded for all p and q such that and

that all the corresponding operator norms are uniformly bounded for T in
DT.

It suffices therefore to prove our claim. By classical Fourier analysis,
it suffices to show that (D2 + 1) N (I _ is in L (R) , uniformly for T in
DT. This is very similar to what we did in estimating D3rt in the proof
of Lemma 3.3, and we omit the details. D

Shortly, we will consider This will lead to terms and 

It will be important to know about the operator and our next lemma

is about this.

PROPOSITION 3.5. - Suppose that T is in R+. There exists a

constant CT such that

for all p and q such 

Proof. The spherical Fourier multiplier exp ( -T ~ ’ ~ ) ,C3~ ( ~ ’ ~ ) corre-

sponds to the operator 7~T As with the estimate of in the pre-
vious proposition, it will suffice to show that

for all N in N, uniformly for a and 7 in DT. This in turn is an immediate
corollary of the estimates )exp(-T 1 and = O((t2 + 1)-N) for
all t in I~; the first of these is trivial and the second is already proved. 0

PROPOSITION 3.6. - Suppose that T is in R+. The following hold:

(i) if I x p  q  oo, then
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Proof. - Observe first that - ~T - and that both 

and IllBr 1112 are uniformly bounded, so that |||2 is uniformly bounded as
T varies over DT. Further, so by Lemma 3.3

¿From this, by interpolation and duality, we deduce that

Since + it follows from this and Proposition 3.4 that, if

To prove the converse inequalities, we consider first where a

and T both lie in DT. By the semigroup property,

whence

by Proposition 3.4 and Proposition 3.5. Since = there is

no loss of generality in assuming that 1. In this case, we take a

to be Re T. Then ITI + T) x 21TI, and Re(a+T) = 2 Re T. We estimate
using Lemma 3.3 (but with 2T in place of T), and deduce that
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Now if T is in DT and Re T
follows that

whence

This proves the converse inequality for 7~-.

Since = PT - and 11IL3, Illp;q is bounded, it follows that 111,;,
satisfies the same inequality, at least when 
prove the converse inequality for for general p and q such that

suffices to observe that, by interpolation,

where 1/p* - (I+ I/p)/2 and 1/2q. Since I x p*~ 2  q*  oo, we
have a lower bound for which, combined with the upper bound
for yields the required lower bound for ~~~,,4T ~~~~;q. El

The last result of this section proves Theorem 1 (v). Before we state
the result, observe that the definitions of the kernels aT and b, and the

corresponding multipliers AT and BT extend to the case where T is in iR
T. In the aT case, converges distributionally as E in R+

tends to 0, and A,+, converges locally uniformly as E tends to 0+, while
in the b, case, (1 - p 7-+f converges uniformly and in as E tends

to 0+, and BT+E converges uniformly. It therefore makes sense to consider
the operators and in this case.

PROPOSITION 3.7. - Suppose that T is in R+ and that T is in

iR B 101 and T. Then is LP-Lq-bounded if and only if 1  p ,
2  q  oo, and is Lp-Lq-bounded if and only ifp == 2 = q. Finally, PT
is Lp-Lq-bounded if and only if p = 2 = q.

Proof. Since AT + BT = and AT extends to an entire

function, being the spherical Fourier transform of a compactly supported
distribution, BT does not extend holomorphically to any tube TE for any E in
R+, so, as argued before, if is Lp-Lq-bounded then oo.
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Conversely, for such p and q, Rr is Lp-Lq-bounded because is

O((IÀI2 + 1)-N) in a*, for all N in N.

Next, exp( -7 1.1) is in LOO(a*), whence Pr is L2-bounded. To show
that Par is not Lp-Lq-bounded for other p and q, we may suppose that

since otherwise PT is unbounded by Theorem 1 (i).
Suppose therefore that and that p  q. Observe that
formula (5) extends to this case, so that, is in DT,

We hold T fixed and let u be a positive real number such that u  171.
Then

... " /.- 

which behaves like as cr tends to 0+. This shows that 7~T is

not LP-Lq-bounded unless p = 2 = q.

Finally, to show that ,A.T is not LP-Lq-bounded 
unless p = 2 = q, we may suppose that 1 ~ p  q  2. Indeed, cannot

be LP-Lq-bounded for in this case PT would be LP-

Lq-bounded, which is false. Further, if were Lp-Lq-bounded for some

(p, q) such that 2  p x q  oo, then would also be Lp-Lq-bounded for

the dual indices (q’,p’), since *

Suppose then that is LP-Lq-bounded and that 1 ~ p  q  2. We

take a~ in DT and observe that, by the semigroup property and the fact
that aa and aT are supported in B(o, 3T),
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is uniformly bounded for a in DT, so that the Lq-

norm of is uniformly bounded. Similarly, AT is L2-bounded
and IIbal12 is uniformly bounded, so II aT * bal12 is uniformly bounded,
whence uniformly bounded. Further, bT is in L2

and IIbal12 is uniformly bounded, is uniformly bounded,
whence IlxB(o,6T) (br * is uniformly bounded. Finally, bT is in LP’, so

bounded by whence IlxB(o,6T) (bT * bounded

by a multiple Now we see that 

We hold T fixed and let a be a positive real number such that a  171.
Then

as a tends to 0+. This shows that is not LP-Lq-bounded unless

p = 2 = q. D
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