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ITERATES AND THE BOUNDARY BEHAVIOR
OF THE BEREZIN TRANSFORM

by J. ARAZY and M. ENGLI0161

Ann. Inst. Fourier, Grenoble
51, 4 (2001), 1101-1133

0. Introduction.

Let D be the unit disc in the complex plane C, dm the Lebesgue
measure on D normalized so that = 1, and A2(II», dm) the Bergman
space of all holomorphic functions in It is well known that A2
is a closed subspace of L2 (hence, a Hilbert space in its own right) and that
the point evaluations are continuous functionals on A2, so that there exists
a reproducing kernel K(x, y) such that

Explicitly, K(x, y) is given by
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The Berezin transform is the integral operator on D given by

It is clear from (0.1) that this integral converges, for instance, for any
bounded measurable function f. Further, by (o.l)

(0.3) B f = f for f a bounded holomorphic function on D

and also

and

The operator B behaves nicely under holomorphic self-maps of D.
Namely, any biholomorphic may be written in the form

O(z) = §(0) E = 1, and

The real Jacobian of the mapping §a is

Thus (0.2) can be equivalently rewritten as

for any

where G stands for the group of all biholomorphic self-maps of In other

words, B f can be interpreted as a certain invariant mean value of the
function f with respect to the measure dm. Further, let K stand for the
isotropy subgroup of the origin in G (that is, K consists of all rotations
z ---&#x3E; ez, 1,E I = 1). Then G and K are Lie groups, ID) can be identified with
the homogeneous space G/K, and (0.6) is precisely the definition of the
convolution of a function f with the K-invariant measure m in the group-
theoretic sense:
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From the formulas (0.2) and (0.6) it is possible to establish the
following properties of B:

( 1 ° ) If f is continuous on the closed disc D, then so is B f, and B f and f
have the same boundary values on 

(2°) If F C C(8D), then there exists a unique f E C(D) such that
f JAID - F and Bf - f.

(3°) If f E C(D), then as k - oo, B kf tends pointwise and uniformly on
D to the (unique, by 2°) function g E such that g has the same
boundary values as f and Bg = g.

The first assertion can be gleaned from (0.6) using the Dominated
Convergence Theorem and the observation that

(0.8) if a -4 b E all)).

The second one follows from (0.6), (0.3) and (0.4) (or from (0.7) using the
much deeper result from [Fü], cf. Section 3 below) - the function f is the
harmonic function on ID) with boundary values F (the Poisson extension
of F). The last assertion was obtained by Zhu [Zh].

In this paper, we generalize 1°-3° in two different directions:

(a) Firstly, to operators B of the form (0.2) with D replaced by an
arbitrary bounded domain Q in C~, dm by a nonnegative regular
Borel measure dp on it, and K(x, g) by the reproducing kernel of the
corresponding Bergman space dy) -

((3) Secondly, to operators B as in (0.6) (=(0.7)) with an arbitrary Cartan
domain Q = instead of D, and any K-invariant absolutely
continuous probability measure p in place of m.

Also, thirdly, in the latter case we need to study a generalization of

(0.8) to arbitrary Cartan domains, which leads to some results that we
believe are of interest in their own right.

We proceed to describe the contents of the paper in more detail.

In Section 1, we establish some general results concerning 1°-3°
for any stochastic operator B which fixes holomorphic functions, i.e. for

an operator satisfying (0.3) and (0.5) which maps the space of bounded
continuous functions on SZ into itself; the operators B in both (a) and ({3)
above are of this type. The main result (Theorem 1.4) is that 1 ° and 3° are
true except that the boundary values are preserved by B only on 8pQ, the
subset of peak points of holomorphic functions on and the convergence
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of is uniform only on compact subsets of Q U The corresponding
analog of 2° is also true, with 8Q replaced by 8pQ (Corollary 1.5), but
without the uniqueness.

In Section 2 we apply the machinery of Section 1 to the part (a)
above, i.e. to the Berezin transform B on a domain SZ C C~ with a measure
p on SZ satisfying some mild conditions. If n = 1 and Q has C’ boundary,
or if SZ is strictly pseudoconvex with C3 boundary, then we obtain the
full analogs of 1°-3° (Theorem 2.3). As a special case this contains Zhu’s
result for the disc mentioned above, and also the main result of [AL] which
concerns 2° for Q C C and p the Lebesgue measure.

In the remaining Sections 3-5 we deal with ({3), i.e. we consider B the
convolution operator (0.7) on Cartan domains. In that case the bounded
functions on Q satisfying B f - f are precisely the bounded harmonic
functions (in the sense of Godement), I and the analog of 2° - with 8Q
replaced by the Shilov boundary 8eQ, since we are now in several complex
variables - is known to hold from the work of Ffrstenberg (Strictly
speaking, [Fü] establishes 2° only for and instead of our

C(8eQ) and C(Q), respectively; we settle this in Section 5 below.) Applying
the machinery from Section 1, we give the analog of 3°, with f a bounded
continuous function on Q U 8eQ and the convergence locally uniform on
SZ U 8eQ, as Theorem 3.2. The analog of 1 ° turns out to be more delicate,
and we first have to analyze the behavior of the geodesic symmetries Øa
on S2 as a approaches a point of 8Q. This question has been studied by
Kaup and Sauter [KS]; we develop their results for our needs in Section 4.
In particular, we show that if v E 8Q is a tripotent, (3 E Do (v), and
a approaches the point v C 8Q, then the geodesic symmetry 
tends, pointwise and locally uniformly in z E S2, to v -~- ~,~ ( p~’ (z) ), where pv
is a holomorphic retraction of Q onto the boundary face v + Do (v) . (See
Section 4 for the notation.) A number of other useful results concerning the
symmetries Oa and the transvections ga (z) _ CPa ( -z) are also established,
which we believe are interesting in their own right (for some readers perhaps
even more than the main results concerning the operators B). Finally,
in Section 5 we use these results to settle completely the analog of 1 °

(Theorem 5.2): it turns out that B still maps C(Q) into itself, however,
it preserves boundary values only on the Shilov boundary 8eQ, while on
the other boundary faces it induces certain "boundary Berezin transforms"
- that is, the restriction of B f to the boundary face v + Do (v) (where v
is a tripotent) is uniquely determined by the restriction of f to this face,
and the mapping Bf lv+Do(v) is again an operator of the form
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(0.7) but with the convolution taken in the bounded symmetric domain
Do (v) and the measure /-t replaced by an appropriate measure J-lv on Do (v)
(uniquely determined by p and v). As another application of the results
of Section 4 we establish the fact (which seems not to be treated in [Fü]),
mentioned above, that if F E C(8eO) then the harmonic extension of F
into Q is actually continuous on the closure 0 (Theorem 5.3). Everything
is finally combined together to conclude (Theorem 5.4) that for f E 
and B the operator (0.7), the iterates converge in fact uniformly on
fi, thus settling completely the analog of 3°.

The last Section 6 contains some concluding remarks (and an open
problem). In particular, we observe that for bounded functions continuous
on SZ but not on 0, not only the iterates need not converge (pointwise)
in general, but nor need even their Ceshro means, a thing the authors at
one time suspected might be true.

Throughout the text, the word "measure" will mean a nonnegative
regular Borel measure, and similarly all functions are always assumed to
be Borel measurable.

1. Stochastic operators.

Let Q be a bounded domain in C~, L~ = L°° (SZ) the space of
bounded (Borel-) measurable functions on Q, and BC(Q) = 
the subspace of bounded continuous functions on Q. We will say that an

operator B : L°° ~ BC(Q) is stochastic if

whenever f &#x3E; 0, and

and that it fixes holomorphic functions if

(1.3) B f = f for all bounded holomorphic f.

Throughout the rest of this paper, we will assume that B : L° - BC(Q)
is a stochastic operator which fixes holomorphic functions, and will be
interested in the limiting behavior of the iterates B~ , 1~ --~ oo .

The following characterization of stochastic operators is well-known.

PROPOSITION 1.1. - An operator B : L°° -~ BC is stochastic if and

only if for each yEn there exists a (nonnegative regular Borel) measure
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py on Q such that

(1.4) J-ly is a probability measure, dy E n

and

Clearly, the measures py are uniquely determined by B.

Proof. Obviously (1.4) and ( 1.5) imply ( 1.1 ) and ( 1. 2) . Conversely,
by the Riesz representation theorem, (1.1) implies that for each y E Q
the linear functional f - B f (y) determines a nonnegative regular Borel
measure py on Q. By (1.2), the total mass of this measure is 1. D

It is immediate from (1.4) and (1.5) that

and

(in particular,

From (1.8) and (1.3) we also have

for all bounded holomorphic f.

From (1.1) and (1.2) it further follows that if B : £00 -4 BC is

stochastic, then so are its iterates = 1, 2,.... By the last proposition,
there exist measures (y E S2, J~ = 1, 2, ...) so that

( 1.11 ) J-lk,y are probability measures on Q,

and .

Let aS2 and denote the topological and the Shilov boundary of Q,
respectively, and let 8pQ stand for the set of all peak-points of the algebra

f is holomorphic on O}.
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That is, 8pQ consists of all points p E 8Q for which there exists f E 
such that f ( p) = 1 and  1 on It is known that 8pQ C Bef2 C 9n,
and 8pQ is dense in 8eQ (see [Ga], §11.11). The following lemma and
proposition are taken from [AL], where they are proved for a very special
choice of S2 and py; the proof extends to the general case with only trivial
modifications.

LEMMA 1.2. - Assume that B is a stochastic operator from L°°
into BC which fixes holomorphic functions. If p E åpf2 and U is any
neighborhood of p, then as y ---+ p,

uniformly in k.

Proof. Let f be a peaking function for p ande &#x3E; 0. Replacing f by
with m large enough, we can assume that If I  E/2 on 0 B U. Choose

then6 &#x3E; 0 such that &#x3E; 1 - ~ intheball ly-pl  6. Since f is
holomorphic 1 on Q, by (1.3) and (1.12) we have for Iy - pi  6

and any k,

which together with ( 1.11 ) implies

PROPOSITION 1.3. - Assume that B is a stochastic operator from
L~ into BC which fixes holomorphic functions. If p E 8po’, j E Loo and
f (z) ~ a as z - p, then also Bk j(z) - a as z - p (k = 1, 2,...), uniformly
in k.
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Proof. - Let U be a neighborhood of p where is small. Then

by (1.11) and (1.12)

The first integral is small (uniformly in 1~) because is small on U and
the total mass of J-lk,y is 1. The second integral is small (uniformly in 1~) if

y is close to p because of Lemma 1.2 and the boundedness of f - a. Hence
the assertion follows. D

We now prove a general result concerning the existence of the limit
of B kf, k - oo .

THEOREM 1.4. - Assume that B is a stochastic operator from L°°
into BC which fixes holomorphic functions. Then for each f E C(n), the
sequence B kf converges pointwise and uniformly on compact subsets of
Q u 8pQ to a function g E BC(Q U o9pQ) satisfying flapo and
Bg = g.

Proof. Assume first that f = with 0 E A(n). Then by (1.10)
and (1.6) f x Using (1.9) we obtain by iteration

By the Bolzano-Weierstrass theorem, / g for some (bounded, lower
semicontinuous) function 9 on S2. By the Monotone Convergence Theorem,
Bg = lim Bk+l f == 9 (hence, in particular, g E BC(Q)). By Proposition 1.3,
g extends continuously to Q U 8pQ, coincides with f on 8pQ, and B kf / g
on Q By Dini’s theorem, the convergence is therefore uniform on
compact subsets of SZ U 8pQ. Thus all the assertions of Theorem 1.4 hold
for f = 101.

Set now

E - f f E c(n) : ~g E BC(Q u 8pQ) such that = flapo, Bg = g and
as k - oo, uniformly on compact subsets of Q U 

Evidently E is a linear subspace of C(Q) , and a routine check using (1.6)
reveals that it is closed. In view of the previous paragraph, functions of the
form f = 101 with 0 E A(2) belong to S. Thus E =&#x3E; C, where G is the vector



1109

space of all functions on 0" of the form -

The set 9 is closed under pointwise multiplication and complex conjugation,
i.e. is a *-subalgebra of C(SZ). It also separates points: if y, then x, y
must differ in some coordinate, say, yi; but then f (z) - x, I
satisfies f (x) = 0, f (y) :,~- 0 and f E 9. By the Stone-Weierstrass theorem,
9 is dense in (7(f~). As g C.E and E is closed, we conclude that E = C(O),
and the desired assertion follows. 0

As 8eQ is the closure of 8pQ, the following corollary is immediate

from Theorem 1.4 and Tietze’s extension theorem.

COROLLARY 1.5. - Assume that B is a stochastic operator from L°°
into BC which fixes holomorphic functions. Then for any 0 E C(BeO),
there exists g E BC(Q U 8pQ) such that Bg = g and the restrictions of g

to apS2 coincide.

The last theorem gives a fairly good description of the limiting
behavior of on Q U 8pQ, for any f E In general, controlling
this behavior even on 9, Q B seems much more difficult. The following
theorem may be useful in some situations in this regard.

THEOREM 1.6. - Assume that B is a stochastic operator from L~
into BC which fixes holomorphic functions. Introduce the following as-
sumptions :

(A) There exists a function h E C(n) such that h = 0 on 8eQ, h &#x3E; 0 on

n B 8eQ, and Bh x h on Q.

(B) There exists a function h as in (A) such that in addition Bkh -4 0
uniformly on Q.

(C) For any (~ E C(8eQ) there exists a unique g E BC(Q U aeSZ) such
that Bg = g and gla,o = 0. ( We call g the B-Poisson extension of 0.)

If (A) and (C) hold, then for any f E BC(Q U the limit

Bk f == 9 exists pointwise and locally uniformly on Q U aeS2, and g
is the B-Poisson extension off I a, Q.

If in addition (B) holds, then B’~ f -&#x3E; g even uniformly on Q.

We shall see presently that (C) already implies that the function h in
(A) satisfies 0 pointwise on Q u 8eQ.
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Proof. - Let g be the B-Poisson extension of f. Replacing f by f - g
we may assume that g = 0, i.e. that f vanishes on the Shilov boundary Ben.
We then want to show that Bk I -4 0 pointwise or uniformly. By (1.6) and
an obvious approximation argument, we may even assume that f vanishes
in some neighborhood of Ben. Then there exists a constant c &#x3E; 0 such

that ch, where h is the function from the assumption (A). By (1.8),
c. B* h for all k. If (B) holds, it thus follows that 0 uniformly

on Q, which settles the second part of the theorem. For the first part, it

suffices to show that 0 pointwise. As h &#x3E;, 0 and Bh - h, we have

by (1.9) again and 0 Vk, so

Therefore, by the Bolzano-Weierstrass theorem, for some function

g on 0. By the Monotone Convergence Theorem, Bg = =

g ; this also implies that g E BC(Q). 0 and 0, the

function g extends by continuity to Q UOQ and vanishes on 8eQ. By the
uniqueness part of assumption (C), g = 0, which completes the proof. D

Remark. - The proof shows that (A) and (C) in fact imply that B
maps BC(Q u 8eQ) into itself and preserves the boundary values on 8eQ,
i.e., Bf(x) = f (x) dx C 8eQ.

It is not true in general that B preserves the boundary values on all
of For B the Berezin transform with respect to the Lebesgue measure

(cf. the next section), the simplest example is the function f (z) - I on
the bidisc D x D

2. Berezin transform on planar domains
and strictly pseudoconvex domains.

Let Q be a bounded domain in C~, dp a measure on Q, and con-
sider the Bergman space dJ-l) of all analytic functions on 0 square-
integrable with respect to dp. We shall assume throughout that the point
evaluations are continuous on this space, so that there exists a reproducing
kernel K(x, y), and that x) &#x3E; 0 Vr E Q. (Both assumptions are ful-
filled, for instance, if the measure dy is finite and has a continuous positive
density with respect to the Lebesgue measure on Q; on the other hand, as
we shall see below they imply that One can then define the
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integral operator on Q,

called the Berezin transform with respect to /-t. Observe that the operator
(2.1) is of the form (1.5) with The
next proposition shows that this operator satisfies the hypothesis from the
previous section.

PROPOSITION 2.1. The operator (2.1) maps L~ into BC(Q), is

stochastic and fixes holomorphic functions.

Proof. The last two assertions are immediate consequences of the

reproducing property of the kernel K(x, y). For the first, consider more
generally the function of two variables

The integral converges for any y, z E Q because f E Loo and K(., y), K(., z)
are in L2(0, dp). For z E 0 let U c 0 be a small disc centered at z. For
any closed contour q C U we have

since K(y, y) is a continuous function of y and q is a compact set. Thus we
have by Fubini

By Morera’s theorem, this implies that B f is holomorphic in y. As B f (z, y) =
B f (y, z), it follows that Bf (y) is not only continuous,
but even real-analytic on Q. 11

We can now present the first application of the results from the
previous section.
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LEMMA 2.2. - Let SZ be a bounded domain in C~ and p a measure
on SZ such that the point evaluations are continuous on the Bergman space

and its reproducing kernel satisfies K(x, x) &#x3E; 0 ’BIx E Q. Then
= suppp dy E Q, and 8eQ.

Proof. For any y E 0, the hypothesis K(y, y) &#x3E; 0 guarantees
that the holomorphic function K ( ., y) cannot vanish on an open set, so

K (y, y) -11 K (x, y) 12 has indeed the same support as dp.
For the second assertion, let p E 8pQ and assume that there exists a
neighborhood U of p disjoint from From supp/t = and

Lemma 1.2 we then have

a contradiction. Hence p E suppy, so 8pQ C suppp. As aeO is the closure
of 9pQ, the second assertion follows. D

THEOREM 2.3. - Let S2 be either a bounded domain in the complex
plane C with C1 boundary, or a strictly pseudoconvex domain in en with
C3 boundary, and p a measure on SZ such that the point evaluations are
continuous on the Bergman space dJ-l) and its reproducing kernel
satisfies x) &#x3E; 0 Vx E Q. Then

(a) B maps C(O) into itself and preserves the boundary values.

(b) For any f E C(O), the sequence converges uniformly on 0 to a
function g E C (SZ ) satisfying Bg = g and glao = f I

(c) In particular, for any E C(8Q) there exists a unique g E C(S2)
satisfying Bg = g and ( the B-Poisson extension of 0).

Proof. It is known that for domains Q of this kind 8pQ = 8Q.
(For the planar domains, this is easy: if p E 8Q then f(z) = nE/ ( (p +
nE) - z) peaks at p, where n is the outward unit normal to 8Q at p
and E &#x3E; 0 is sufficiently small. For the strictly pseudoconvex domains, see
e.g. Theorem 5.2.15 in [Kr].) Consequently, also = 8Q and ouapo = O.
Hence (a) follows from Proposition 1.3, (b) from Theorem 1.4, and the
existence part of (c) from Corollary 1.5. The uniqueness part of (c) follows
by a standard maximum principle argument from the fact that Bf(y) is an
average of f against the probability measure J-ly and supppy D 8Q. D

For SZ the unit disc in the complex plane and p the Lebesgue measure
on it, the functions satisfying Bg = g are precisely the harmonic functions
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(see the next section). In this context the assertion (b) of the last theorem
was proved, by entirely different means, by Zhu [Zh].

As a special case of Theorem 2.3(c) we obtain the following result of
Axler and Lech [AL].

COROLLARY 2.4. - Let SZ be a bounded (n + I)-connected domain
in C with Cl boundary and dp the Lebesgue measure on Q. Denote by
10, ... ,1n the connected components of with -yo the boundary of the
unbounded component of C B Q. Then there exist real-valued functions
ul, ... , un E such that

3. any real-valued function f continuous on 0 and fixed by B can be
uniquely represented as

where ci,..., cn E R an d u E A(Q) .
Proof. According to part (c) of the last theorem, there exist unique

functions ul, ... , un E (7(n) satisfying 1 and 2. The uniqueness together
with (1.6) also implies that u., are real-valued. If f E C(O) is real-valued
and fixed by B, the function g = f - 1 ajuj will have the same property,
for any ail , ... , an C R. Owing to 1 we can choose aj in such a way that

It is then known that there exists u E A(Q) such that Re u = g on 8Q.
By ( 1.7) and ( 1.3), the function Re u is also fixed by B. Thus g and Re u are
two B-fixed functions having the same boundary values; by the uniqueness
part of (c) again, this implies g = Re u. This completes the proof. D

3. Convolution operators on Cartan domains.

Let Q = be a Cartan domain in C’ in its Harish-Chandra

realization (i.e. SZ is circular and convex) and p a K-invariant probability
measure on Q absolutely continuous with respect to the Lebesgue measure.
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For a E Q we denote by Oa the geodesic symmetry interchanging a and the
origin. The convolution operator

can be written in terms of §a as

As any g E G mapping 0 into a is of the form g = Oa o k with k E K, the
K-invariance of p implies that one even has

for any element g of G with g(O) = a.

The operator B,~ is clearly of the form (1.5) with 
The fact that p is a probability measure implies that = 1 and 0

when f &#x3E; 0. Further, if f is holomorphic, then Blf (a) = f (a) by the K-
invariance of J-l and the mean value property of holomorphic functions.

(In fact, the same argument gives Bif - f for all bounded harmonic

(in the sense discussed below) functions as well.) The following proposition
therefore implies that B, is an operator of the type considered in Section 1.

PROPOSITION 3.1. The operator (3.1) maps L°° into BC(Q).
Proof. it is enough to show that Blf E

BC(Q) for f the characteristic function of a Borel set E (linear combina-
tions of such functions are dense in £00). For such an f,

In view of the absolute continuity of p, it is in turn sufficient to show that as
a -4 b, the Lebesgue measures of the sets Øa(E) B ~b (E) and Øb(E) B Oa (E)
tend to zero. We give the proof for Oa (E) BØb(E). For each a E f2, it is known
that Øa : f2 -4 f2 is a rational function whose coefficients depend smoothly
on a; in particular, Oa extends biholomorphically to a neighborhood of Q,
and as a --+ b E Q, Øa -4 Ob uniformly on Q. Hence for any c &#x3E; 0, if a is
close enough to b the set ~a (E) will lie in the e-neighborhood (with respect
to the Euclidean metric) of ~b (E) . Denoting F(z) = dist Euclidean (Z Øb(E)),
it therefore suffices to show that
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(dm stands for the Lebesgue measure). However, as F is a continuous

function (even Lipschitz, with the Lipschitz constant equal 1, by the

triangle inequality), this is certainly true. 0

By the results of Ffrstenberg any bounded function f satisfying
B, f = f must be harmonic (in the sense of Godement [Gd]), has a.e. radial
limits on the Shilov boundary 8eQ, and can be recovered from these
boundary values by the Poisson integral: f = with

where g is any element of G such that g(O) = z, and dais the unique K-
invariant probability measure on 8eQ. Moreover, for a bounded symmetric
domain the peak-set 8pQ coincides with the Shilov boundary 8eQ, and they
consist precisely of the points in n of maximal Euclidean distance from the
origin. (Except the case of S2 the unit ball in C~, the latter is a proper
subset of 8Q.) Combining these facts with Theorem 1.4 we thus arrive at
the following theorem.

THEOREM 3.2. - For any f E BC(nU8en), the iterates B~ f converge
locally uniformly on Q U 8ef2 to the Poisson extension (defined by (3.4))
of flaeo.

Remark. - Let p be the genus and y) the Jordan triple determi-
nant of the Cartan domain Q (see the next section for details). For v &#x3E; p-1,
the measures dJ--lv(z) = cvh(z, z)’-P dm(z) on Q, where dm stands for the
Lebesgue measure and cv &#x3E; 0, are finite, K-invariant and absolutely con-
tinuous with respect to the Lebesgue measure. Fixing cv so that has

total mass 1, it turns out that the corresponding weighted Bergman spaces
A2(n, have continuous point evaluations, their reproducing kernels are

equal to h(x, y) -’, and one can define the associated Berezin transform Bv
in the same way as in the preceding section. These operators were, in fact,
our original objects of interest when writing this paper. It turns out that

they are of the form (3.1) with J-l = 1-tv; thus, in particular, the last theorem
applies to them too. D

We conclude this section by giving another proof of Theorem 3.2,
based on Theorem 1.6. Recall that under the action of the compact Lie

group K, the space P of holomorphic polynomials on C~ has the Peter-

Weyl decomposition
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into K-irreducible subspaces; here m ranges over all signatures, i.e. r-tuples
of integers ... ~ 0, where r is the rank of Q. Equipped
with the Fock inner product

each becomes a (finite-dimensional) reproducing kernel Hilbert space,
and we denote by y) the corresponding reproducing kernel. Further,
it is known that there exist vectors el, ... , er E C~ (a Jordan frame) such
that every z E C~ can be written in the form

with k E K and tl , ... , 0, and then

where c is a nonzero constant depending only on SZ and lr stands for

the signature m = (1, ... , 1) consisting of all l’s. Also, the element (3.5)
belongs to Q if and only if 1 Vj, and belongs to 8eQ if and only if

tj = 1 Vj, i.e. if and only if z = ke where e = el +... + er. See [FK].
Now consider the function h on SZ given by

For z given by (3.5), h(z) = t?), and in view of the last remarks it
follows that h(z) &#x3E; 0 on Q, with equality occurring if and only if z E Deft
On the other hand, if is an orthonormal basis for the polynomial
space P1r of the Peter-Weyl decomposition, then by the familiar formula
for a reproducing kernel

and as by (1.10) Vj and by (1.2) = 1, it follows that

h. Thus the function h satisfies the assumption (A) of Theorem 1.6.
As the assumption (C) there is fulfilled in view of the results of Ffrstenberg
mentioned above, Theorem 3.2 follows. D

In the rest of this paper, we stick to the case of Q a Cartan domain

and will describe the behavior of the convolution operator (3.1) and its
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iterates on OQ where we lack control so far. In view of (3.2), this is
clearly tantamount to the investigation of the geodesic symmetries Oa as a
tends to the boundary. This is what we undertake in the next section.

4. Boundary limits of holomorphic automorphisms.

As in the previous section, let Q be a Cartan domain in C~ of

type (r, a, b). Thus Q = G/K, with G = the identity connected
component of the group of holomorphic automorphisms, and K C G
the subgroup stabilizing the origin. Let G - KAN be the Iwasawa

decomposition relative to the Cartan involution 9(g) - sogso, where

so(z) = -z is the symmetry at the origin. Let sz = gsog-1 be the symmetry
at z, where g E G is any element for which g(0) = z.

Let z, w E 0 and let L(z, w) be the geodesic line from z to w in Q
(with respect to the Bergman metric, which is, up to a constant factor, the
unique G-invariant Riemannian metric on Q). Since the elements of G are
isometries we have

Let d(z, w) be the distance induced by the Bergman metric. We denote by
w) the geodesic midpoint between z and w. Thus

and

For convenience we denote also

m(z) = m(z, 0) = the mid-point between z and 0.

Then

the symmetry at the geodesic midpoint between 0 and z. Notice that

Oz (L (0, z)) = L(z, 0) and = m(z). We also let

Then gz (called transvection) is another element of G for which gz (0) = z.

We will use the language of Jordan theory, see [Lo] or [Ar] for details
and notation. In particular, we let Z(~ C~) stand for the JB*-triple
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whose unit ball is Q, for the triple product of Z, D(x, y) for the

multiplication operators D(x, = Ixyzl, Q(x) for the quadratic operator
Q(x)z = fxzxl, and B(x, y) for the Bergman operator

In terms of these operators, the transvections and the geodesic symmetries
are given by

An element v E Z is a tripotent if v. Two tripotents u, v are called

orthogonal if D(u, v) = 0 (this is equivalent to D(v, u) = 0). Every a E Z
can be written in the form

where e 1, ... , el are pairwise orthogonal tripotents and Ai , ... , 0.

Further, a belongs to Q, Q, or 8eQ if and only if A3  1, Aj x 1, and

Aj = 1, respectively, for all j. (In particular, every tripotent belongs to
Associated to a tripotent v E Q is the Peirce decomposition

with Zv(v) = Ker(D(v, v) - v), v = 0, 1/2, 1. The subspace Zl(v) is a JB*-
algebra under the product (x, y) f---&#x3E; with unit v and involution

z* _ 

Two elements (not necessarily tripotents) a, b c Z are said to be

orthogonal if D(a, b) = 0. This is equivalent to the existence of a tripotent
v such that a E E Zo (v) . Equivalently, a and a’ are orthogonal if
and only if they can both be represented in the form (4.2), with the same
ej, and with the corresponding numbers Aj, A. 3 satisfying = 0 for all j.

To a system e1, ... , eL of pairwise orthogonal tripotents, there is

similarly associated a joint Peirce decomposition

of Z into orthogonal subspaces
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In terms of the canonical projections Pij onto the operator B (a, b) for
_1 _ I

is given by

(where ao := := 0). Notice that if  1 then B(a, b) is
invertible. Similarly, ||a||  1 and Ilbll  1 implies that B(a, b) is invertible
(we use Ilall = max Ia. 1, llbll = 

For f (t) an odd complex-valued function of a real variable t E (- p, p)
and a of the form (4.2) with Aj  p, one defines the odd functional calculus

by setting

This gives a well-defined (i.e. independent of the choice of the representation
of a in the form (4.2)) element of Z. If f is real-analytic with power
series expansion f (t) - converging for ~t~ I  p, then

f (a) can equivalently be defined as the sum of the convergent series

For a tripotent v, denote

and let

be the boundary face of Q whose center is v. Every b C belongs to
some Q(v) for a unique tripotent v, and, conversely, C 8Q for any
nonzero tripotent v. Do (v) is a Cartan domain of type (r - rank(v), a, b).
It is known that G permutes the boundary faces of Q. Thus for a tripotent
v and g E G there exists a (unique) tripotent ~ such that n(v);
moreover, rank(v) = rank v. Let

Si = {tripotents of rank 11,

Then the decompositions of S~2 and 8Q into G-orbits are, respectively,
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and

The set 9,Q of all maximal tripotents coincides with the Shilov bound-
ary 8eo’.

The following is the main result of [KS].

THEOREM (Kaup-Sauter). - Let c E 8Q, zEn. Then the following
limits exist pointwise and locally uniformly:

and the following limit exists in the operator norm topology:

Moreover, the maps (z, a) H sa (z) and (z, a) H ga (z) extend to continuous
maps (n x 0) B (8Q x 8Q) - Q, and for (z, a) x SZ they are still given
by the formulas (4.1), and B(a, a) by (4.3). In particular, for v a tripotent
and z E 0,

where z = z, ~- Zl/2 -f- Zo is the Peirce decomposition of z relative to v.

Since §a = gaso, we certainly have also the limit for c E ao

locally uniformly on Q, and

PROPOSITION 4.1. - Let v be a tripotent. _ CPv.

Proof. We know by [KS], Lemma 3.2, that m(z) = h-1 (z) and
sz = CPh(z), where h(t) = 1+t2 , h 1 (s) - 1+ i_S2 and are

defined in the sense of the odd functional calculus. In particular, since
= 1 = h(1), we have = v = h(v), and it follows that Sv = CPv.
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COROLLARY 4.2. - For every c = v + a E 8Q, with v a tripotent and
a E Do (v), we have

Consequently,

Proof - The function a - is continuous from 0: into itself.
Hence Now, if f is an odd

continuous function, extended to Z via the functional calculus, then if z, w
are orthogonal elements then f (z), f (w) are orthogonal and f (z + w) =
f(z) + f(w). It follows that h-1 (c) - h-1 (v + a) - h-1 (v) + ~-~(a).
As = v, it follows that = v + h-l(0152) = v + m(a). D

LEMMA 4.3. - Let a, b be orthogonal. Then

Proof. Recall that the quadratic vector field
related to the transvections via

Here tanh(a) is defined via the odd functional calculus (in fact - by a
convergent power series with odd powers). Let a = then a is

also orthogonal to b. Let ut = ut (b) = gta,,h(t,) (b). Then ut
is the unique solution of the initial value problem uo = b, ~, (ut ) .
Let vt = tanh(ta) + b. Then vo - b and

It follows that ut = vt, Vt E R. In particular, at t = 1 we obtain

This completes the proof. 1:1

Remark. - For a, b not necessarily orthogonal, we have only the
following weaker result:

there is a k E K such that ga (b) = kgb(a) .
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Indeed, as gb (a) we conclude that there is a ki E K such that
gbga = Since gc I = we obtain by inversion 

sogagbSo, and substituting z - 0 we get hence

ga (b) = kgb(a) with k = soki ’so = 0

LEMMA 4.4. - Let a, b E Z be orthogonal. Then

Proof. - Let be a frame of orthogonal minimal tripotents

(Here again ao . = 0, Oo : 0. ) On the other hand, letting ,
get

Thus ~B(a, a), B(b, b)] = 0 and

COROLLARY 4.5. - Let a, b be orthogonal elements

1~. Then
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Remember that if /lall  1, Ilbll  1 and a, b are orthogonal, then each
of B(a, a), B(b, b), B(a + b, a + b) is invertible.

PROPOSITION 4.6. - Let a, b be orthogonal. Then

by Lemma 4.3. It follows that there is E K for which

Differentiating at the origin we obtain

Now recall that, quite generally, for z, w E Q,

Thus we get

(since the orthogonality of a and b implies B(-b, a) = I). The invertibility
of B(a, a) 1/2 , B(b, b) 1/2 and B(a-+-b, a+b) 1/2 and Corollary 4.5 imply that
k = I. Thus ga+b = gagb. The formula 9a+b == gbga is proved similarly. D

COROLLARY 4.7. - Let v be a tripotent and a C Do (v) . Then

Proof. Use the last proposition with a = a and b = tv with t  1,
and let t / 1. D

Remark. - It is possible to give another proof of Proposition 4.6
along the following lines. Let a, 13 be orthogonal elements of Z and set
a = tanh(a), b = tanh({3). Then a, b E 0 and they are orthogonal. Let
ça(z) == a - Then ga = exp (g), and similarly gb = exp (~,3).
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since a, {3 are orthogonal. Consequently (cf. ~He~ ), we can conclude that

that is,

as desired.

We actually have a stronger result.

PROPOSITION 4.8. - Let v be a tripotent and let and

b, d E Do (v). Then

Proof. Since ga+b = gagb = gbga by Proposition 4.6, it suffices to

prove the assertion in the case when one of a, b is zero. For definiteness
we shall prove ga (c + d) = ga (c) + d. For fixed d and variable c in Dl (v)
consider the holomorphic map F : D1 (v) -~ Q defined by

Then F(0) = ga (d) - a - d = 0 from Lemma 4.3. On the other hand,

since D(c + d, a) = D(c, a) and Q(c + d)Q(a) = Q(c)Q(a) by the orthogo-
nality of d and a. Hence F is the constant map F(c) - F(o) = 0. D

Remark. - Again, another proof of the equality ga (c + d) = ga (c) + d
can be given along the lines of the proof of Lemma 4.3. Namely, let

a E Zl (v) be such that tanh(a) = a, and define

Then vo = d + c and, as before,

Hence vt = exp (çta)(d + c) by the uniqueness of the solution to an initial
value problem. In particular, at t = 1 we get ga (d + c) = vl = d + ga (c). 0

For a tripotent v, introduce the mapping
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where is the Peirce decomposition of z relative to v. We
know by (4.4) that

From (4.5) it is immediate that

and

namely, that pv is a holomorphic retraction of Q onto Do (v) .

PROPOSITION 4.9. - Let v be a tripotent and 0152 E Do (v) . Then for

In particular,

Proof. This follows by Corollary 4.7, (4.6) and Proposition 4.8. D

Denoting also

we get from §a = gas0, §a = the analog of Proposition 4.9 for sa and

0’.

PROPOSITION 4.10. Let v be a tripotent. Then p’ o p’ = p’ and

pV(f2) = Do (v), i. e. pv is a holomorphic retraction of f2 onto Do (v) . Further,
for a E Do (v),

Proof. Let (3 = m-l(0152), i.e. a = Then (cf. Corollary 4.2)
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5. Convolution operators on Cartan domains:
behavior on the boundary.

As before let S2 = G/K be a Cartan domain, J-l a K-invariant prob-
ability measure on Q absolutely continuous with respect to the Lebesgue
measure, and Bi, f :== f*J-l the convolution operator (3.1 ) . The results of the
preceding section have an immediate consequence about the operator B..

PROPOSITION 5.1. - Let v be a tripotent and f a function in 
which extends continuously to v + Do(v). Then Bif has the same property.
Further, the restriction BJ-tflv+Do(v) depends only on 

In particular, B,, maps C(SZ) into itself.
Proof. By the Lebesgue Dominated Convergence Theorem,

= implies

As ~v+,~ maps Q onto v + Do (v), the assertion follows.

We will denote the last limit simply by 

For a function f E C(O) and v a tripotent, denote by

the "restriction" 1 of f to the boundary face v + Do (v). Recall that Do (v) is
itself a bounded symmetric domain (of type (r - rank(v), a, b) ) and denote
by Ko(v) its corresponding K-group. It can be shown that the restriction

induces an isomorphism 
K : idl. In particular, every element of is a restriction

of some k E K which fixes v.

THEOREM 5.2. - Let v be a tripotent. Then there exists a Ko (v)-
invariant probability measure J-lv on Do(v), absolutely continuous with
respect to the Lebesgue measure on Do(v), such that

where the convolution is taken in Do (v).

1 
Strictly speaking, a genuine restriction would require + v instead of ( on the left-

hand side; the reason for the different choice is that we prefer flv+Do(v) to be defined
again on a bounded symmetric domain centered at the origin, i.e. and not on its
translate v -f- Do (v) in 



1127

In other words, the "restriction to a boundary face" of the convolution
operator f - f * p is again an operator of this form.

Proof. - Define the measure on Do (v) by

Then by (5.1) one has for any (3 E Do(v),

Here we have used, in turn, (3.3); Proposition 4.9; the definition of 
and (5.2). Finally, in view of (4.1) the transvection with respect to fl in
Do (v) coincides with the restriction of g¡3 to Do(v), and thus (5.3) follows.

The assertion concerning absolute continuity follows from the holo-

morphy of the rnap z - pv (z) . (In fact, it is immediate from (4.5) that the
latter map is even rational and its Jacobi matrix is of full rank at every

point z EO.)

It remains to prove Ko (v)-invariance. In view of the remark preceding
this theorem, it suffices to show that = dJ-lv (() for any k E K
which fixes v. However, by the definition of J-lv,

if is K-invariant. This completes the proof.
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Analogs of the last two theorems can also be proved for the Poisson
transform P. This result is probably well known, but we were unable to
locate a reference in the literature.

THEOREM 5.3. - Let F be a continuous function on the Shilov

boundary Ben and f = PF its Poisson extension given by (3.4). Then

(a) f E C(SZ), and

(b) for each nonzero tripotent v, the restriction of f to the boundary
face Q(v) = v + Do (v) coincides with the Poisson extension, taken
in the bounded symmetric domain Do(v), of the restriction of F to
(v + Do (v) ) n 8e Q, the Shilov boundary of v + Do (v) :

where the P on the right-hand side is taken in Do (v), and

The proof uses a lemma. As before, da stands for the unique K-
invariant probability measure on aen.

LEMMA 5.4. - Let bEan. Then for dO’-almost all z E the limit

exists and, further, gb (z) lies on the Shilov boundary of the boundary face
containing b.

Proof of Lemma 5.4. - We know from the Kaup-Sauter theorem
that the mapping a H B(a, a) 1/2 extends continuously to By the
formula (4.1) it therefore follows that the mapping (z, a) H ga (z) extends
continuously to the set

is an invertible operator on Z}.

Fix a maximal tripotent e. Since K acts transitively on 8eO and dcr is

just the image under the projection ke of the normalized Haar

measure dk on K, to prove the first part of the lemma it thus suffices
to show that the set {k E K : I + D(ke, b) is not invertible} is of dk-

measure zero. Now I + D(ke, b) is a linear operator on Z ^_ en, hence
it is invertible if and only if its determinant f (k) det (I + D(ke, b)) is

nonzero. As D(z, b) is linear in z, f is a real-analytic function on K, hence
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it either vanishes identically or its zero-set is a real-analytic submanifold
of K of lower dimension. The former is clearly not the case (just take k
so that ke is a maximal tripotent dominating b). As the Haar measure
dk is absolutely continuous with respect to the Lebesgue measure in any
local coordinate chart, a lower-dimensional submanifold of K must have
dk-measure zero. Hence the zero set of f is of dk-measure zero, which is
the required assertion.

For a E Q, ga is holomorphic in a neighborhood of Q, hence it

must map the Shilov boundary 8eQ into itself. Letting a - b it follows
by the compactness of 8eQ that gb(z) E 8eQ whenever z E 8eQ and
the limit defining gb(z) exists. Further, for (z, b) E A4 we also have

E gb(Q) = the closure of the boundary face
containing b, by (4.6). Since the Shilov boundary of a face is precisely
the intersection of the closure of the face with aeS2, the second assertion of
the lemma follows. D

Proof of Theorem 5.3. - Applying the Dominated Convergence The-
orem to the integral

and using the first part of the lemma, we obtain (a). For (b), let v be
a tripotent and 0 E Do (v), and define a probability measure dw by the
recipe

By the second part of the lemma, dw is supported on v + 9e(Do(f)).
The same argument as in the proof of Theorem 5.2 shows that dw is

Ko (v)-invariant. Hence it must coincide with the unique Ko(v)-invariant
probability measure on v and by Corollary 4.7,

as claimed.
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We can now state our final result about the convergence of the iterates

of the convolution operator (3.2).

THEOREM 5.5. Let f E C(SZ). Then as k - oo, B~ f tends

uniformly on SZ to the Poisson extension (3.4) of Ilaeo.
Proof. - As, in view of Theorem 5.3(a), P[f la,Q] E C(O), we can

replace f by f - and proceed as in the proof of Theorem 1.6
to reduce the problem to showing that the function h(z), defined by
(3.6), satisfies 0 on n. Owing to Proposition 5.1 we now have

not only on SZ but even on Q, with some nonnegative (but possibly
discontinuous) function g on O. By the Lebesgue Monotone Convergence
Theorem and Theorem 5.2, g = g*~c on Q and also = 

for every tripotent v. Therefore by Fürstenberg’s theorem, 
harmonic for every v (we set v + Do (v) = Q for v = 0). Since h vanishes
on the Shilov boundary, on 0, and ae (v + Do (v)) C 8eQ, it then
follows from the Poisson formula (3.4) applied to Do (v) that = 0,
for every v, i.e., g = 0 on O. Thus 0 on 0, and the uniformity of
convergence follows by Dini’s theorem. D

6. Concluding remarks.

For unbounded functions, the iterates can in general diverge and
even blow up to infinity. The simplest example occurs when B is the Berezin
transform on the unit disc D with respect to the normalized Lebesgue
measure dm mentioned in the Introduction (the operator of convolution
with dm on D) and f (x) = One can then show that B f = f -f-1,
and thus is uniformly divergent to infinity. Note that f E drrz)
for all 0  p  oo.

Another family of examples, for B the convolution operator (3.1) with
a K-invariant probability measure p on a Cartan domain Q, is furnished

by the spherical functions OA (71 E (C’’, where a is the Lie algebra
of A, * stands for the dual and r is the rank of Q). It is known that OA are
eigenfunctions of the operator B~ :

where the spherical transform of p, is a holomorphic function of 71.
One has = 1 if l1 E W p, the orbit under the Weyl group W of the half-
sum of positive roots p, since for these = 1. Further, ON E L~ if and
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only if Re A E co(Wp), the convex hull of W p, while for any p  oo, there

is an open convex set Ll containing W p such that §x E LP (Q, dm) whenever
ReX E U. See [AZ]. By the open mapping theorem for holomorphic
functions, in any neighborhood of p there exists a 71 for which 1¡1(À) I &#x3E; 1.

Since

it follows that for any p  oo, there exists a spherical function OA E
LP (Q, dm) for which Bk 0,N diverges (blows up to infinity). Similar argument
also works when LP(Q, dm) is replaced by some other Banach lattices.

There also exist bounded functions f for which B~ f does not converge
pointwise. (Even bounded continuous ones - just replace f by Bpf and
recall that B, maps L~ into BC.) For B, the convolution with the
Lebesgue measure on the unit ball in C~, this was shown by Lee [Le].
We present a simpler version of his proof, which works for any Cartan
domain and some other measures in place of p, and even yields the slightly
stronger assertion about Ceshro means.

Let v be the invariant measure on Q. It is known that the operator
B. is formally self-adjoint with respect to v, that is,

(It is enough to prove this for f, g in L2 (dv), and then it follows from (6.1)
and the Plancherel theorem.)

THEOREM 6.1. Let Q be a Cartan domain, p a K-invariant prob-
ability, measure on Q absolutely continuous with respect to the Lebesgue
measure, and B~ the convolution operator (3.1). Assume that there is C &#x3E; 0

such that J-l ~ Cv. Then there exists f C BC(Q) for which the Ceshro means
Ckf = ~ ~~ -o Bíf do not converge pointwise.

Proof. It is enough to produce f in L~ with this property (then
just replace f by Assume that, to the contrary, Ckf exists
pointwise for every f E L°. Let g E Ll (0, dv). Then by the Dominated
Convergence Theorem and (6.2),

As £1 is weakly complete, this means that Ckg converges weakly to h E L 1,
say. By continuity, B~ h = h. For z E Q, the hypothesis that p be dominated
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by a multiple of v implies

by the invariance of v. Thus h E Loo, so by Fürstenberg’s theorem h is
harmonic. As the only harmonic function in Ll (dv) is the constant zero,
we thus see that

Using again (6.2) with f = 1 we thus get

a contradiction. This completes the proof. D

We finish with a remark concerning the measures J-lv occurring in
Theorem 5.2, that is, the measures defined, for p an absolutely continuous
K-invariant probability measure on a Cartan domain Q and v E aS2 a
tripotent, by the formula

where the subscript at the convolution signs refers to the domain where
the convolution is being taken.

PROBLEM. - Give an explicit formula for J-lv in terms of p.

In particular, we expect that if p is one of the standard measures

cvh(z, z)v-Pdm(z) (with h the Jordan triple determinant, p the
genus, v &#x3E; p - 1 and cv the normalizing constant), then the measure J-lv
will also be of this type, possibly with a different v.
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