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NASH TRIVIALITY IN FAMILIES OF NASH MAPPINGS

by Jesús ESCRIBANO(*)

Ann. Inst. Fourier, Grenoble
51, 5 (2001), 1209-1228

Introduction.

The aim of this paper is to study triviality in Nash families of proper
Nash submersions, or, in a more general setting, triviality in pairs of proper
Nash submersions.

We work over an arbitrary real closed field R. Let N and P be
Nash manifolds over R and g : N - P a Nash mapping. We say that
g is Nash trivial if there exist a point p E P and a Nash diffeomorphism
1 = (-yo, g) : N - x P. Let M be a Nash manifold and f : M - N
a Nash mapping. We say that ( f , g) is Nash trivial if there exist p and -y as
before and a Nash diffeomorphism 0 = M - x P such

that f o Bo = -yo o f. In other words, the following diagram is commutative:

The main result of this paper is

THEOREM. - Let R be a real closed field. Let M and N be Nash

manifolds, and let f : M -~ N, g : N - R’ be proper surjective Nash
submersions. Then ( f, g) is Nash trivial.

(*) Partially supported by DGICYT, PB98-0756-C02-01.
Keywords: Nash manifold - Nash mapping - Nash triviality - Real spectrum.
Math. classification: 14P20 - 58A07.
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(We recall that, as we work on arbitrary real closed fields, the usual
notion of compactness is not well behaved. In this paper, compact just
means closed and bounded. A mapping f : ~4 2013~ B between semialgebraic
subset A c R’, B C R"2, is said to be proper if f -1 (I~) is closed and

bounded for any closed and bounded semialgebraic subset .K C B.)
In [H], Hardt studies the local triviality of semialgebraic families of

semialgebraic sets, but his results say nothing about smooth situations. In

[CS1], M. Coste and M. Shiota study Nash families of Nash manifolds and
they prove an important triviality result. This result is a Nash version of
Thom’s first isotopy lemma. In fact, these two authors prove a semialgebraic
version of Thom’s first isotopy lemma in [CS2]. Our main result can be seen
as a Nash version of Thom’s second isotopy lemma.

A useful tool for the study of the triviality of smooth families of
smooth sets or mappings is integration of vector fields (see, for example,
[GWPL]). We cannot use this tool in the semialgebraic context. In ~CS 1~ ,
the authors use the construction of Nash models of Nash manifolds over

smaller real closed fields. That is, given a real closed field extension R’ - R
and a Nash manifold M defined over R, they construct a Nash manifold
M’ defined over R’ such that the extension MR is Nash diffeomorphic to
M. This construction, together with the use of real spectrum theory, allow
us to substitute integration of vector fields.

We follow the same ideas in this paper, translating them to the
relative situation. We extend the results on construction of Nash models of

Nash manifolds to results on construction of Nash models of Nash proper
submersions between Nash manifolds (Section 3). We also study with detail
generic fibres at points of the real spectrum of Nash families of proper Nash
submersions (Section 1). These results, together with some technical results
in Section 2 allow us to prove our main theorem.

We remark here that in [Shi2], §II.6, there is a result of this type,
although the proof is quite different and difficult to follow already over the
reals.

Finally, in Section 5, we give some results on finiteness of topological
types in families of Nash mappings. We also get some results on effectiveness
of the theorem above, using that our results are true for any real closed
field.

I thank professor Michel Coste for his help and support during the
realization of this paper.



1211

1. Nash families. Real spectrum.

In what follows, R will denote a real closed field.

We are interested in Nash families of Nash manifolds and mappings, and
we want to study the generic fibres of these families at points of the real
spectrum. In [BCR], Chapters 7 and 8, we can find a detailed exposition on
real spectrum, semialgebraic families and the relationship between them.
We adopt the notation from the above reference. In particular, we will
usually call a to a point of the real spectrum Rip. We can associate to each
point a of the real spectrum an ultrafilter i3 of semialgebraic sets. If ,S’ is a
semialgebraic subset of RP, then S will be identified with the subset of R
consisting of those cx such that S’ is in the ultrafilter a. We will call k(cà) to
the real closed field associated to each point a E For a semialgebraic
family X C Rn x RP, we will write Xa for the generic fibre of X at a
point a E RP . Finally, for a real closed field extension R’ ~ R and for
a semialgebraic subset A C R’n, we will write AR for the extension of A
to R.

In a few words, the philosophy about the "generalized fibre" is that

something (expressible by a formula of the theory of real closed --.-fields) holds
in the fibre at a if and only if it holds over some S with a E ,S’.

An example on the philosophy about real spectrum is the following

PROPOSITION 1.1 ([BCR], 8.10.3). - Let a E RP, and lest 0 be
an open semialgebraic subset of and ~p : : a Nash

function. There exist a Nash submanifold M C RP, with a E M, an open
semialgebraic subset U of Rm x M and a semialgebraic family of functions
f : U - R x M parametrized by M, such that 0, f, - cp and f is a
Nash mapping.

Following straightforward the proof of the proposition above, we can
prove a useful extension of this result.

PROPOSITION 1.2. - Let 0152 E RP, and let M and N be Nash
manifolds over R. Let p : Nk(a) be a Nash mapping. There exist
a Nash submanifold S C RP, with cx E 5’, and a semialgebraic family of
mappings parametrized by S, such that f ~ = cp and f
is a Nash mapping.

We will use these results in the proof of our main theorem. In

particular, we will use the next result in the key step of the proof:



1212

PROPOSITION 1.3. - Let M c Rm and N c R n be Nash

manifolds, f : N x Rp and g : M x RP - N x RP be Nash families
of Nash mappings. Let cx E KP. Assume that we have diffeomorphisms,
-y : Mk(,) and a : 7V~~) ~ Nk(a) such that the following
commutes:

(we recall that (M x Rp)a is just Mk(,)). Then there exist a Nash

submanifold S C RP, cx E S’, and two families of Nash diffeomorphisms
q : N x S - N x S such that the following

diagram commutes: 
I

Proof. We consider the Nash diffeomorphism

This diffeomorphism maps the graph of ga to the graph of J a. Using
Proposition 1.2 for H, we can assume that there exist a Nash submanifold
~S’ C RP, cx E ,S’, and a family of Nash mappings

such that Ba == H. Using again Proposition 1.2, and perhaps shrinking
S, we can assume that there exists a family of Nash mappings E* : :
M x N x S’ -~ M x N x S such that ua - H-1. We have that

o H-1 - =a o (E o =*)a so, by [BCR], Remark
7.4.5, shrinking again S, we can assume that B/soBis = IdM x N x s . Now, in
the same way, we can assume also that = so E* = u-1
over S, and, in fact, 31s is a family of diffeomorphisms. Finally, perhaps
shrinking again S, we can assume that the mapping sends the graph of
g to the graph of f, so it induces the diagram above. 0
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2. A preliminary lemma.

In this section we prove a lemma that is crucial for the proof of our
main theorem. This lemma is the following:

LEMMA 2.1. - Let M, N be Nash manifolds, f : M 2013~ N and

g : N - Rl proper Nash submersions. Let be a Nash submanifold

such that Nash trivial. Then, we can extend
this Nash triviality to a neighbourhood of P, i.e., there exists an open

neighbourhood U of P such that is Nash trivial.

Before proceeding with the proof of this result, we need three prelim-
inary lemmas. We first state a very simple but useful topological fact:

LEMMA 2.2. - Let N and T be semialgebraic sets and h : N - T
a proper semialgebraic mapping. Let P C T be a semialgebraic set and
V an open semialgebraic subset of N such that C V. Then, there
exists an open semialgebraic subset U D P such that V D 

Proof. Take U = TBh(NBV), which is open because h is closed.

Next lemma is a semialgebraic version of a known result on differential
topology.

LEMMA 2.3. - Let f : M - N be a proper surjective semialgebraic
mapping between two semialgebraic sets M and N over R. Let P C M be
a closed semialgebraic subset and assume that f is a local homeomorphism
for each x E P and flp : P -~ f (P) is injective. Then, there exists an open
semialgebraic neighbourhood W of P in M such that fjw : W - f (W) is
a homeomorphism.

Proof. Let Q be the set of points x E M such that f is a local
homeomorphism at x. Since to be a semialgebraic local homeomorphism
can be expressed with a first-order formula in the language of real closed
fields, Q is semialgebraic. Obviously, Q is open and P C Q. Let us consider
the semialgebraic set M x N M (X, y) E M x M : = and the

following diagram:
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Consider now the semialgebraic set D = ~(w, w) : w G Q) C M xN M. The
set D is open, because f is a local homeomorphism in Q, and P x N P c D.
The restriction fj p : P - N is proper since P is closed. The projection
onto the first factor Q x N is also proper, because it is the pull-back
of flp by the diagram above. (See [DK] for properties on semialgebraic
proper maps). By Lemma 2.2 there exists a semialgebraic neighbourhood

P such that P x N P C Vl x N P C D. We can assume that

VI is closed and, applying the same argument for the proper projection
Vi x N Q - Q, we obtain an open semialgebraic neighbourhood V2 of P
in S2 such that Vi x N V2 c D. Finally, we just need to take an open
semialgebraic neighbourhood W of P such that W c vi n Y2. 0

Finally, using an standard argument (see [CS2], Lemma 4) and above
Lemma 2.3, we can proof the following result on compatible tubular
neighbourhoods.

LEMMA 2.4. - Let Y C Rn, Z c R"2 be Nash manifolds and
F : Y - Z a Nash mapping. Let us consider a Nash submanifold

X C Y such that is a submersion. Then, there exists a Nash tubular

neighbourhood U of X in Y, with a submersive Nash retraction T : U - X
such that F o T = F on U.

Proof of Lemma 2.1. - Since the pair is Nash

trivial we have diffeomorphisms

for a certain p E P, such that the following diagram is commutative:

Let U be a tubular neighborhood of P and T : U - P a Nash retraction.
We want to extend the diffeomorphisms 9 and 1 to ~ : (g o f ) -1 (U) -~
(g o f ) -1 (p) x U g-1 (U) --~ x U so that the corresponding
diagram commutes.

We consider the Nash submanifold c N. Using Lemma 2.4
with Y = Z = P, X = and F = T o g : g-1 (U) -~ P, and
perhaps shrinking U (we can do it by Lemma 2.2), we obtain a submersive
retraction T : ~"~(~7) 2013~ such that gOT = T o g. We can define now



1215

the Nash mapping

By Lemma 2.3 applied to ~, there exists an open neighbourhood W of
in such that ~ : W --~ is a diffeomorphism. The

map g : g-1 (U) --~ U is proper hence, by Lemma 2.2, there exists an
open neighbourhood U* of P in U such that C W. So we have the

diffeomorphism%y : g-1(U*) -~ ~y(g-1(U*)). C g-1(p)xU*,
hence applying again Lemma 2.2 to the proper map Jr : x U* --+ U*

is compact), we obtain an open neighbourhood U** of P in U*
such that U** C ~(9-1(u*)). g-1 (U**) -~ g-’(p) x U**
is a diffeomorphism. Now, renaming U** as U we have that § is a

diffeomorphism and that for all x E 7r - ~(.r) = g(x), hence the
corresponding diagram is commutative.

In the same way, using Lemma 2.4 with Y - (g o f )-1 (U), X -
(g o f )-1(P), Z = g- 1 (P), and noting that = is

Nash trivial, we can construct a submersive retraction 3 : (g o /)~(!7) 2013~
(g o such that f o if = T o f, and, similarly, we can define

We obtain then that 6 is a diffeomorphism that extends our trivialization
to U. D

To finish this section, we state a useful corollary of Lemma 2.4. We
can set in a natural way ( [Shil] ) the notions of CT Nash function and Cr
Nash manifold. We can also define a topology in the space of Cr Nash
mappings between C’~ Nash manifolds. We will call this topology simply
Cr topology. See [Shil] for the definition and properties of this topology.

COROLLARY 1. - Let f : M --~ N be a Nash (resp. CT Nash,
r &#x3E; 0~ submersion between Nash (resp. Cr Nash) submanifolds M and
N. be a Nash (resp. Cr mapping sufficiently close
to f (for the Cl topology). Then, there exists a Nash (resp. C~’ Nash)
diffeomorphism T : M - M such that f = JOT.

Proof. For the Nash case, let us consider graph( f ) c M x N.
The natural projection 7r : graph(f) --+ N is a submersion because f is a
submersion. Hence, by Lemma 2.4, there exists an open neighbourhood U
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of graph( f ) in M x N and a submersive retraction a~ : U -~ graph( f ) such
that 7r o a = 7r on U. If we define as ol (x, f (x)), by definition we have
that cr2(~/(~)) = f (T (x) ) . And, if f is close enough to f, then T is close
enough to the identity, so we can assume that T is a diffeomorphism. We
can use this proof of the C’’ Nash case, as it is easy to prove a C~’ Nash
version of Lemma 2.4. (See [CS2], Lemma 4). 0

3. A model for a Nash proper submersion.

In this section, given a Nash proper submersion f : M --+ N, we find a
Nash model for f over a real closed subfield of R. We construct this model
over the elements of a semialgebraic open covering of N. The first lemma
will allow us to glue local models in order to obtain a global one.

LEMMA 3.1. - Let A, V and N be C~’ Nash manifolds over R

(0  r  oo) and SZ and U open sets in N such that Q U U = N. Let
f : A -&#x3E; S-2, g : V -~ U be proper C~’ Nash submersions, and let us assume
that there exists a C’’ Nash diffeomorphism 0 : n U) ~ g-1 (SZ n U)
such that Jlf-1(Onu) == o’ljJ. Then there exist a CT Nash manifold
M, embeddings and a proper C’’ Nash submersion

F : M - N such that j o 0 = i and the following diagram is commutative:

Proof. We may assume that and V CRm. Let be

a C’’ Nash partition of unity subordinated to so that n
, - I."’" , - --

We consider

M = MI U M2 C Rn x Rm x N and the projection F = M -~ N.

It is clear that M is a semialgebraic set and F is a semialgebraic map. We
also have that = MI is diffeomorphic to A. In fact the mapping
i : A ~ M, : x F-4 (h( f (x))x, (1 - f (x)) is a diffeomorphism.
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Similarly, F- 1 (U) - M2, and M2 is C~’ Nash diffeomorphic to V. Then, M
is a CT Nash manifold and F is a proper C’~ Nash submersion. 0

Now we prove an easy but useful lemma:

LEMMA 3.2. - Let N be a Nash manifold over a real closed field R.

Then we can find a finite covering of N by open semialgebraic subsets which
are Nash diffeomorphic to affine space.

Proof. By [BCR], Th. 9.1.4, there exists a Nash stratification 
of N such that S’i is Nash diffeomorphic to Rdim s2 for each i. Consider a
stratum Si and assume that dim ,S’i  s = dim N. Let Ti be an open
tubular neighbourhood of Si in N and Ti : Ti a Nash retraction.

By the construction of the tubular neighbourhood ([BCR], 8.9.3) using the
normal bundle to Si, and by the Nash triviality of this bundle (see [BCR],
12.7.7 and 12.7.15), we can assume that Tri : Ti - Si is Nash trivial over

Si. That is, we can assume that there exists an open ball Bi of radius ei
in RS-dim Si such that Ti is Nash diffeomorphic to Si x Bi. But then it
is clear that Ti is Nash diffeomorphic to R dim S., x Si = RS . So, if
we define Ui to be Ti if dim Si  s and Si otherwise, we can assume that
N Ui, where Ui is open and diffeomorphic to R’ for all i. D

LEMMA 3.3. - Let R~ 2013~ R be a real closed field. extension. Let A
and B be Nash manifolds over R’, and 6 : AR --~ BR be a Nash mapping
satisfying certain (finitely many) conditions which can be formulated as
first-order formulas of the language of ordered fields with parameters in
R’. Then there exists a Nash mapping 6’ : A -+ B (over R’) satisfying the
same conditions. Moreover, we can choose 6’ such that there exists a Nash

mapping A : AR x [0, l]p 2013~ BR such that Ao = 8k, Ai = 6 and, for every
t C [0, 1]R, At satisfies the same first-order conditions.

Proof. We consider the graph of 6. We can write

where Ji, gij E X ~ , for cert ain a E Let a’ be an element in R’q . We

can consider the semialgebraic set
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and let B’ be the set of points a’ E R’q such that X(a’) is the graph
of a Nash mapping between A and B satisfying the above first-order
conditions. The condition for a semialgebraic set in R’N to be the graph of
a semialgebraic mapping between A and B can be expressed with a first
order formula in the language of real closed fields. ¿From [R], Prop. 3.5, we
obtain the following result:

Given a semialgebraic set S and a semialgebraic family ( ft : A ~
BItEs, the set {t E S : ft is Nash) is semialgebraic.

Hence, the subset B’ is semialgebraic and a E B’ . Now, we can choose
a Nash stratification ~,S’2 ~i=1,...,v of B’, where each Si is a connected Nash
manifold. Then is a Nash stratification of BR and we can
assume that a is a point in the connected Nash manifold 81R. We observe
that ,S’1 7~ 0 because 0 ([BCR], 4.1.1). Then we can consider the
semialgebraic family 8 : A x ,S’1 - B x ,S’1 such that for each t E 9i, 8t
is the Nash mapping corresponding to X(t). Now, by Proposition 8.10.1
in [BCR] and Proposition 1.1 we can assume that Sl is a finite union

U7=1 Mi of Nash submanifolds such that 6 : A x Mi - B X Mi is Nash
(also with respect to the second parameter) for i = 1, ... , l~ (see [BCR],
8.10.4). Moreover, substratifying if necessary, we can assume that Mi is

Nash diffeomorphic to for each i = 1, ... ,1~. Again we can assume
that a and MIR =1= 0. We can choose a’ E Ml so that X(a’) is the
graph of a Nash mapping 6’ : A - B defined over R’, satisfying the first-
order conditions. As Ml R is a Nash submanifold diffeomorphic to R dim Ml

we can choose a Nash path between a and a’ in This means that there

exists a "Nash path" between 8k and 6, i.e., there exists a Nash family

such that Do = 8k, Ai = 6 and At is a Nash mapping satisfying the above
first-order conditions with parameters in R’, for each t E 0

After this preliminary lemmas, we state the main result of this section.

PROPOSITION 3.4 (Semialgebraic models). - Let R’ --4 R be a real
closed field extension. Let f : M ~ N be a proper Nash submersion
between the Nash submanifolds M and N of Rn . Then, there exist two Nash
submanifolds M’ and N’ of R"’, a proper Nash submersion f’ : M’ --+ N’
and diffeomorphisms 0152 : NR -~ N, M, such that f o 13 = a o f’

Proof. - The idea of the proof is to build "local" models for f
over "big" open semialgebraic subsets of N, that is, over a finite open
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semialgebraic covering of N. Then, by a rather technical argument, we
glue all these local models to obtain a global one.

By [CS1], there exist a Nash submanifold N’, defined over R’, and a
Nash diffeomorphism a : N~ -+ N. By Lemma 3.2, we can assume that
N’ = Uk 1 Ui , where Ui is semialgebraic open and Nash diffeomorphic to
R’S for all i. Let us consider now the open subsets Then,
N = U7=1 Ui, and Ui is diffeomorphic to Rs for all i.

We have that - Ui is a Nash proper submersion.

So, by the semialgebraic version of the first isotopy lemma [CS2], there exist
a compact Nash manifold FZ and a Nash diffeomorphism (3i : -

Fi x Ui such that f = 7ri o where 7ri is the projection Fi x Ui - Ui.

For each i, there exists a compact Nash manifold FI over R’ whose
extension to R is diffeomorphic to Fi, that is, we have a diffeomorphism
ei : FIR -+ Fi. Now we are going to "glue" the sets x to

build a manifold M’ and a proper Nash submersion f’ : M’ ~ N’, defined
over R’. We proceed by induction on k.

For k = 1, there is nothing to prove. We consider the case k &#x3E; 1.

By induction hypothesis, we can assume that there exist two open subsets
Q, U C N such that N = Q U U, and that there exist models A’ and V’
of A = (0) and V = (U), respectively, and Nash diffeomorphisms

A~ -+ A and ~2 : VR -~ V . We can also assume that there exist open
semialgebraic subsets Q’, U’ C N’ such that = SZ, = U, and
proper Nash submersions ~1 : A’ -~ Q’ and ~2 : V’ -~ U’ such that the
following commutative diagrams hold:

Note that

We consider the diffeomorphism

over ( U’ n O/)R compatible with 01 and 01, that is, 02 o 6 = ol over
( U’ By Lemma 3.3 there exist a Nash diffeomorphism

defined over R’ and compatible with 0’ and ~2, and a Nash family of Nash
diffeomorphisms
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such that 00 = 8k, Ai = 6 and At is compatible with 01 and 02 for each
t E ~0,1~R.

So, using Lemma 3.1 for b’, we have a C~’ Nash manifold M’ over
R’ and a proper Cr Nash submersion f’ : M’ - N’ (0  r  oo) .
We claim that MR is Cr Nash diffeomorphic to M. By the proof of
Lemma 3.1, MR is obtained by "glueing" and VR via the diffeomorphism
8k. This means that MR - (Mi)R U (M2)R where (M1)R and (M2)R
are defined as in Lemma 3.1 for 01 , and hR, and f h, 1 - hl
is a C’’ Nash partition of unity subordinated to IQ’, U’l. Now, let M*
be the manifold obtained by glueing and VR via the diffeomorphism
6: nQ’) R - n fl/)R. It is not difficult to show that
MR is diffeomorphic to M*.

Let us see now that M* ~ M. We have that M - A U V, and
M* - Mi U M2 , where Mi and M2 are defined in the same way as above.
We define the mapping

where p - This is clearly a Nash diffeomorphism. On the other
hand, we have

where q = 02 1(x). This is also a Nash diffeomorphism. It is easy to see

that -yl = ~2 over A n V.

Hence we can define a diffeomorphism =y : M -~ M* .

Finally, composing both diffeomorphisms, we obtain a C~’ Nash

diffeomorphism /3 : M. Due to the compatibility conditions that
are verified by the above diffeomorphisms, we obtain our result in the Cr
Nash category.

To finish the proof, we just need to use the approximation theorem
in the C’’ Nash category ([Shil]), to obtain the result in the Nash category.
We have that M’ is a Cr Nash manifold, so there exist a Nash manifold
M" defined over R’ and a C~’ Nash diffeomorphism ( : M" -~ M’. Then,
replacing /3 by /3 o ~R and f’ by f’ o (, we can assume that M’ is a

Nash manifold. Let f’ : M’ ---+ N’ a Nash approximation of f’. If the

approximation is close enough, we can assume that f’ I is a proper Nash

submersion and, by Corollary 2.5, we can assume that there exists a CT
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Nash diffeomorphism T’ : M’ -7 M’ such that f’ Hence, replacing
f’ with P = f’ o T’ and 0 with {3 o TR, we can assume that f’ is a

Nash mapping. Finally, we can approximate the Cr Nash diffeomorphism
M by a Nash mapping /3. If the approximation is close enough,

we can assume that fl is in fact a Nash diffeomorphism. Since (3 is a close
enough Nash approximation of (3, then a o f R o fl is a close enough
Nash approximation of f. Hence, by Corollary 2.5, there exists a Nash
diffeomorphism T : M - M such that cx o fR o = f o T. Replacing then

13 with 70(3 we have the result in the Nash category. D

Finally, the above proposition allows us to prove a "Hardt’s type"
theorem.

THEOREM 3.5. - Let B c RP, X c Rn x B and Y C x B

be semialgebraic sets, and let f : X --+ Y be a semialgebraic family of

semialgebraic mappings. We assume that ft : Xt - Yt is a proper Nash

submersion between Nash manifolds for each t E B. Then, we can stratify
B in a disjoint union of Nash manifolds, say B = ,S’1 U ... U such that,
for each Si, we can find a Nash trivialization of f over Si of the form

for certain ti E Si.

Proof. Let us take a point a in the real spectrum B of B. Then the
fibre fa : Xa --~ Ya is a proper Nash submersion over By Proposition
3.4, we have a Nash submersion f’ : X’ --~ Y’ between Nash manifolds X’,
Y’, defined over R, and diffeornorphisms q and a such that the following
diagram commutes:

But, since is the fibre ( f’ x id)a of the constant family f’ x id :
X’ x B - Y’ x B, by Proposition 1.3, there exists a Nash manifold ,5’ C R,
a c S’, and diffeomorphisms ( and 7y, compatible with the projections, such
that the following diagram commutes:
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Then, by the compactness property of B, and perhaps substratifying, we
can assume that there exists a finite stratification of B such that a

diagram like the one above holds for each Si. 0

4. Proof of the main theorem.

The map p : TV 2013~ R’ is a proper submersion, so, by the semialgebraic
version of Thom’s first isotopy lemma [CS2], there exist a compact Nash
manifold F and a Nash diffeomorphism 0 = (00, g) : N - F x R’. Similarly,
go f : M - R’ is a proper Nash submersion, so there exist a compact Nash
manifold G and a Nash diffeomorphism p = g o f ) : M ~ G x Rl. We
can consider then the following diagram:

where (1fl : F x Rl -~ Rl is the projection). We have that
1flJ’(X, t) == t. Hence, we can assume that M, N are compact and f :
M x proper submersion of the form f (x, t) = t). In
other words, we have a Nash family of Nash submersions Ift : M -&#x3E; 
and we can forget about g. We argue by induction on l.

First, we consider the case 1 == 1. By Theorem 3.5 there exists a finite
Nash stratification of R such that is Nash trivial for each i. We

can assume that the ,S’2 are open intervals or singletons, and by Lemma 2.1
we can also replace the latter by open intervals. Thus we have trivializations
of the family f over a covering of R by open intervals, and we must glue
all of them.

For example, let us glue a trivialization over the interval (0, 2) with
a trivialization over ( -1,1 ) . Namely
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where f 1, f 2 : M - N are proper Nash submersions, (i is a Nash diffeo-

morphism of the form (i (z, t) = (~2 (x, t), t) and 1Ji is a Nash diffeomorphism
of the form 1Ji (x, t) = (1Ji (x, t), t) for i = 1, 2.

Let us consider to = 1/2. Then

hence

Then, if we replace (2 by (2 o (((2,~0) ~d~o ~ id) and r~2 by 7~2 o ((~2,~0) ~ o
id), we can assume that fi - f2. We will write f’ instead of fi,

i == 1,2.

Over the interval (o,1 ) we have the following commutative diagram:

We consider a C~ Nash function u : R - R, such that i~(~) = ~
1/4 and u(t) - t if t ) 3/4. We define then the C~ Nash

diffeomorphisms (fi == (~(~),~) as ~t (x) _ ~i,~~t) ° ~2,~(t) and ~ = (’ljJt(x), t)
as = ~2,M(~)- We observe that o f’ = f’ o for each

t E (o,1 ) . Then we can consider the Nash diffeomorphism over (o,1 )
~* 2 - (1 0 (fi and r~* 2 = 7]1 o ~. This new diffeomorphism makes the
corresponding diagrams commutative. Over (3/4,1) we have that (*~ = (2
and r¡*2 = 7]2. Over (0,1/4), (*2 == (I 0 id) and ’i*2 = 7]1 0 (v x id)
where J-L == (]/22,i/2 : M -&#x3E; M and v = /o0 7,1/2 N - N are Nash
diffeomorphisms such that f 0 J-L = v o f . This means that we can glue (i
and (2 to obtain a Nash diffeomorphism (* (z, t) = (~t (x), t) defined by

In a similar way, we glue r~l and q2 to obtain a Nash diffeomorphism
i7(x, t) = (r~t (x), t) such that the diagram
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is commutative. Hence, we obtain a global C1 Nash trivialization over

(-1, 2).
Now we can approximate (* and q* by Nash mappings ( : M x

(20131,2) 2013~ M and r~ : N x (-1, 2) -~ N respectively. If the approximations
are close enough, we can assume that the Nash mapping ~ : M x (-1, 2) ~
M x (-1, 2) (resp. 71 : N x (-1, 2) -~ N x (-1, 2)) defined as ( (x, t) ==

(~(x, t), t) (resp. t) = t), t)) is a Nash diffeomorphism. Moreover,
we can assume that 71 o ( f’ x Id) 0 (-I is a close Nash approximation
to f. Then, by Corollary 2.5, there exists a Nash diffeomorphism T :
M x (-1, 2) - M x (-1, 2) such that 71 o ( f’ = /or. This last
condition in fact implies that T is a diffeomorphism over ( -1, 2 ) . Hence,
replacing 77* with j and (* with we get the result in the Nash category.
(Observe that ( and q are just 8-1 and q~~ , respectively, in the statement
of the theorem.)

If 1 &#x3E; 1, we see f as a parametrized family over R:

Let a E R and let us consider the fibre .1~
I(a)l-1. By the induction hypothesis, there exists a Nash trivialization

... 

’ ’ 

on 
’

for certain Nash submersion fa : Applying Proposition 3.4
to the proper Nash submersion fa we get two Nash manifolds M’ and
N’ defined over R, two Nash diffeomorphisms (’ : M~~~ 2013~ and

q : N~~a~ ~ and a proper Nash submersion f’ : M’ ~ N’ such that
the following diagram commutes:

The manifolds and Mk(Q) are Nash diffeomorphic, so, by
Lemma 3.3, there exists a Nash diffeomorphism ( : M’ ---7 M defined over
R; similarly, we have a Nash diffeomorphism q : N’ ---7 N defined over R. So,
replacing (
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we can assume that in

fact we have a trivialization of the form

This implies (by Proposition 1.3) that there exists a Nash trivialization

where ,S’ is a semialgebraic subset of R with a E S. Now, by the compactness
of the real spectrum, we have a partition R = U Si such that over each

x s2 we have a Nash trivialization as above. We can assume that the
Si are open intervals or singletons. In the case ,S’i = {a}, for a E R, by the
induction hypothesis, f is Nash trivial over Rl-I x {a} so, by Lemma 2.1, we
can find a Nash trivialization over an open neighbourhood of x In

other words, we can find a positive Nash function 6 : R such that f
is Nash trivial over Rl -1 x (ai - b, ai -~ b) : := I(x, t) E Rl-l x R: It-ail 
b(x)~. As before, we have to glue these trivializations. The argument is the
same as above. For example, we are going to glue the trivialization over

and the trivialization over

for a certain C’ Nash function

We can assume as in the case L = 1 that f, = f2 = f’ : M - N. We
start considering the semialgebrac open subsets Ul - x (0, 36) and
U2 - x (~,5) of x (0, 6). We consider then a C’ partition of
unity of x (0, 6), ~h,1- h~ subordinated to the covering U2~. We
define then the semialgebraic mapping u* : Rl-l x (0, 6) - x (0, 6)

, We observe that for I
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h(s, t) = 1 and hence u* (s, t) - (0, ~8(0)) is constant. Moreover, for

t = 4 b(s) we have that h(s, t) = 0 and hence u* (s, t) = (s, 4 b(s) ) = (s, t), so
in fact u* is continuous. So we can approximate u* by a C’ Nash mapping
u : R’-’ x (0, 6) -~ x (0, 6) such that u(s, t) = (0, 4b(o)) for t  
and u(s, t) = (s, t) 
As in the case 1 == 1, taking the above function u, we can "glue" the above
trivializations in order to obtain a global trivialization over (-1, b) . This
trivialization will be of class Cl Nash, but repeating the same argument
than in the case 1 = 1, we obtain the result in the Nash category. D

5. Finiteness and effectiveness results.

In this section we apply the main theorem to obtain some finiteness
and effectiveness results.

Let us consider two Nash mappings fi : Ml -~ Nl , f 2 : M2 - N2
between Nash manifolds defined over R. We say that fi and f 2 are

Nash equivalent if there exist Nash diffeomorphisms 1 : M2 and
such that fl.

THEOREM 5.1. - Let B c RP, X c R n x B and Y c R’n x B
be semialgebraic sets, and let f : X - Y be a semialgebraic family of
semialgebraic mappings. We assume that ft : Xt --+ Yt is a proper Nash
submersion between Nash manifolds for each t E B. Then, there exists a
finite number of elements of B, say tl, ... , tr, such that, for each t E B, the

mapping ft is Nash equivalent to ft2 for some i = 1,..., r.

Proof. - We are in the situation of Theorem 3.5. So, taking Si as
in the theorem and choosing ti E Si we have the result. D

Before stating the following theorem, we have to define the degree of
a semialgebraic set. Given a semialgebraic set S C Rn, we can write S’ as

where the are polynomials and Y k,l E ~, &#x3E;, _~. We define the degree
of ,S’ to be the sum of the degrees of the polynomials which appear in the
above description (so, to be accurate, we should speak of the degree of a
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description of a semialgebraic set). The degree of a semialgebraic map will
be the degree of its graph.

THEOREM 5.2. - Given positive integers n, m and c, there are

integers s and d, Nash su bmanifolds X 1, ... , X S of Rn, Nash su bmanifolds
Yl, ... , Y, of R’ and proper Nash submersions fi : Xi - Yi, for i = 1,..., s
of degree  c such that, for any pair of Nash submanifolds X C R’~,
Y C R’ an d any proper Nash submersion f : X - Y of degree c, the
mapping f is equivalent to some fi and the Nash diffeomorphisms involved
in the equivalence have degrees  d. Moreover, s and d are bounded by
recursive functions of n, m and c.

Proof. For the proof of this result we just have to follow the proof
of Theorem B in [CS1]. We just need to apply Theorem 5.1 to the family of
proper Nash submersions between Nash manifolds X C R" and Y C R’ of

given degree (this is in fact a semialgebraic family, see [R]). Following the
same argument, with the appropriate modifications, we have the result. 0

Finally, following again the proof of [CS1], Proposition 5.2, together
with our Proposition 3.4, we obtain the following.

PROPOSITION 5.3. - Given integers n, m, l and d, there is an

integer e such that for any pair of Nash manifolds M C Rn and N c R’
and any pair of proper Nash submersions f : M 2013~ N and p : N ~ R’ of
degree ~ d, there are Nash diffeomorphisms h and g as in the main theorem
of degree ~ e. Moreover, e may be bounded by a recursive function of n,
m, l and d.

BIBLIOGRAPHY

[BCR] J. BOCHNAK, M. COSTE, M-F. ROY, Real Algebraic Geometry, Ergeb. Math.
Grenzgeb., (3) 36, Springer-Verlag, Berlin - Heidelberg - New York 1998.

[CS1] M. COSTE, M. SHIOTA, Nash triviality in families of Nash manifolds, Invent.
Math., 108 (1992), 349-368.

[CS2] M. COSTE, M. SHIOTA, Thom’s first isotopy lemma: a semialgebraic ver-
sion, with uniform bound, in Real Analytic and Algebraic Geometry (Ed.
F.Broglia, M. Galbiati, A. Tognoli), Walter de Gruyter, Berlin (1995), 83-
101.

[DK] H. DELFS, M. KNEBUSH, Locally Semialgebraic Spaces, Lecture Notes in

Mathematics, 1173, Berlin, Springer-Verlag (1985).



1228

[GWPL] C.G. GIBSON, K. WIRTHMÜLLER, A.A. du PLESSIS, E.J.N. LOOIJENGA,
Topological stability of smooth mappings, Lecture Notes in Mathematics,
552, Berlin, Springer-Verlag (1976).

[H] R. HARDT, Semi-algebraic local triviality in semi-algebraic mappings, Amer.
J. Math., 102 (1980), 291-302.

[R] R. RAMANAKORAISINA, Complexité des fonctions de Nash, Commun. Algebra,
17 -6 (1989), 1395-1406.

[Shi1] M. SHIOTA, Nash Manifolds, Lecture Notes in Mathematics 1269 Springer-
Verlag, Berlin (1987).

[Shi2] M. SHIOTA, Geometry of Subanalytic and Semialgebraic Sets, Progress in
Mathematics, vol. 150, Boston, Birkhäuser (1997).

Manuscrit reCu le 21 novembre 2000,
accepté le 9 mars 2001.

Jesus ESCRIBANO,
Universidad Complutense
Facultad de CC. MatemAticas

Departamento de Sistemas Inform6ticos
y Programacion
E-28040 Madrid (Spain).
jesusesc~eucmax.sim.ucm.es


