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VECTOR FIELDS, INVARIANT VARIETIES
AND LINEAR SYSTEMS

by Jorge Vitório PEREIRA

Ann. Inst. Fourier, Grenoble
51, 5 (2001), 1385-1405

1. Introduction.

When studying algebraic curves one of the most fruitfull concepts
is the one of inflection and higher order inflection points. For a smooth
plane curve, i.e., a smooth compact Riemann surface embedded in ]P&#x3E;~, the
inflection points are precisely the points where the tangent line has contact
of order at least 3 with the curve. If C is a curve then a point p E C is
an inflection point of order d if there exists a curve of degree d that has
higher order contact with the curve C at p. Here higher order contact means
that the order of contact is at least the dimension of the vector space of

polynomials of degree at most d.

For plane curves, the inflections points are computed through the
Hessian and the higher order inflection points are not so easy to obtain. As
far as the author knows, the first mathematician to pursue the question of

determining higher order inflection points for plane curves was Cayley, see

[3]. He succeeded in giving a formula for the inflection points of order two.
However, the formula obtained by Cayley is not very simple.

According to Cukierman, the problem of giving formulas for inflection
points of order greater than three of plane curves does not seem to have
been solved in the classical literature. In [4], he gives an approach to obtain

Keywords: Holomorphic vector fields - Linear systems - Inflection points.
Math. classification: 37F75 - 32M25 - 34M45.



1386

"almost explicit" formulas for the higher order inflection points of plane
curves and complete intersection curves on some projective space.

The goal of the first part of this paper is to introduce and show how
to compute inflection and higher order inflection points for holomorphic
vector fields on the complex projective plane. In more concrete terms, given
a vector field X on we define effective divisors on p2, such that
the restriction of the divisor to any solution of the vector field X coincides

with the inflection points of order d of the solution.

In contrast with the case of plane curves, the formulas obtained for

Ed(X) are not very complicated. At first sight this seems to be paradoxical,
but if C is a smooth algebraic curve invariant by the algebraic vector field
X, then the divisor restricted to the curve gives something more
than the inflection points of order d of the curve C. The fact is that besides
the inflection points of order d, also contains the singularities of
the vector field along C.

The initial motivation for introducing such concepts was to have a
tool for detecting invariant algebraic curves of a given degree d of a vector
field X, and bound their number in function of d and the degree of X. In
fact using the divisors which we call extactic curves, we obtain such

bounds. These bounds turn out to be of different nature than Jouanolou’s

bounds which are obtained through Darboux’s approach, see [7].

Among the applications of the extactic curves, one can find a com-
putational criteria for the existence of first integral of a given degree and
some properties of families of foliations on p2

Since we believe that the concepts here introduced may be useful for

studying concrete examples of real and complex algebraic vector fields, we
try to be as explicit as possible in the first part of the paper.

In the second part we use a more intrinsic approach and generalize
the concepts and some of the results for vector fields on arbitrary complex
manifolds.

Developing the concepts in such generality we show that we can use
our methods to detect a class of solutions more general than the algebraic
class. One illustrative result of the method is a generalization of Darboux’s
criteria for the existence of first integrals in the spirit of [10]. Using the
same sort of ideas we also obtain a new proof of a result proved in [6] by
Gomez-Mont about foliations with all leaves algebraic.

I would like to thank P. Nogueira, for her help in working out the
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formal definition of extactic divisors, L.G. Mendes, for showing me reference
[5], and specially E. Esteves for many helpful discussions about linear
systems, inflection points and algebraic vector fields.

Part I. Extactic curves on the projective plane.

2. Affine and pro jective polynomial vector fields.

If X is a polynomial vector field on (C2, then X can be written as

where g is a homogeneous polynomial of degree d and a, b are polynomials
of degree at most d. We define d as the degree of the vector field. When g
is identically zero we say that the line at infinity is invariant.

If we consider the homogeneous polynomials

and

then the vector field

is a projectivization of X. If Y is any other projectivization of X then X - Y
is a multiple of the radial (or Euler) vector field R = x tx + z-2-

Reciprocally, if Y is a polynomial vector field on (~3 with homogeneous
coefficients then Y induces via the radial projection a field of directions on

P’. Observe that any homogeneous vector field on (C3 whose difference with
Y is a multiple of the radial vector field induces the same field of directions
on We abuse the language and say that such a field of directions is a
projective vector field, or just a vector field on ]P~.

3. Higher order inflection curves of vector fields on p2

In this section we define the extactic curves, Ed for d E N, for vector
fields on p2. These curves describe the inflection and higher order inflection
points for solutions of the vector field.
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3.1. Extactic points of plane curves.

DEFINITION 1. - A n-inflection point of a curve in P(c 2 is a point
where the multiplicity of intersection of the curve with some algebraic curve
of degree n is greater than

Note that d(n) is the dimension of the space of plane curves of degree n.

We use the term extactic point following V.I. Arnold, see [1].

Remark 1. - Observe that when C is an algebraic curve in p2 or
if every point of C is a n-inflection point then the degree of C is at

most n.

3.2. Extactic curves of vector fields. - Our purpose is to

describe in a unified way the inflection and higher-order inflection points
of the solutions of the vector field. If X - a(x, -f- b(x, y) ay is a

vector field on (C2 and (x, y(x)) a parametrization of a solution we have
det ( i d ) - a d (x) - b = 0. Therefore, d = . To obtain the inflectionsdx dx dx - a*

of the curve (x, y(x)) we have to calculate the determinant:

Hence, in the open set (C2 B (a(x, y) = 0), the inflections points of the
solutions describe a curve given by the expression above. In an analogous
manner we can get equations for the inflection curve in the open set

To calculate the 2-inflection points of the solutions we consider the

image of the curve (x, y(x)) under the 2-Veronese map. This image is the
curve parametrized by

in (C5. If we calculate its flattening points we obtain the 2-inflection points
of the solution. Such a calculation can be done evaluating the determinant
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of the matrix,

The n-inflection points can be obtained through the use of the n-Veronese
map in a completely similar way.

Until now we have been working locally, although it is possible
to give global expressions, on for these n-inflection curves. If X -

is a homogeneous vector field in (~3 then the equation
for the inflection curve, or the first extactic curve (which we will denote by

of the induced foliation on Pfl is

where. for any polynomial f.

Example 1. - Let

and Z = tX + sY, (8, t) E C2 and s - t =1= 0, be a projectivization of Lins
Neto’s example [8]. Then

where L9 = (x3 - y1)(XI - z3 ) (y3 - Z3). Observe that the nine invariant
lines for any Z are contained in the first extactic curve of Z.

To understand why formula (1) works, suppose p E (C3 is a non-

singular point of X. Here non-singular means that the vector field X is not
colinear with the radial vector at p, or in other terms p is a non-singular
point of the codimension one foliation of (C3 induced by X and R. By the
existence of local solutions for ordinary differential equations there is a germ
of curve V around p E tC3 which is a local orbit of X. As a consequence the
vector field X restricts to V, which means that X acts as a derivation on
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the local functions of V. Since V, interpreted as a germ of projective curve,
has dimension 1 the restriction of X to V can be seen as the derivative of
a local parameter t. Hence formula (1) can be written on V as

- - - - -

and in fact represents the inflection points of V in a neighborhood of p.

Similarly, we have a global equation for the curve of 2-inflection
points of the vector field, or the second extactic curve £2(X), which is

the determinant of

The d-th extactic curve £d(X) can be described in a completely similar
way. The equation of ~d (X ) is given by the determinant of a matrix such
that the first row is formed by a basis of the monomials in x, y and z of
degree d, and the i-th row is the derivation X applied in the (i - I )-th row.

PROPOSITION 1. - Every algebraic curve of degree n invariant by
the vector field X is a factor 

Proof. Let F be an invariant algebraic curve of degree n. Since
the choice of the basis of the C-vector space plays no role in the definition
of extactic curve, we can choose a basis where F appears. Since

where LF is a polynomial, one can see that F is a factor of D

THEOREM 1. - A projective vector field X admits a first integral
of degree d, but does not admit a first integral of degree smaller than d if,
and only if, ~d (X ) = 0 and ~d_ 1 (X ) ~ 0.

Proof. - Let p E be a non-singular point of X. Suppose that
the solution passing through p is parametrized, locally, by (x, y(x)). Since
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£d(X) vanishes identically, the composition of our local solution with the d-
Veronese map is contained in a hyperplane, so (x, (x)) must be contained
in an algebraic curve of degree at most d. Since every leaf is algebraic it
follows from Darboux’s Criteria, see [10], that X admits a first integral of
degree at most d. The fact that ~d_1 (X) ~ 0 implies that the generical
solution is of degree at least d.

If X admits a first integral of degree d then every invariant curve
is of degree at most d and hence every point is a d-inflection point,
i.e., £d(X) = 0. Since not every invariant curve has degree d - 1,

¿From Theorem 1 and Proposition 1 we derive:

THEOREM 2. - Let X be a vector field in Pfl. For every d E N
the equations of possible invariant curves of degree less than or equal to d

appear as factors of ~d (X ), and 0 then X has a meromorphic
first integral of degree at most d.

4. Counting algebraic solutions and field of definition
of the invariant curves.

Jouanolou in [7] shows that a vector field of degree d on p2 without
rational first integral has at most d(d + 2)/2 irreducible algebraic solutions.
Observe that he does not make any assumption on the degree of the

algebraic leaves.

Using the extactic curves we are able to obtain different bounds for the
number of irreducible algebraic solutions. If X is a vector field on p2 and
we denote by ni(X) the number of degree i irreducible algebraic solutions
of X, the following proposition holds.

PROPOSITION 2. - Let X be a homogeneous vector field, of

degree d. If it does not have a first integral of degree  n then

Proof. One has just to observe that the left hand side of the

inequality is bounded by the degree of En (X). Since the space of monomials
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in x, y, z of degree n is (n+2), we have that the degree of is

COROLLARY 1. - Let X be a homogeneous vector field, of

degree d. If it does not have a rational first integral of degree  n then it
has at most

invariant curves of degree n.

Proof. If C is an invariant curve of degree n then C is contained
in En (X ), so we have at most

invariant curves of degree n. D

Example 2. - Applying Proposition 2 to bound the number of
invariant lines of a vector field X, one can see that

This bound turns out to be sharp. For example, for each consider

the vector fields Xd on p2, given in homogeneous coordinates by

Then Xd leaves invariant the algebraic curve Cd, cut out by the polynomial

Since Fd can be expressed as a product of 3d distinct lines and Fd = £l (Xd),
we conclude that the vector field Xd admits exactly 3d invariant lines.

Observe that the same bound holds for real vector fields on RP(2).
However, the sharpness fails. To understand better why this happens see [2].

Using the same methods we can obtain smaller bounds if we try to

count, for example, straight lines passing through a given point p. Instead
of looking for the solutions in the 3-dimensional vector space of lines, we
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just have to look in the codimension one subspace of lines passing through
p. For example, if p = [0 : 0 : 1] E p2 then the equation of any invariant
line passing through p will appear as a factor of the determinant of the
following matrix: 

po -

Hence, if X has degree d, then the number of invariant lines passing through
a given point p is at most d + 1.

Suppose now that we have an algebraic vector field on (C2, and that
its coefficients are in a normal subfield K of C. The following question
naturally arises: what can be said about the field of definition of the

invariant algebraic curves? In other terms: what is the smallest extension
L of K such that any invariant curve can be defined by a polynomial with
coefficients in L?

We can use the bounds for the number of invariant curves to obtain

bounds on the algebraic degree of the field of definition of algebraic
invariant curves.

PROPOSITION 3. - Let K c C be a normal extension of Q and
X = a -2- + b ty be a vector field on (C2 of degree d, where a, b E K IX y~ .
Suppose that there exists an invariant algebraic curve of degree l, cut out
by a polynomial f E L[x, y], where L is a normal extension of K contained
in C, that cannot be defined in any normal subfield of L. If

then X admits a first integral.

Proof. Since f is invariant by X, we have that X ( f ) = f,
for some polynomial L f E Applying the Galois automorphisms
of the extension [L : K], we obtain [L : K] distinct invariant algebraic
curves of degree l. Hence the theorem follows by Jouanolou’s bound and
Proposition 2. D

5. Families of holomorphic foliations on p2

In [8], Lins Neto shows the existence of some very special families
of foliations on p2 parametrized by the projective line. One interesting
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property of such families is that not all foliations admit a rational first

integral, but for a dense set E in the parameter space the corresponding
foliation has a rational first integral. Since the set in the parameter space
admitting a rational first integral of degree at most d, for a fixed positive
integer d, is algebraic, we have that the rational first integrals in the family
have unbounded degree and E admits the filtration

where p E Ed if and only if the foliation corresponding to p admits a
rational first integral of degree at most d.

In Remark 4 of [8], Lins Neto says that "it would be interesting to
know what kinds of properties this set has" . Here, we use the extactic curves
to bound the growth of the cardinality of Ed for any family of foliations
parametrized by a projective line.

DEFINITION 2. - Let C C Fol(k) be an algebraic curve included
in the space of foliations of degree k. We define the counting function of C,

by the following rule: 7rc(d) - n if the number of points in C representing
a foliation with rational first integral of degree at most d is exactly n.

Example 3. - Let X = x ’9 and Y be vector fields on (C2.
The family of vector fields tX +sY can be seen as Cm (1) linearly embedded
in Fol(l), which we will denote by C. Whenever the ratio of t and s is a
rational number then tX + sY admits a rational first integral. Suppose that
t/s = p/q and p and q do not have common factors. If t/s is positive then
the degree of the first integral is the maximum between p and q, otherwise
it is lql.

¿From the considerations of the previous paragraph we can show that

Considering a family of foliations parametrized by a projective line
linearly embedded in the space of foliations, we obtain:

PROPOSITION 4. - Suppose C is a linearly embedded in

Fol(k). If1fc(d)  oo for every then there exists a constant K such

that
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Proof. If we take two distinct projective vector fields in C, say X
and Y, we can recover C by considering the linear combinations sX + tY.
From the definition of Ed, one can see that

Since 1fc(d)  00 then there is a triple such that does

not vanish identically. Hence the number of projective parameters (s : t)
that has first integral of degree at most d is bounded by the degree of

0

Part II. Extactic divisors on complex manifolds.

6. Extactic divisors for holomorphic foliations.

Here we generalize some of the results of Part I to foliations by
curves on arbitrary non-singular complex manifolds. In order to do this,
the reformulation of the concepts in a more intrinsic way is imperative,
and to accomplish that we use freely the language of algebraic geometry
(for example line bundles, tensor products and so on).

6.1. Holomorphic foliations as morphisms. - Let M be a

complex manifold. An 1-dimensional holomorphic foliation is given by the
following data:

~ an open covering U = Ui of M;

~ for each Ui an holomorphic vector field Xi;

~ for every non-empty intersection, 0, a holomorphic function

subject to the conditions:

. Xi - Uj
° in Ui n Uj n Uk.

If we denote by ,C the line bundle defined by the cocycle gij we can
understand the collection Xi as a holomorphic section o- of the bundle

TM Q9 ,C. Such a section induces a morphism that goes from the cotangent
bundle, denoted by °lI, to the line bundle ,C. This morphism, in the open
set Ui, is given by the interior product with the vector field Xi.
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Hence given an holomorphic foliation F we have a morphism

Reciprocally, given such a morphism 4) we can canonically associate
a holomorphic foliation to it. We leave the details for the reader.

6.2. Jet bundles and extactic divisors. - Suppose now that we
have a foliation .~’ on M, i.e., a morphism 4~j, of Ok to an invertible sheave
~. If we have a linear system V C we are going to define the
extactic divisor, V), with respect to V. The extactic divisor V)
can be understood geometrically as the inflection locus of the linear system
V with respect to the morphism ~.

First of all, consider the local Taylor expansion of a section s E V
with respect to the vector field defining 0. Formally if you have a morphism

and a linear system V C H°(M, L), we choose a covering Ll of M which
trivializes both ,C and ~. In an open set U E U we can consider the

morphism

defined by

where = -D.F(d(.)) and s E Ou is an element of HO(M,£) 0 (Ju
expressed in the chosen trivialization.

If we take open sets Ux E U we have that

Hence, for any, we obtain

And generally,
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When

Or in matrix notation
,",

By analogous computations one can show that

Therefore, we define the vector bundle as the vector bundle

with rank l~ -f- 1 and transition functions given by the matrix above. Now
we are ready to consider the global Taylor expansion of the sections in
V with respect to ~’. More precisely, we are able to patch together the
morphisms of the form (2) to obtain just one morphism

We are almost ready to describe the inflection points of the linear
system V C with respect to If we set as the dimension

over C of V, and take the determinant of (4),

then after tensorizing we obtain a section of

Finally:

DEFINITION 3. - The extactic curve or0 with respect to the linear

system V, E (Y, V) is given by the zero locus of Section 6.

Remark 2. - The extactic curves, defined in Subsection 3.2

coincide with the extactic curves of the foliation induced by X with respect
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to the linear system (d)). To verify this fact one just has to
check locally, and it is not very hard to show that locally the constructions
are the same.

6.3. Order of contact and extactic ideals. - So far we have

defined the extactic divisors for 1-dimensional holomorphic foliations on
complex manifolds. One of the motivations to do that is to obtain an

analogue of Theorem 2. In fact by a very similar argument we obtain the
following:

PROPOSITION 5. - Let .~’ be a 1-dimensional foliation on the

complex manifold M. If V is a finite dimensional linear system, then every
invariant hypersurface contained in the zero locus of some element of V
must be contained in the zero locus V).

Since we are working on a manifold of arbitrary dimension, the
extactic divisors are far from detecting precisely the invariant curves. To
overcome this difficult we shall now introduce the extactic ideals. If we fix a

finite dimensional linear system V, the main idea is to consider the points
such that the contact with V is of infinite order.

Before defining the extactic ideals, let’s make the notion of contact
more precise.

DEFINITION 4. - Let X.F be a holomorphic vector field on the
complex manifold M and s a holomorphic section of some line bundle.
We say that the solution through p has contact of order with s when
k is the least non negative integer such that the radical of the ideal
generated by s, X (s), X 2 (s), ... , X ~ (s) is the local ring C7M,P. If such a
k does not exist we say that s has flat contact with X. Here X means a

local representative of XF on a suitable open set and s means the image of

any local representative of s under the canonical morphism OM - 
We shall denote by v(s, the contact of s with X~- at the point p.

Observe that any s vanishing at a singular point p of X has flat
contact with X at p.

Example 4. - Let X ax be a polynomial vector field on (C3 and
f a polynomial. If f does not vanish at the origin then v(f, X, 0) = 0,
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otherwise v ( f , X, 0) ~ 1. For example if

with f ~ (o, 0) ~ 0, then v ( f , X, 0) = k.

PROPOSITION 6. - Let be a 1-dimensional foliation on the

complex manifold M. Suppose V is a finite dimensional linear system and
s E V. dime V then p e ~(J~, V). Reciprocally if p E ~ (.~, V)
then there exists an element s E V such that v(s, 0, p) &#x3E; dimc V.

Proof. - Choose a basis of V starting with s. Using Lagrange’s rule
to expand £(0, V) in terms of the first column of the matrix one can see
that ~(~", V) belongs to the maximal ideal corresponding to the point p.

V) (p) = 0, we have that the columns of the matrix used
to compute E(.F, V) are linearly dependent in the point P. But that means
that there exists an element s E V such that s(p) - X(s)(p) == ’" ==

0, where 1 = dimc V. Hence the result follows. 0

Let X, be an 1-dimensional foliation on the manifold M. If is an
invertible sheaf then we can consider, as in 6.2, the morphisms

for any positive integer l. Suppose V is a finite dimensional vector space
contained in £) and is its dimension. Now, after taking the
determinant and tensorizing by we obtain sections

DEFINITION 5. - The sheaf of ideals generated by ker ai , where l
is any positive integer, is the extactic ideal of X, with respect to the linear

system V. We shall denote it by V).

Example 5. - If X is a vector field on Pfl then the extactic ideal
of X with respect to the linear system V = OP2 (k)), Z(X, V), is
generated, in homogeneous coordinates, by 0’(kl,...,k,), where
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where 0  ki  ~2  ... and the are integers, Vl, V2, - - -, vl is a

basis of the space of homogeneous polynomial of degree in three variables.

PROPOSITION 7. - The subvariety N of M associated to the
radical of any extactic ideal of Xy is invariant.

Proof. - Fix a linear system V on M. If every element of Z(X, V)
vanishes at p, then p belongs to the radical ideal of X, associated to V.
Hence for every natural number 1 &#x3E; dimc V one has a linear subspace
Ll C V such that any nonzero element f E Ll satisfies f (p) = X ( f ) (p) _
... = 0. Being the projectivization of V compact we can find
an element f 00 which vanishes at p together with all its derivatives with
respect to the local vector field X. In other words has flat contact with

X~- at p.

Hence N can be identified with the set of points p E M such that there
exists a element of V with flat contact with X, at p, and the invariance
follows. 0

Example 6. - In [7], Jouanolou proved that the vector fields on p2
given in homogeneous coordinates by

do not admit any invariant algebraic curve for any integer d greater than 1.

To consider any linear system V on p2 is the same as to consider a
finite dimensional space of homogeneous polynomials V in three variables.
Since we do not have any invariant algebraic leaves for Xd and the singular
points of Xd are clearly invariant, we have that the radical of the extactic
ideal I(Xd, V ) is exactly the ideal defining the singular set of Xd, for any
d&#x3E;2.

Remark 3. - If .~’ is a holomorphic foliation on a complex manifold
M, then, for us, a first integral for 0 is any non-constant holomorphic map
f : M ~ N, where N is a complex manifold, such that the fibers of f are
F - invariant.

THEOREM 3. - Let .F be a 1-dimensional foliation on the complex
manifold M. If V is a finite dimensional linear system such that E(Y, V)
vanishes identically then there exists a dense open set U where Flu admits
a first integral. Moreover, if M is a projective variety then F admits a
meromorphic first integral.
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Proof. - Suppose that dimc C = k, set sl, ... , sk a basis of V and
consider N C M x defined as follows:

To see that N is a closed set consider, for each positive integer j, the
sets Nj C M X defined by

In an open set IJ that trivializes ,~’ and the line bundle that supports V we
can write Nj as

Hence Nj is a closed set. Since

it follows that N is also a closed set.

Observe that every fiber of the natural projection 7r : N ~ M is a

projective space linearly embedded on It is well known that there

exists a dense open set U where the dimensions of the fibers are the same,

say l. Hence, we can define a natural holomorphic function from U c M to
the Grassmanian of (l + I )-planes on Cl. This function, defined in a dense
open subset U of M, is a first integral for 

When M is a projective variety we can extend this function to all M,
obtaining in such a way a meromorphic first integral to .~’. 0

7. A generalization of Darboux’s criteria.

In [10], Jean-Marie Lion proposed the following generalization to
Darboux’s criteria for the existence of meromorphic first integral.

THEOREM [Lion]. - be a holomorphic foliation given by an
integrable 1-form, w, defined in a neighbourhood of the closure of U, where
U is a bounded open set of cn. Suppose that there exist infinitely many
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leaves % of 0 contained in different algebraic hypersurfaces Qi = 0 of the
same degree d. Then every leaf of 7 is contained in an irreducible algebraic
hypersurface of degree at most d, and VJ admits a meromorphic first integral.
If 0 E (n2Y2), then there exists a meromorphic first integral such that the
graph is a n-dimensional algebraic subset of (Cn x P"C

Here, using the ideas developed earlier in this paper, we obtain a fur-
ther generalization of the first part of Lion’s result. The main improvement
is that we do not need to restrict ourselves to algebraic leaves and open sets
of C . We work with sections of any linear system defined on a complex
manifold which, in principle, do not have to be compact.

THEOREM 4. - Let 7 be a holomorphic foliation, of arbitrary
codimension, on a complex manifold M, and V a finite dimensional linear

system on M. Suppose that there exists an inlinite collection such

that each leaf Li has flat contact with some element of V. If the analytic
closure of

is equal to M then T admits a first integral and every leaf of F has flat
contact with some element of V.

Proof. Let U be a Stein open set of M. If we consider the Ou-
module X(T) formed by all vector fields in U tangent to Flu, then for every
Y E JU(0) we have that £(Y, V) = 0. Hence, as in the proof of Theorem 3,
we can consider for each Y E a set Nu,y C U x describing the
elements of V with flat contact with Y.

Defining N C M x locally as

we obtain a closed analytic subset of M x whose fibers under the

natural projection to M are projective spaces linearly embedded 
And as in Theorem 3 the result follows. D

COROLLARY 2. - Let 0 be a codimension one holomorphic folia-
tion on a complex manifold M, and V a finite dimensional linear system on
M. Suppose that there exists an infinite collection such that each

leaf Li has flat contact with some element of V. If there exists a relatively
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compact open set U c M such that Li n u 0 for every i E A then T
admits a first integral.

8. Foliations with all leaves algebraic.

Gomez-Mont, in [6], proved that a singular holomorphic foliation of
codimension q with all leaves algebraic admits a first integral, whose generic
fiber has codimension q. His proof uses Grothendieck’s deep Theorem
asserting the existence of the Hilbert scheme. Here, we propose a different

proof using the ideas developed earlier in this paper.

THEOREM [Gomez-Mont]. - Let F be a holomorphic foliation

(with singularities) of codimension q in the projective integral variety M,
and assume that every leaf L of F is a quasiprojective subvariety of M;
then there is a projective integral variety V of dimension q and a rational
map f : M --4 V such that the closure of a general f -fi bre is the closure of
a leaf of 

,

Proof. Suppose, without loss of generality, that M is a subvariety
of ]Pë and take ,C to be the restriction of the hyperplane bundle (1)
to M.

Denote by Lp the leaf through p and p(Lp) the least positive integer
1 such that Lp is an open subset of variety defined through sections of 
Now, define

Since every leaf is algebraic, we have that

and as a consequence there exists do such that Bdo has a positive Lebesgue
measure and consequently its analytic closure is equal to M.

Taking V = H° (M, £0do) we have from Theorem 4 that there exist a
projective variety N and a morphism g : M 2013~ N such that the fiber over
any p E N is invariant by the foliation.

Taking a closer look at the proof of Theorem 4 one can see that the
fiber over a generic p E Bd° will have codimension q. Using Stein’s factor-
ization Theorem, see [5], one can assure the existence of the commutative
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diagram,

where N is a projective variety, 7r is a morphism and f is a morphism
whose generic fiber is irreducible. Hence f satisfies the assertions of the
theorem. D

9. Final remarks.

The applications of the extactic curves and extactic divisors are
certainly not exhausted in this work. For example, in [11] the extactic curves
are used to introduce the notion of algebraic multiplicity of an algebraic
curve invariant by a polynomial vector field on (C2. There, the relation of
this algebraic multiplicity with the existence of exponential cofactors is

explored to enrich Darboux’s theory of integrability.
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