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ON THE RELATION BETWEEN ELLIPTIC

AND PARABOLIC HARNACK INEQUALITIES

by W. HEBISCH* &#x26; L. SALOFF-COSTE~

Ann. Inst. Fourier, Grenoble
51, 5 (2001), 1437-1481

1. Introduction.

Consider the Laplace-Beltrami operator A on a complete Riemannian
manifold (M, g) equipped with its Riemannian measure dv (our convention
is that the Laplace operator has non-negative spectrum on L2 (M, dv); in
R-, A = - E- 9~). Solutions of the elliptic (Laplace) equation Du = 0 (i.e.,
harmonic functions) and of the parabolic (heat diffusion) equation (at +
A)u = 0 (sometimes called caloric functions) are objects of intense study
both because of their own significance and because their properties reflect
certain aspects of the geometry of (M, g). The elliptic (resp. parabolic)
scale-invariant Harnack inequality is one of the important properties that

non-negative harmonic functions (resp. solutions of (at + A)u = 0) can
satisfy or not depending on the underlying Riemannian manifold (M, g).

By definition, one says that (M, g) satisfies a scale-invariant elliptic
Harnack inequality if there exists a constant C such that for any geodesic
ball B C M and any non-negative harmonic function u in B,
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network "Harmonic analysis" .
t Research supported in part by NSF grant DMS-9802855.
Keywords: Laplace equation - Heat equation - Harnack inequality - Dirichlet spaces -
Two-sided Gaussian bounds.
Math. classification: 58J05 - 58J35 - 31C25 - 58J65 - 60J65.
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Here 2 B denote the ball concentric with B with radius half that of B. We
call this inequality scale-invariant because the constant C does not depend
of the radius of the ball B (nor of its center for that matter).

The parabolic counterpart of this inequality is slightly more compli-
cated and goes as follows. One says that (M, g) satisfies a scale-invariant
parabolic Harnack inequality if there exists a constant C such that for
any reals r, s with r &#x3E; 0, any x E M, and any non-negative solution u of

where

Clearly, the parabolic version implies the elliptic one.

Euclidean spaces satisfy the parabolic scale-invariant Harnack in-
equality (1.2) whereas hyperbolic spaces do not: in hyperbolic spaces, the
constant C in both (1.1) and (1.2) does explode as the radius r tends
to infinity. Other examples of manifolds satisfying the parabolic (hence
also the elliptic) scale-invariant Harnack inequality are manifolds having
non-negative Ricci curvature [32] and Lie groups having polynomial vol-
ume growth, equipped with an invariant metric [48], [37], [50]. In fact,
the parabolic Harnack inequality is fairly well understood thanks to the
following theorem.

THEOREM 1.1 ([22], [40]). - A Riemannian manifold (M, g) sat-
isles the scale-invariant parabolic Harnack inequality (1.2) if and only if
(M, g) has the doubling volume property

and satisfies the Poincaré inequality
/1 

where fB is the mean of f over the geodesic ball B.

Note that this theorem shows that (1.2) is preserved under bi-

Lipschitz changes of metric, a fact that is not at all obvious. Whether

or not this is true for ( 1.1 ) is not known.
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Recently, examples of manifolds satisfying the scale-invariant elliptic
Harnack inequality (1.1) but failing to satisfy the parabolic version (1.2)
have been constructed. These examples are manifolds built from graphs
having a fractal structure at infinity. On some examples, ( 1.1 ) holds whereas
(1.4) fails; on other examples (1.1) holds whereas (1.3) fails; See [4], [16].

To state the main result of this paper, we need to introduce the

following notion. One says that (M, g) satisfies a scale-invariant local

Sobolev inequality if there exist v &#x3E; 2 and So such that, for any geodesic
ball B of radius r(B) &#x3E; 0 and volume v(B), and any function f E Cü(B),

with q = 2). The exact values of q and v are unimportant for our
purpose. This inequality is also referred to as a relative Sobolev inequality
(meaning, relative to the ball B).

Inequality (1.5) is a variant of the global Sobolev inequality

with again q = 2). Indeed, if (1.5) holds and v(B) x5 
then we can let r tend to infinity in (1.5). This yields (1.6). Typical
manifolds satisfying (1.5) but not (1.6) are the flat manifolds 

with 1 ~ m  n (here v = n). Some manifolds, e.g., hyperbolic spaces,
satisfy (1.6) but not (1.5). Inequality (1.6) implies the volume growth lower
estimate v(B) &#x3E;, cr(B)v, [8]. Similarly (1.5) implies the relative volume
bound 

, - , , , -, ~ II

for all B, B’ with B’ C B [21]. In particular, (1.5) implies the doubling
volume property (1.3). It is also known that (1.3) and (1.4) imply (1.5) for
some So and v &#x3E; 2. See [40].

We can now state the main result of this paper.

THEOREM 1.2. - Let (M, g) be a complete Riemannian manifold.
Assume the scale-invariant local Sobolev inequality (1.5) is satisfied. As-
sume also the scale-invariant elliptic Harnack inequality (1.1) holds true.
Then (M, g) satisfies the scale-invariant parabolic Harnack inequality (1.2).

It is not hard to construct manifolds satisfying the Sobolev inequali-
ties (1.5) and (1.6) and such that (1.1) and (1.2) fail: the connected sum of
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two copies of the Euclidean space R" , n &#x3E; 3 provides such an example. See
[31], [25]. Theorem 1.2 sheds some light on the rather mysterious property
of satisfying a scale-invariant elliptic inequality. For instance, a corollary of
Theorems 1.1 and 1.2 is the following.

COROLLARY 1.3. - Let (M, g) be a complete Riemannian manifold.
Assume that (M, g) satisfies a scale invariant local Sobolev inequalities
(1.5). Then the following two properties are equivalent:

1. The manifold (M(1), g(1)) satisfies the scale-invariant elliptic
Harnack inequality (I.I).

2. The manifold (M, g) satisfies the scale-invariant parabolic Har-
nack inequality (1.4).

Another interesting corollary concerns the Laplace equation in M

equipped with the obvious product Riemannian structure.

COROLLARY 1.4. - Let (M, g) be a complete Riemannian manifold
and denote by (M(m) , gem») the complete Riemannian manifold equal to the
product of an m dimensional Euclidean space with M.

1. The manifold (M(l), gel») satisfies the scale-invariant elliptic
Harnack inequality (1.1).

2. The manifold (M, g) satisfies the scale-invariant parabolic Har-
nack inequality (1.2).

3. All the manifolds (M(m), m &#x3E; 1, satisfy the scale-invariant
parabolic Harnack inequality (1.2).

All these results are developed below in the setting of local Dirichlet
spaces.

In the last section of the paper, Section 5, we consider non-classical

parabolic Harnack inequalities where the time-space scaling (t2, t) is re-

placed by a more general one including scaling of the type t) for large
t with w &#x3E; 2. We establish an equivalence between such parabolic Harnack
inequalities and certain non-classical two-sided Gaussian estimates of the
heat kernel. Section 5 is very much motivated by the work of Barlow and
Bass on fractals [3], [4], [5]. See also [26], [47]. It relates to the other re-
sults of this paper in the following way: if M is a manifold where one of
these non-classical parabolic Harnack inequalities holds true then, on the
one hand M does not satisfy the classical parabolic Harnack inequality,



1441

on the other hand M does satisfy the classical elliptic Harnack inequality.
Thus such manifolds provide examples showing that ( 1.1 ) and ( 1. 2) are not
equivalent properties. Constructing such examples is a rather non-trivial
matter but such a construction is indicated in [4], based on a prefractal
graph. Part of the difficulty in constructing such examples is that whether
or not these non-classical parabolic Harnack inequalities are stable under
rough-isometries (or even quasi-isometries) is not known.

2. Background.

2.1. Dirichlet spaces.

One of the natural settings for the results of this paper is that of

regular, strictly local Dirichlet spaces. Thus, let M be a connected locally
compact separable space and let p be a positive Radon measure on M with
full support. For any open set S2 C M, let Co (Q) be the set of all continuous
functions with compact support in S2. Consider a regular Dirichlet form E
with domain D C L2 (M, and core C C D: a core is a subset of DnCo (M)
which is dense in D for the norm (IlfII2 + ~ ( f , J))1/2 and dense in Co(M)
for the uniform norm. A Dirichlet form is regular if it admits a core. See

[19]. We also assume that 9 is strictly local: for any u, v E D such that the
supports of u and v are compact and v is constant in a neighborhood of the
support of u, we have E(u, v) = 0. See [19], p 6 where such Dirichlet forms
are called "strong local" . Any such Dirichlet form £ can be written in terms
of an "energy measure" r so = where dr(u,v) is
a signed radon measure for u, v E D. Moreover, r satisfies the Leibniz
rule and the chain rule. See [19], pp 115-116. In the Riemannian case, for
all u E Cü(M), r(u, u) admits a density with respect to the Riemannian
volume dp = dv which is equal to 

It is a simple but remarkable fact that the data above suffices to
introduce a pseudo-distance d on M often called the intrinsic distance
and defined as follows. Let ,C be the set of all functions f in the core C such
that dJl, i.e., 1,( f, f ) is absolutely continuous with respect to Jl
with Radon-Nikodym derivative bounded by 1. In some sense, C is the set
of all compactly supported Lipschitz functions with Lipschitz constant 1.

Then, for each x, y E M, define d(x, y) by
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Note that d is always a lower semicontinuous function. It is only a pseudo-
distance because it might happen that d(x, y) = +oo for some x, y. This
actually happens in some interesting cases (see [6]) but we will not be
concerned with such cases in this paper.

We now make a couple of crucial hypotheses about the Dirichlet space
(E, D, L2 (M, dJ-l)), in terms of the intrinsic distance d. Throughout the
paper, except in Section 5, we assume the following properties are satisfied:

~ The pseudo-distance d is finite everywhere and the topology induced
by d is equivalent to the initial topology of M. In particular, (x, y) 1
d(x, y) is a continuous function.

~ (M, d) is a complete metric space.
These hypotheses imply that (M, d) is a path metric space (i.e., d can

be defined in terms of "shortest paths" ) . See e.g., [27]. It also implies that
the cut-off functions

are in ,C. This is a simple but crucial fact. It allows us to extend classical
arguments from the Riemannian setting to the present more general
framework. For a careful introduction to the intrinsic distance and its

geometry we refer the reader to [43].
We will denote by B(x, r) = {?/ E M : d(x, y)  r} the ball of radius

r around x. Given a ball B = B(x, r), we let r (B) = r be its radius and
be its volume relative to the measure p.

2.2. The heat semigroup.

Fix a Dirichlet space (9, D, L2(M, as above. As is well known,
there is a self-adjoint semigroup of contractions of L2 (M, dp), call it

(Ht)t&#x3E;o, uniquely associated with this Dirichlet space. Moreover, (Ht)t&#x3E;o
is (sub-)Markovian. Let -L be the infinitesimal generator of (Ht)t&#x3E;o so
that Ht = e-t L

We assume throughout the paper that the transition function of the
semigroup (Ht)t&#x3E;o is absolutely continuous with respect to p. Thus, there
exists a non-negative measurable function (t, x, y) H h(t, x, y), the heat
diffusion kernel, so that
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In the present context it is useful to be a little more precise since the above
formula does not uniquely define h(t, x, y). In what follows, we assume
that h(t, x, y) is the unique excessive density of Ht. See [7], Chapter 6.
(The reader unfamiliar with this notion can make the a priori restrictive
assumption that h(t, x, y) is continuous.)

Given an open set Q, one can easily define the heat diffusion semi-
group satisfying Dirichlet boundary condition in S2. Indeed,

is the semigroup associated to the minimal closure of the form
S restricted to D n Co (Q). We denote by the corresponding
heat kernel. It is well known that, h~ (t, x, y)  h(t, x, y) for all t, x, y E
(0, +oo) x SZ x Q. We also introduce the least Dirichlet eigenvalue of L in
Q by setting

2.3. The doubling property.

Fix R E (0, +oo]. We say that (E, D, L2(M, dp)) is R-doubling if for
any ball B of radius less than R,

When this holds with R = +oo, we simply say that the space is doubling.

For later references, we note a few consequences of this volume
estimate:

. If (2.2) holds,

and, moreover,

for any v &#x3E; log2 Do. Actually, one can take DI = Do .
~ If a Dirichlet space is R-doubling and no ball of radius 10R covers M,

then there exist &#x3E; 0 such that
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. Finally, (2.2) implies that there exists D such that

The above clearly follows from

For the last inequality, note that if form a R/2-net in

B(x, T - R/4), then the balls B(xi, R/4) C B(x, T) are disjoint
whereas the balls B(xi, R) cover B(x, So T+R/4)) ~

These elementary facts play an important role in what follows. Note
in particular that R-doubling implies R’-doubling for all R’ - KR, K E
( 1, +oo) . The last inequality is of special interest because, together with
Grigor’yan criterion [23], Theorem 9.1 and its extension to the Dirichlet
space setting [44], Theorem 4, it implies the following result.

THEOREM 2.1. - If (£, Ð, L2 (M, dM)) satisfies the R-doubling pro-
perty (2.2~, then it is stochastically complete, that is, fM h(t, x, y)dM(Y) = 1

¿From a technical point of view, the main theme of this paper is heat
kernel lower bounds. Hence, it is not surprising that stochastic completeness
plays a role. For a survey on stochastic completeness on Riemannian
manifold, see [23].

Let us also recall the following folklore lemma.

LEMMA 2.2. - If (£, Ð, L2(M, dM)) satisfies the R-doubling prop-
erty (2.2) then, for any ball B of radius less than R, the lowest Dirichlet
eigenvalue satisfies Ar(B)-2.

Proof. This follows by a simple test function argument. 0

2.4. Weak solutions and Harnack inequalities.

We are interested in solutions of the elliptic and parabolic equations
Lu = 0 and = 0. In the present context, a solution of the equation
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Lu = 0 in an open set Q C M is a function u which is locally in D and
such that for any function o E C n co (Q),

We call such a solution u a harmonic function.

Similarly, a solution of the equation (at+L)u = 0 on I x n (where I C
R is an open interval and n C M is an open subset of M) is a measurable
function u : I R such that (t, x) ~ x) E x n, dt 0 

EDand

for all 0 E C n Co(f2) (it is possible to deal with solutions in a weaker sense
but we will not pursue this here). For instance, for 0, l, 2, ... ,
the functions (t, x) ~ and (t, y) ~ at h(t, x, y) are solutions of

= 0 in (0, +oo) x M. Similarly, the functions (t, x) - x, y)
and (t, y) H x, y) are solutions of (at + L)u = 0 in (0, x f2.

Fix R E (0, +oo]. We say that the Dirichlet space (S, D, L2 (M, dJ1))
satisfies a R-scale-invariant elliptic Harnack inequality if there exists
a constant C such that for any ball B of radius r(B)  R and any non-

negative harmonic function u in B,

We say that the Dirichlet space (E, D, satisfies a R-scale-

invariant parabolic Harnack inequality if there exists a constant C
such that for any reals s, r with 0  r  R, for any ball B = B(x, r),
and any non-negative solution u of the equation (at + L)u = 0 in Q =

where

Clearly, the parabolic version implies the elliptic one.

Remark. - The exact value of R appearing in the Harnack inequal-
ities above plays only a minor role: the only important distinction is be-
tween R  and R = +oo. This is because a R-scale-invariant elliptic
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(resp. parabolic) Harnack inequality implies a R’-scale-invariant elliptic
(resp. parabolic) Harnack inequality for any R’ - KR, K E with

a constant C’ which is a function of C and K = R’/R. This follows by
straightforward covering arguments.

2.5. Holder continuity.

One of the important applications of the Harnack inequalities above
is that they yield a certain regularity of the solution of Lu = 0 and

+ L)u = 0. This is especially noteworthy in the present framework
since these solutions are not even continuous, a priori. The following are
well known results: for divergence form operators in they are due to
J. Moser [33], [34] and the proofs go over to the present setting without
change.

THEOREM 2.3. - Fix 0  R  -~00.

1. Assume that the Dirichlet space (,E, D, L2 (M, satisfies the

R-scale-invariant elliptic Harnack inequality (2.10). Then there exist two
positive real A, cx such that for any ball B of radius r less than R and any
harmonic function u in B,

2. Assume instead that the Dirichlet space (~, D, dp)) satisfies
the R-scale-invariant parabolic Harnack inequality (2.11). Then there exist
two positive real A, a such that for any s E R, any r E (0, R), any ball B
of radius r, and any solution u of (at + L)u = 0 in Q = (s - r2, s) x B,

We will refer to the properties above as R-scale-invariant Holder reg-
ularity estimates, either elliptic or parabolic. As for Harnack inequalities,
each of these estimates for a given R implies the similar estimate for all
R’ = KR, K E (1, 
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2.6. Scale-invariant local Sobolev inequality.

We say that the Dirichlet space (S, D) satisfies a R-scale-invariant
local Sobolev inequality if there exist a constant So and a real v &#x3E; 2 such

that, for any ball B of radius r(B)  R and any function f E D n Co(B),

where q = 2). The exact values of q and v will play no role in what
follows. Some authors call (2.14) a relative Sobolev inequality.

The following theorem gathers a number of known consequences of
the Sobolev inequality (2.14).

THEOREM 2.4. - Let (E, D, L2 (M, dJ1)) be a Dirichlet space such
that the R-scale-invariant local Sobolev inequality (2.14) holds true for
some fixed R E (0, +oo]. Then the following properties are satisfied:

1. There exists a constant Do = Do (R) such that, for any ball B of
radius less than R,

2. There exist &#x3E; 0 such that for any ball B of radius less than

R satisfying M, we have

3. There exists C such that, for all x, y E M and all t E (0, R2),

4. For any integer k, there exists a constant Ck such that, for all

5. There exists c &#x3E; 0 such that, for all x E M and all t E (0, R2),
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These statements are essentially well-known, at least in the Rieman-
nian case. The proof of "(2.14) implies (2.15)" in the general case need
special care because no a priori asymptotic control of the volume of small
balls is assumed here (in the Riemannian setting the volume of small balls is
asymptotically Euclidean, see [8], [21]). A proof which works in the present
generality is given in [2]. See also [42]. Note that (2.15) is a strong form of
(2.2), see (2.3).

Inequality (2.19) does not seem to be in the literature except in [42].
See [10] for closely related statements. Since it plays an important part in
our main argument, a proof is given in Section 3.3.

For the other implications, see e.g., [14], [21], [39], [40], [42], [45]. Let
us point out that the fact that "(2.14) implies (2.17)" is not completely
straightforward, even with a good knowledge of [12], [50]. As far as we know
there are essentially two ways to prove this implication. One is to use (part
of) Moser’s iterative method together with Gaffney-Davies technique [12] as
in [39], [45]. The other is to use the technique developed by A. Grigor’yan in
[21]. It might also be possible to use the approach of [9]. Concerning (2.18),
we note that it follows from (2.17) by a very general argument given in [14].

Remark. - As noted above, (2.15) implies the R-doubling property
(2.2). It is not hard to check that R-doubling implies R’-doubling for any
R’ = KR, K E (1, +oo). See (2.6). Using this fact and a covering argument,
one also checks that the R-scale-invariant local Sobolev inequality (2.14)
implies its R’ analog for any R’ = KR, K E (1, +oo).

We will also need the following result.

THEOREM 2.5. - Let (E, D, L 2(M, be a Dirichlet space such

that the R-scale-invariant local Sobolev inequality (2.14) holds true for
some fixed R E (0, +oo]. Then there exist positive reals A, a,,Eo such that,
for any ball B of radius r(B)  6oR with M, the least Dirichlet
eigenvalue of L in B is bounded above and below by

Proof. The upper bound follows from Lemma 2.2. It is true for all

r  R (i.e., Eo is not needed here). The lower bound is more important for
our purpose and we give a proof. Fix B with radius r  R. Using Jensen
inequality for a function f supported in EoB, (2.14) implies
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In particular,

By (2.16), this yields the desired result if co is chosen small enough. 0

Remark. - Examples show that one can not dispense with the small
constant Eo in Theorem 2.5.

The next result complements Theorem 2.4 by describing properties
that are equivalent to (2.14).

THEOREM 2.6. - Given a Dirichlet space (E, D, L2 (M, and

R E (0, the following properties are equivalent:

1. The R-scale-invariant local Sobolev inequality (2.14) holds true
for some So and v &#x3E; 2.

2. Inequality (2.15) with v &#x3E; 2 holds and there exists Co &#x3E; 0 such

that

3. There exist constants a, E &#x3E; 0 such that for any ball B of radius

less than ER, the relative Faber-Krahn inequality

for any open set

holds with v &#x3E; 2.

In this theorem, the constant v &#x3E; 2 is a fixed parameter. See [21],
[39], [40], [41], [42].

As a corollary of Theorems 2.4, 2.6, we see that the on-diagonal upper
bound (2.21) and R-doubling imply the Gaussian upper bounds (2.17) and
(2.18). It is worth noting that the shortest and easiest path from (2.21) to
(2.17) is described in [22]. The best way to get (2.18) is then to use the

results of [14].

Similarly, the heat kernel upper bound (2.21) and R-doubling imply
the Dirichlet eigenvalue estimate (2.20). For a direct proof of the lower
bound, see, e.g., [21], [42].

Remark. - It is straightforward to check that property 2 in Theo-
rem 2.6 extends from any fixed R to any R’ = KR, K E (1, -~oo). Note
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that, in property 3 above, E depends on R in general so that going from R
to a larger R’ does not produce any gain (a priori).

2.7. Poincare inequality.

Given R E (0, ~oo~ , we say that (9, D, L2(M, dp)) satisfies a R-scale-
invariant Poincaré inequality if there exists Po such that for any ball
B of radius less than R,

Remarks. - 1) It is important to observe that R-doubling and the
R-Poincaré inequality (2.23) imply the R’-Poincare inequality for any
R’ = KR, K E (1, +00) . This is not obvious. To check it, use the technique
of ~11~, a covering argument and the fact that any connected finite graph
admits a Poincaré inequality with a constant depending only on the total
number of vertices in the graph. Note that the number of vertices of each of
the graphs involved is bounded uniformly because of the doubling property.

2) It is often easier to prove a weak form of the Poincaré inequality
above where the left-hand side is replaced by

for some fixed T E (0,1), e.g., T = 1/2. However, under the hypothesis that
the space is R-doubling, this weak form of Poincaré inequality implies the
strong form (2.23), a result due to D. Jerison [28]. See e.g., [42], [46].

The next result states that (2.2) and (2.23), together, characterize
the Dirichlet spaces satisfying the parabolic Harnack inequality (2.11).

THEOREM 2.7 ([20], [40], [46]). - Given R E (0, +oo] and a Dirich-
let space (~*, D, L2 (M, the following properties are equivalent:

1. Inequalities (2.2) and (2.23) are satisfied.

2. The R-scale-invariant parabolic Harnack inequality (2.11) is sat-
isfied.

3. The heat kernel h(t, x, y) satisfies the two-sided Gaussian bound
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for all t E (0, R’) and E M.

4. The R-dou bling property (2.2) holds and for all t E (0, ~1~), and
all .r the heat kernel satisfies

and

for some C3, c3, E1, E2 &#x3E; 0.

We simply comment on these equivalences. "1 # 2" was proved
independently by A. Grigor’yan and the second author [20], [40]. This is,
by far, the hardest part of the theorem. The paper [40] shows that "2 # 1" ,
using an idea of Kusuoka and Stroock [30]. The implication "2 # 3" is not
difficult thanks to Gaffney-Davies method for the upper bound. See e.g.,
[12], [39], [49], [50]. "3 ~ 4" is obvious. That "4 ~ 3" follows from Moser

iteration and Gaffney-Davies type techniques for the upper bound. See,
e.g., [39]. A different approach is described in [21]. The lower bound part
follows from a well-known chaining argument. see, e.g., [38], p. 105. Finally,
"3 # 1" is not too hard to obtain. See [38], [40], [42]. It is worth mentioning
that one can prove directly that "3 ~ 2" (without passing through 1). The
details of this implication can be found in [17], Sect. 3. The setting in [17]
is different but the argument is easily adapted to the present situation.
This is noteworthy because the implication "3 ~ 2", together with the
technique presented in this paper, offers an alternative route to show that
1 implies 2. We believe that this proof of "1 ~ 2" is of some interest. See

Section 4.2.

3. Elliptic and parabolic Harnack inequalities.

3.1. The main results.

The main results of the present paper are stated in the following the-
orem and corollaries. These results are new even in the case of Riemannian

manifolds equipped with their canonical Dirichlet space structure corre-
sponding to the minimal closure of the form

In the statements below, (,E, D, L2 (M, dp)) is a Dirichlet space as in

Section 2 and R E (0, is fixed.
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THEOREM 3.1. - Assume that the R-scale-invariant local Sobolev

inequality (2.14) is satisfied. Assume also that the elliptic Hölder regularity
estimate (2.12) is satisfied. Then the R-scale-invariant parabolic Harnack
inequality (2.11) is satisfied and so is the parabolic Hölder regularity
estimate (2.13).

COROLLARY 3.2. 2013 Assume that the R-scale-invariant local Sobolev

inequality (2.14) is satisfied. Assume also that the R-scale-invariant elliptic
Harnack (2.10) is satisfied. Then the R-scale-invariant parabolic Harnack
inequality (2.11) is satisfied and so is the parabolic Hölder regularity
estimate (2.13).

COROLLARY 3.3. - Assume that the R-scale-invariant local Sobolev

inequality (2.14) is satisfied. Then the R-scale-invariant elliptic Harnack
(2.10), R-scale-invariant Hölder regularity estimate (2.12), and the R-scale-
invariant Poincaré inequality (2.23) are equivalent properties.

COROLLARY 3.4. - The following properties are equivalent to the
equivalent properties 1-4 of Theorem 2.7:

5. The R-scale-invariant local Sobolev inequality (2.14) and either
the R-scale-invariant elliptic Harnack (2.10) or the Hölder continuity
estimate (2.12) are satisfied.

6. The R-doubling property (2.2), the heat kernel upper bound

(2.21), and either the R-scale-invariant elliptic Harnack inequality (2.10)
or the Hölder continuity estimate (2.12) are satisfied.

In all these statements, R can be either finite or If R is finite, its
exact value is irrelevant, to some extend, because if any of these properties
(hypotheses or conclusions) is satisfied for a given finite R, it is also satisfied
for all finite R’, with constants depending on R’.

These results are of theoretical value. For instance, it is intriguing that
the "gap" between the Sobolev inequality (2.14) and the conjunction of
the doubling property and Poincare inequality (2.2), (2.23) can be bridged
using the elliptic Holder continuity estimate (2.12). They are also of a
certain practical interest. As we shall see, the new parts of the proof of
Theorem 3.1 are rather direct and simple. In some sense, they yield a
reasonable route to the parabolic Harnack inequality (2.11) passing through
the simpler elliptic case. See the remarks following Theorem 2.7 above as
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well as Section 4.2 below. This route to the parabolic Harnack inequality
seems especially valuable in the setting of analysis on graphs which is not
covered by the present strictly local Dirichlet space framework. In fact, the
results above originated from our desire to overcome some of the difficulties
that appear in the case of graphs. See [15], [1]. This will be developed
elsewhere.

3.2. The heart of the proof.

To isolate the part of the proof of Theorem 3.1 that is new, we

formulate the following result.

PROPOSITION 3.5. - Fix R E (0, +oo]. Assume that no ball of
radius 10R covers M. Assume also that the R-doubling property (2.2),
the heat kernel upper bound (2.17), and the Holder continuity estimate
(2.12) are satisfied. Then there exist Ei &#x3E; 0, i = 1, 2, 3, such that the heat
kernel h(t, x, y) satisfies the lower bound

Once this proposition as been proved, it follows by well-established
arguments that the heat kernel satisfies the two-sided Gaussian bound of
Theorem 2.7(3) for t E (0, E5R) for some E5 &#x3E; 0. Note that if M is not

compact, the restriction that no ball of radius 10R covers M is void. If
M is compact, we can work with R small enough so that this condition is
satisfied.

Next, the (E5R)-parabolic Harnack inequality (2.11) can be obtained
following the line of reasoning of [17], Sect. 3. As mentioned after The-

orem 2.7, this automatically imply the R-version of the same inequality.
Finally, as the Sobolev inequality (2.14) implies (2.2) and (2.17), we have
a complete proof of Theorem 3.1, assuming we can prove Proposition 3.5.

The idea of the proof of Proposition 3.5 in the case where R = ~-oo
is the following. We want to show that

for all x E M, all t &#x3E; 0 and all y E B(x, EI 0), for some E1, E2 &#x3E; 0. The

Gaussian upper bound (2.17) and R-doubling imply the on diagonal lower
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bound

Hence, it suffices to show that

Assuming transience, that is the existence of the Green function

for all x =1= y, the inequality above can be proved by writing

The point of this formula is that, under our hypotheses, one can: 1)
estimate 18th(t, x, () I and 2) use the elliptic Hölder continuity estimate to
bound I G (y, ~) - G(z, Ç) since the Green function G satisfies L(G (y, () = 0
for ( :A y. As far as we can say, to make this line of reasoning work,
transience is not quite enough but a uniform volume estimate of the form

with  &#x3E; 2 suffices. However, this or even
transience are very unnatural hypotheses in the present problem. It turns
out that one can modify the above argument to cover the general case. To
achieve this we will work locally using the Dirichlet heat kernel on various
balls of well chosen radii. As it turns out, our proof is closely related to
techniques used in analysis on fractals, e.g., [4], [5].

3.3. Proof of Proposition 3.5.

Throughout this section and the next we assume that (,E,D,L 2
satisfies the hypotheses of Proposition 3.5, that is, for a certain

fixed R E (0, +too], the R-doubling property (2.2) holds, the Gaussian
heat kernel upper bound (2.17) holds, and the elliptic Holder continuity
estimate (2.12) holds. Note that each of these three hypotheses involves
the parameter R. We also assume that no balls of radius 1OR covers M.

We start with the following observation: A simple consequence of (2.2)
and (2.17) is that there exists ci &#x3E; 0 such that
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This is stated in Theorem 2.4(5). Since this is an important step in
our argument, we give a complete proof. Write

n n

Now, stochastic completeness,
yields

(see Theorem 2.1)

Here, T can be thought of as a large multiple of t to be chosen later. To
finish the proof, we need the following elementary lemma.

LEMMA 3.6. - Properties (2.2) and (2.17) imply that there exist
two positive reals K, c such that, for all s E (0, R2), all T &#x3E; s and all x E M

Here we have used (2.17) and (2.6). 
~ ’

Now, choose s = t/2, T = ks with k large enough so that
n 
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This, together with (3.2), proves ( 3.1 ) .
Recall that we want to prove there exist E1, E2, E3 &#x3E; 0 such that

to be chosen

later and consider the Dirichlet heat kernel in B. As

for all y E B, it suffices to show that for all x E M and all t

The first step is to transfer the lower bound (3.1 ) to the Dirichlet
heat kernel.

LEMMA 3.7. - There exists c &#x3E; 0 such that for any Ao large
enough, any x E M, any t E (0, R2 ), and any p &#x3E; A00

where B = B(x, p) as above and

Proof. Consider the Hunt process X associated with (E, D, L2
(M, See [19], Ch. 4,7. Let T be the first exit time from B. Then

the Dirichlet heat kernel can be expressed by the Dynkin-Hunt formula

Thus, by (3.1) and (2.17),

Here we have use (2.3) with v = log2(Do). Clearly, we can choose Ao large
enough so that
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0

Let us now state a crucial technical result and show how (3.4), hence
Proposition 3.5, follows from it.

LEMMA 3.8. - For any a &#x3E; 0 and any A &#x3E; 1 there exist two

positive reals and EA such that for all x C M, t E (0, EAR2), and

B(x, p) with p = A0, V = J-t(B(x, 0)) as above, and cx is the
Holder exponent in (2.12).

The proof of this lemma depends on a number of technical estimates.
Before embarking on this proof, observe that (3.4), hence Proposition 3.5,
follows easily from Lemmas 3.7 and 3.8. Indeed, let Ao, c be the constants
given by Lemma 3.7. Let cr = c/2 and A = Ao so that the conclusion of
Lemma 3.8 applies. Then, for y E B, and t E 

Thus, for E 1 &#x3E; 0 small enough and y E we have

as desired. We are left with the task of tackling Lemma 3.8.

3.4. Proof of Lemma 3.8.

In this section we assume that the hypotheses of Proposition 3.5 are
satisfied. We fix x e M, we let A = Ao be the large constant given by
Lemma 3.7 and set p = with t E (o, ER2 ) and E E (0, A-2 ) to be
chosen later. We let
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Note that, by construction and our hypotheses, the ball lOB does not cover
M. We will need some upper estimates on hB (s, z, y) and its time derivative

LEMMA 3.9. - Let B = B(x, p) with p = A0 and V =
as above. Assume that the Gaussian upper bound (2.17) and

the R-doubling property (2.2) are satisfied. Then the following estimates
hold:

1. There exists CI such that

2. There exists C2 such that

where v = log2(Do), with Do the constant appearing in (2.2).
3. There exist E, al &#x3E; 0, and, for any 0  8  1, there exists Co such

that, for any t E (o, ER2),

Proof. - The first bound is obvious since h. For the second

inequality, write

where we used the semigroup property, the spectral theorem, (3.5) and
(2.4).

For the third inequality, recall first that the L2 - L"-operator norm
of HB is
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Then write

where a is given by the lower bound in Theorem 2.5. This gives (3.7) with
al = a/2. 0

Remarks. - 1) The constants and al do not depend on

x, t, A.

2) The need to restrict t to the range (0, eR2 ) with E small enough in
Lemma 3.9 comes from the use of Theorem 2.5.

¿From now on, we assume that t  ER2 with 0  E  A-2 given
by Lemma 3.9. The proof of Lemma 3.8 starts as follows. Let 

be the Green function with Dirichlet boundary condition
in B. Write

In particular, for z = x,

For any q E (o,1), write the right-hand side of (3.8) as the sum of three
terms II, 12, J corresponding to integration over the sets

for I1, 12 and

for J.

The next lemma bounds II, 12.

LEMMA 3.10. - For any A, T &#x3E; 0, there exists 1/r,A &#x3E; 0 small

enough so that, for all y E B,
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Proof. - We treat 7i. The same argument work for 12 (using (2.4).
Write

We now estimate

write

Then use (3.7) and (2.16) to obtain

where, for the last inequality, we have used that the R-doubling inequality
(2.2) and the hypothesis that no ball of radius 10R covers M imply there
exist &#x3E; 0 such that (2.16) holds true.

By (3.9), (3.10) we get

For any T &#x3E; 0, pick

and 77 = qr so that

This yields the inequality claimed in Lemma 3.10. 0

We now focus on J and start with a Holder continuity estimate for
the Green function GB in an appropriate subset of B.

LEMMA 3.11. - For any A, T &#x3E; 0, let 71 = be given by
Lemma 3.10. Let
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Then there exists CT,A such that the Green function GB satisfies

for all y E B and all ( E W. Here cx is the Holder regularity exponent given
by (2.12).

Proof. Let us start with an estimate of G B (Z’ () when d(z, () &#x3E;,
E B. In this case, we have

Here v = log2 Do again and we have used (2.4) to bound VIM(B(z, ~) )
from above.

For ( E W, the function z H is harmonic in 

Thus, by hypothesis, for any y E B(x, 

In both cases, the desired estimate follows.

Lemma 3.10. Let

Then there exists CT,A such that, for any y E B,
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where cx is the H61der exponent in (2.12).

Proof. - This easily follows from Lemma 3.11, (3.7) and (2.2). 0

We can now put the pieces together and finish the proof of Lemma 3.8.
Fix o- &#x3E; 0. Apply (3.8) and Lemmas 3.10, 3.12 with T = a/2. Then,

as desired. This finishes the proof of Lemma 3.8.

4. Further comments and results.

4.1. Elliptic Harnack inequality in R~ x M.

Consider the following problem. Let be a Dirichlet

space as in Section 2 with corresponding heat kernel h(t, x, y) and infinites-
imal generator -L.

Consider the space M(,,,) = x M equipped with the measure

dJ-l(m) = dA x dp where da denotes the Lebesgue measure on Let

A = - be the canonical Laplace operator on the Euclidean space
When does an elliptic Harnack inequality hold true for non-negative

solutions of the elliptic equation (A + L)u = 0?

To be precise, fix R E (0, +cxJ] . We say that a R-scale-invariant elliptic
Harnack inequality holds for L(m) = A+L if there exists a constant C such
that, for any s E R’, x E M, r E (0, R) and any non-negative solution u of

= 0 in a box K(s, x, r) = B(s, r) x B(x, r), the inequality

holds true. Here B(s, r) denote the Euclidean ball of radius r around
s E It is not hard to see that this is equivalent to the R-scale-
invariant elliptic Harnack inequality (2.10) for the natural Dirichlet space
on associated with L(m). The only difference is that we have used
the boxes K(s, x, r) above instead of the intrinsic balls B((s, x), r) as-

sociated with L(m). But, obviously, these intrinsic balls and the boxes
K(s, x, r) are comparable in the sense that there are C, c &#x3E; 0 such that
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K(s, x, cr) C B((s, x), r) C K(s, x, Cr). Observe that a R-scale-invariant
Harnack inequality for L(m) readily implies the same inequality for L.

In our general setting, the reader might wonder what is the exact

meaning of = A + L. One easy way to deal with this question
is to define to be minus the infinitesimal generator of the product

semigroup 0 Ht on x M where is thet t t

Euclidean heat diffusion semigroup. This takes care at once of the problem
of defining the Dirichlet space (-I(m),D(m)) on JRm x M associated with
L(m). Note that L(o) = L.

THEOREM 4.1. - Fix R E (0, and a positive integer m. Then
the operator satisfies a R-scale-invariant elliptic Harnack inequality
if and only if L satisfies a R-scale-invariant parabolic Harnack inequality.

Proof. Assume first that L satisfies a parabolic Harnack inequal-
ity. By Theorem 2.7, (2.2) and (2.23) hold true on M. This implies that
the same inequalities (up to changes in the constants) hold on JRm x M
equipped with the Dirichlet space structure (,E(m),D(_)) defined above.
Thus a R-scale-invariant elliptic (in fact, parabolic) Harnack inequality
holds for L(m). D

Let us now assume that L(1) satisfies a R-scale-invariant elliptic Har-
nack inequality. Let Pt denote the (Poisson) semigroup with infinitesimal
generator -vlL. This semigroup can be obtained from Ht by the subordi-
nation formula

-. -I),

We let p(t, x, y) be the kernel of Pt which can be obtained from h(t, x, y)
by the same formula as above.

LEMMA 4.2. - Assume that L(1) satisfies a R-scale-invariant ellip-
tic Harnack inequality. Then, for all x E M and all 0  t  R/ 2,

where C is the constant appearing in the postulated Harnack inequality.

Proof. As (t, y) - u(t, y) = p(t, x, y) is a solution of = 0 in

(0, oo) x M, we have
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Integrating over B(x, t) gives

as desired. 0

LEMMA 4.3. - Assume that satisfies a R-scale-invariant ellip-
tic Harnack inequality. Then, there exist CI and N &#x3E; 0 such that such

Proof. Fix x and 0  s  t  R. Let be the integer such that

Applying (4.12) with y = x

This yields

As p(t, x, x) is a non-increasing function of t and k x 1 + log2 ( tis), we get

with N = log2 C where log2(u) = log u/ log 2. By Lemma 4.2, the desired
result follows. D

LEMMA 4.4. - Assume that L(l) satisfies a R-scale-invariant el-

liptic Harnack inequality. Then, there exist So and v &#x3E; 2 such that the

Dirichlet space (9, D) satisfies a R-scale-invariant local Sobolev inequality
as in (2.14).

Fix a ball B = B(x, t), 0  t  R/2 and consider the operator L with
Dirichlet boundary condition in B (of course, this is an abuse of language).
Let p (t, x, y) the kernel of the Poisson semigroup with Dirichlet boundary
condition in B. We have

By a result of N. Varopoulos (see e.g., [50], 11.4.2) the last inequality and
Lemmas 3.9, 4.3 together yield the desired local Sobolev inequality on B
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with v = max{3, N} where N is as in Lemma 4.3. This gives a (R/2)-scale-
invariant local Sobolev inequality. By the remark following Theorem 2.4, a
R-scale-invariant local Sobolev inequality follows as well.

By Theorem 3.1 and Lemma 4.4, it is now clear that a scale-invariant
elliptic Harnack inequality for L(l) implies a corresponding parabolic
Harnack inequality for L. This finishes the proof of Theorem 4.1. 0

It might be worth emphasizing some immediate corollaries.

COROLLARY 4.5. - Assume that L(1) satisfies a R-scale-invariant
elliptic Harnack inequality. Then the Dirichlet space (E, D, L2 (M, is

R-doubling.

This follows from Lemma 4.4 and Theorem 2.4. Note that the proof
is rather indirect. Note also that it is not true that a R-scale-invariant

elliptic Harnack inequality for L implies R-doubling. See the examples from
[4], [16]. °

COROLLARY 4.6. - Fix 0  R x oo. The following are equivalent
properties:

1. There exists a positive integer m such that satisfies the R-

scale-invariant elliptic Harnack inequality (2.10).
2. For any m = 0,1, 2, ... , satisfies the R-scale-invariant

parabolic Harnack inequality (2.11).
3. The original operator L = L(o) satisfies the R-scale-invariant

parabolic Harnack inequality (2.11).
4. The Dirichlet space (E, D, L2 (M, dJ-L)) is R-doubling and satisfies

a R-scale-invariant Poincaré inequality.

4.2. A new proof of the parabolic Harnack inequality.

This section outline a new proof of the parabolic Harnack inequality
(2.11), under the hypothesis that (E, D, L2(M dJ-L)) satisfies the R-doubling
inequality (2.2) and the R-scale-invariant Poincaré inequality (2.23). ¿From
a technical point of view, it is worth noting that, for the purpose of the
proof to be given below, (2.23) can be replaced by its weaker form
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for some fixed T E (0,1), e.g., T = 1/2.
The first step of the proof is to obtain the elliptic Harnack inequality

(2.10) or the elliptic Holder continuity estimate (2.12). This can be done
using the fact that (4.13) and (2.2) imply (2.14) [40], and then using Moser
elliptic iterative method [33].

The second step of the proof is to show that

This can be done in two ways: 1) using the result of [21], or 2) using the
easiest part of Moser parabolic iterative method as in [41], Sect. 5.

The third step is to use the result of the present paper to obtain the
lower bound

for some E, C2 &#x3E; 0.

The last step is to use the arguments of [17], Sect. 3 (arguments
due to Krylov and Safonov [29], [36]) to prove both the parabolic Holder
continuity estimate (2.13) and the parabolic Harnack inequality (2.11).

This proof avoids several technical difficulties related to the parabolic
version of Moser iteration.

5. The non-classical case.

5.1. Non-classical Gaussian bounds.

In this section we consider a connected locally compact non compact
complete metric space (M, 8). As above, p is a positive radon measure on M
with full support. We also assume that (M,8) is a path metric space. That
is, any two points x, y E M there is a continuous map 1 : [0, 8(x, y)J ~ M
such that 8(,(s),,(t)) = (t - s) for all 0  s  t  8(x,y), see [27]. It

follows that each closed metric ball ~y E M : r} is compact. We
say that (M, 6, IL) is doubling if there exists a constant DI such that
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As we assume that (M,8) is a length space, (5.1) implies that (2.3), (2.4)
and (2.5) are satisfied by 6-balls. In particular, (5.1) implies that there exist
positive constants D1, A such that

Our aim is to use the technique of Section 3.2 to obtain some results

concerning non-classical Gaussian bounds and related Harnack inequalities.
Precise definition are given below. These non-classical Gaussian bounds

appeared first in the study of Brownian motion on fractals [4]. They have
been extended to the case of certain fractal like graphs [5]. We refer to
[3] for an excellent introduction to non-classical Gaussian bounds. There
is very little literature about such bounds on manifolds but there is no

doubt that there are manifolds on which the heat kernel has a non-classical

behavior for long time [4]. There are very recent works on random walks
on graphs that are closely related in spirit to the material presented here.
See [26], [47] and the reference therein.

Assume that (E,’D, L2 (M, dit)) is a strictly local regular Dirich-

let space associated to a stochastic Hunt process (Xt ) on M. Since

(E, D, L2 (M, dp)) is strictly local the process (Xt) has continuous paths.
One of the tools that will be used below implicitly is the Dynkin-Hunt
formula

for the Dirichlet heat kernel in a fixed ball B = r).
For comparison with the setting considered in the rest of this work,

note that we have dropped all hypotheses concerning the existence and
properties of the intrinsic distance d. This means, in particular, that we
will not be allowed to use cut-off function arguments since the distance
6 may well have no "gradient" in any reasonable sense. This new setting
includes for instance certain Dirichlet spaces on fractals (see e.g., [3]).

To describe non-classical Gaussian bounds, we need some notation.
Consider an increasing positive continuous function

The condition p( 1 ) = 1 is simply a useful normalization. We make two
hypotheses on the function p.

(Rl ) There exist C, c &#x3E; 0 and bl, b2 E (o,1 ) such that
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(R2) For any t &#x3E; 0 the function s H sp(tls) is an increasing bijection
form (0, +too) onto itself.

We denote by s H G(t, s) the inverse function of u H up(t/u) so that

The purpose of function G is to write down Gaussian like factor of the type
exp(-c G(t, 6(x, y)) in heat kernel estimates. The following consequences of
(R1-R2) are noteworthy:

(PR1) p(t) = o(t) at infinity.

(PR2) t - G(t, s) is decreasing and for all a, t, s &#x3E; 0, G(at, as) =

(PR4) For each s &#x3E; 0, G(s, s) = s. Thus, for all s and

(PR5) There exists a constant D such that, for all

All these properties are straightforward.

Remark. - Consider the following weakened version of (Rl) :

(Rl’) There exist C &#x3E; 0 and b2 E (0,1) such that

The properties (PRi) above holds under the weaker hypothesis (R1’)-
(R2) except the lower bound in (PR6).

Example 1. - If p(t) = a &#x3E; 1, then G(t, s) = 
In particular, for cx = 2, G(t, s) has the classical Gaussian form 82/t. For
examples with a &#x3E; 2, see [4], [5].
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On Riemannian manifolds, the value ao - 2 is forced because the

small time asymptotic behavior must be Euclidean. Manifolds with a fractal
like skeleton provide examples with &#x3E; 2. See again [4], [5].

Define the volume function (x, t) F-+ V8,p(X, t) by

Assuming (PR1’)-(PR2), we see that (5.1) implies that V5,p satisfies

We say that (S, D, L2(M, dJ-t)) satisfies a 8-p-Gaussian lower bound
if there are constants Ci , ci such that

Similarly, we say a 8-p-Gaussian upper bounds holds if,

We say that (E, D, L2 (M, dl-t)) satisfies a two-sided 6-p -Gaussian
bound if there exist &#x3E; 0, i = 1, 2 such that both (5.8) and (5.9)
hold true.

It should be observed that, if we assume that (M, 8, J-l) is doubling,
then for all t, x, y in the range = 6(x, y), any (upper, lower, or
two-sided) 6-p-Gaussian bound is equivalent to

In other words, in this range, whether we use p(t) or not in the volume
factor does not matter. This is because the Gaussian term is smaller than

e-c8 in this range (See (PR4)) and the error produced by replacing p(t)
by 1 is bounded polynomially in terms of 6 under (5.1). The expression
(5.10) has the advantage to eliminate the meaningless dependence of t in
the volume factor.

As a first hint that the above definitions make sense, we offer the

following lemma.

LEMMA 5.1. - Referring to the above setting and notation, assume
that (5. I ) is satisfied. Assume also that
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Then the 6-p-Gaussian lower bound (5.8) is satisfied.

Proof. - Set 6 = 6(x, y). If 8 ~ p(t), there is nothing to prove.
If 8 ~ p(t) then G(t, S) &#x3E; 1. Take n to be the largest integer less

or equal to G(t, 36) + 1. By the doubling property of G, G(t, 6).
Let, : [0, 6] - M be a distance minimizing path from x to y and
set ,(i8In), i = 0,1, 2, ... , n. Then 81n. If we set

Bi = B8 (Xi, 6/n), by (5.11), there is a constant co such that, for all

since, for gi E Bi,Çi+1 E Bi+,, 36/n and 36/n  p(t/n). The
last inequality follows from the fact that s H sp(t/s) is increasing (see (R2))
together with the equality 3S = G(t, 38)p(tIG(t, 36)) and n &#x3E; G(t, 36). By
the semigroup property, (5.12) and (5.1), we then have

Thus, as n x5 G(t,8), we obtain

as desired. D

Remark. - If, in Lemma 5.1, we assume that (5.11) holds only for
0  t  1, then we still obtain the lower

in the range 0  t  1 or 1  t  8(x, y). This is because, in the proof, in
the range 1  t x 6(x, y), we still have 1. Indeed, G(t, 6(x, y))
and, by , (PR4), p(tIG(t,8)) = 6IG(t, 1, hence tIG(t, 1.

Our next observation concerns (5.1).

LEMMA 5.2. - Assume that the 6-p-Gaussian lower bound (5.8)
holds. Then there exists DI such that (5.1) is satisfied..
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Proof. Integrate the lower bound for h(t, x, y) over the ball

B~ (x, 2r) with r = p(t). As

it follows that 2r))  r)), for some finite constant DI. 0

Remark. - Lemma 5.1 and Lemma 5.2 hold true without change if
one weakens the hypothesis (R1) to (R1’).

5.2. 6-p-Parabolic Harnack inequality.

We say that (.6, D, L2 (M, dJ-l)) satisfies a 8-p-parabolic Harnack in-
equality if there exists a constant C such that, for any real s, any t &#x3E; 0, any
x E M, and any solution u of = 0 in = (s - r, s) x p(t)),

where

THEOREM 5.3. - Referring to the setting and notation introduced

above, the following two properties are equivalent:

1. The Dirichlet space (E, D, L2(M, satisfies a two-sided 6-p-
Gaussian bound.

2. The Dirichlet space (E, D, L2 (M, dJ-L)) satisfies a 6-p-parabolic
Harnack inequality.

Proof of "1 ~ 2 ". - To see that a two-sided 8-p-Gaussian bound
implies an 8-p-parabolic Harnack inequality, the argument of [7], Sect. 3
can be adapted. See also [38]. Note that the mentioned argument is based on
Formula (5.3). The details are omitted but we would like to point out that
the full hypothesis (Rl) is used here. It seems that (Rl’) is not sufficient
to run the relevant argument of [17], Sect. 3.

We now turn to the proof of "2 ~ 1". This implication holds true
under the weaker hypothesis (Rl’). We start with the following lemma.
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LEMMA 5.4. - If (~, D, L2 (M, d~c) ) satisfies a 6-p-parabolic Har-
nack inequality then there exist positive constants c, C such that

with defined at (5.6). In particular, the doubling inequality (5.1) is
satisfied.

Proof. - Use the argument given in [40], p. 32, for the case when
p(t) = tl/2. The adaptation to general p is straightforward. 0

PROPOSITION 5.5. - If(£, D, dp), 6) satisfies a 6-p-parabolic
Harnack inequality then it satisfies the 6-p-Gaussian lower bound (5.8).

Proof. Use Lemma 5.1 and Lemma 5.4. 0

PROPOSITION 5.6. - satisfies a 6-p-parabolic
Harnack inequality then it satisfies the 6-p-Gaussian upper bound (5.9).

We start the proof with the following lemma.

LEMMA 5.7. - Assuming the 6-p-parabolic Harnack inequality
holds, there exist co &#x3E; 0 such that for all t &#x3E; 0 and all x E M, we have

where B = 

Proof. The desired inequality easily follows from the postulated
8-p-parabolic Harnack inequality. To see this, consider the solution u of
(at + L)u = 0 obtained by setting for s &#x3E; 0,

0

LEMMA 5.8. - Assume that there exists co &#x3E; 0 such that for all

t &#x3E; 0 and all x E M, we have j co where B = B,5 (x, p(t)).
Then there exist C1, CI &#x3E; 0 such that, for all x E M and all t &#x3E; 0,

Proof. Consider the Hunt process associated to the

Dirichlet space (£, D, L2 (M, For k = l, 2, ... , n, let Tk be the stopping
time

- , - " - , - I , , -
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Set also

and note that

By the strong Markov property (denoting by the underlying Prob-

ability space), we have

By induction, we get

Now, the desired conclusion follows from

and

since the last series converges for c small enough. D

LEMMA 5.9. - Assume that there exists co &#x3E; 0 such that for all

t &#x3E; 0 and all x E M, t &#x3E; 0, we co when

B = B8(X,p(t)). Fix N &#x3E; 0. Then there exist C2, c2 &#x3E; 0 such that, for

Proof. By Lemma 5.8, the semigroup property and the triangle
inequality, for all n = 1, 2, ...,
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Changing t to t/n, we obtain

with C2 = log C1 and c3 - c2/C2. If p(t), G(t, R) is bounded

above and taking n = 1 gives the desired inequality. If p(t),
then G(t, c3R/2) &#x3E; 1. Take n to be the smallest integer such that n 

G(t, c3R/2) . Then np(t/n) - -c3R12 and

Hence, we obtain

where the last inequality follows from the doubling property of G.

Proof of Proposition 5.6. - Fix x, y E M and t &#x3E; 0. Let R -

6(x, y)/2. By Lemma 5.4, the inequality
and (5.2), there exist C, A such that

Now, write



1475

By (5.13) and the triangle inequality, we have

By symmetry and (5.2), we get the same bound for 
h(t, z, Thus, for all t &#x3E; 0 and x, y E M, we have proved the
bound 

-

This finishes the proof of Proposition 5.6. D

Together, Lemma 5.4 and Proposition 5.6 prove Theorem 5.3.

5.3. 6-Elliptic and 6-p-parabolic Harnack inequalities.

We say that (E, D, L~(M, satisfies a 6-elliptic Harnack inequality
if there exists a constant C such that any non-negative solution u of Au = 0
in a ball B = B,5 (x, r) satisfies

We make the following straightforward but important observations:

9 The 8-p-parabolic Harnack inequality for (~, D, L2 (M, dIL), 6) implies
the elliptic Harnack inequality on 6-balls.

~ The elliptic Harnack inequality for 6-balls implies the corresponding
6-H61der continuity: There exist two positive real A, cx such that for
any ball B = r) and any harmonic function u in B,

Since we will not use it below, we leave to the reader the simple task
to formulate the adequate Holder continuity statement that follows from a

ô-p -parabolic Harnack inequality.
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In this section, we establish the following theorem.

THEOREM 5.10. - Assume that (E, D, L2 (M, dlt)) satisfies the 6-
elliptic Harnack inequality (5.14) and that

for some (equivalently, any) t &#x3E; 0. Assume further that (E, D, L2(M, 
satisfies the doubling condition (5.1) and the 8-p -Gaussian upper bound
(5.9), that is,

Then the 6-p-parabolic Harnack inequality holds and so does the two-sided
6-p-Gaussian bound.

The proof is essentially the same as in Section 4.2. The heart of the
matter is the following result.

PROPOSITION 5.11. - Under the assumption of Theorem 5.10,
there exist Ei &#x3E; 0, i = 1, 2, 3, such that the heat kernel h(t, x, y) satisfies
the lower bound

Proof. We follow the line of reasoning of the proof of Proposition
3.5. First, we need a lower bound for the Dirichlet eigenvalue given in the
following lemma.

LEMMA 5.12. - Assume that (5.1) and (5.9) are satisfied. Then,
there is c &#x3E; 0 such that

Proof. In fact, we only need to assume (5.1) and the on-diagonal
upper bound 

-

Indeed, fix x E M, t &#x3E; 0, and set B = p(t) ) . Let T &#x3E; t be such
that p(T) = kp(t) for some to be chosen later. By (5.16) and (5.1), we
find that
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Thus, by (2.16), there exists -y &#x3E; 0 such that

Moreover, expending h(t, z, z) along a Dirichlet eigenfunction orthonormal
basis of we get

is chosen so large that C’/1~~’ = we get

By (Rl), once is fixed, there is a constant C such that T x Ct. 0

Next, we state the analog of Lemma 3.9. The proof is the same, up
to changes of notation.

LEMMA 5.13. - Assume the hypothesis of Theorem 5.10 are sat-
isfied. Let B = Bs (x, p(t)) and V = V8,p(X, t), t &#x3E; 0. Then the following
estimates hold:

1. There exists CI such that for all z, y E B,

2. There exists C2 such that

3. There exist E, al &#x3E; 0, and, for any 0  8  1, there exists CA,e
such that

Lemma 5.13 is used to prove Lemma 5.14 below from which, in turns,
Proposition 5.11 easily follows.

LEMMA 5.14. - Under the assumption of Theorem 5.10, for any
~ &#x3E; 0 and any A &#x3E; 1 there exist two positive reals Ca,A and EA such that
forallxEM,tE (0, fAR2), and y E B,
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where B = B(x, Ap(t)), V = Jl(B8(X,p(t))) as above, and 0152 is the Hölder

exponent in (5.15).

The proof of Lemma 5.14 is the same as the proof of Lemma 3.8 in
Section 3.4. It is omitted. Of course, via must be changed to p(t) everywhere
and (PR6) is used to estimate integrals.

We end this section with the following lemma which may be of some
independent interest.

LEMMA 5.15. - Assume that either a two-sided 6-p-Gaussian
bound or an 6-p-parabolic Harnack inequality holds. Then for any ball
B = B8(X,p(t)) C M, the lowest Dirichlet eigenvalue ÀI(B) is bounded
above and below by

Similarly, the lowest non-zero Neumann eigenvalue Àf (B) of any ball B as
above satisfies

Proof. For the Dirichlet eigenvalue, the lower bound comes from
the proof of Lemma 5.12. Indeed, we proved that (5.16) suffices to imply
the desired lower bound. Obviously, (5.16) follows from an 6-p-Gaussian
upper bound. It also easily follow from an 6-p-parabolic Harnack inequality.

For the Neumann eigenvalue, the method of [30], [40] can be used,
together with a covering argument due to [28], to prove the lower bound.
In the present setting, the original argument of [28] should be somewhat
modified (see e.g., [18], Th. 5.4 and [42], Sect. 5.3).

The upper bounds are more interesting as the obvious test function

argument fails to yield the desired result. One can proceed as follows.
Reproducing the proof of (3.6), one sees that

Thus,

But our hypothesis also implies that



1479

Thus, log(Cl /cl ) as desired.

For the Neumann eigenvalue, one can use the principal Dirichlet
eigenfunctions of two disjoint balls contained in B and of radius of order
p(t) to obtain a function / supported in B such that IB 0 and

This shows that
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