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NON-ARCHIMEDEAN INTERSECTION INDICES

ON PROJECTIVE SPACES AND

THE BRUHAT-TITS BUILDING FOR PGL

by Annette WERNER

1. Introduction.

In this paper we interpret non-Archimedean local intersection num-
bers of linear cycles in P’-1 with the combinatorial geometry of the Bruhat-
Tits building associated to PGL(n).

The ultimate motivation behind these results is to associate to a

projective space a differential geometric object playing the role of a model
at infinity in the sense of Manin, who constructed in [Ma] such an object
for curves.

A first step in this direction is to look for a geometric interpreta-
tion of non-Archimedean intersection numbers which has an Archimedean

analogue. It turns out that the Bruhat-Tits building for PGL is a good
candidate for such a geometric framework.

The goal of the present paper is to express non-Archimedean in-

tersection numbers in terms of the building. In another work (see [We])
we construct the desired "model at infinity" for projective spaces as an
Archimedean analogue of the building. Besides, we use results of the present
paper to derive parallel geometric formulas for Archimedean and non-
Archimedean Arakelov intersection numbers.

Keywords: Intersection theory - Projective spaces - Bruhat-Tits building.
Math. classification: 14C 17 - 14M 15 - 20E42.
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Let us now describe our main results. We denote by X the Bruhat-
Tits building associated to the group G = PGL(V), where V is an n-
dimensional vector space over a non-Archimedean local field K of charac-

teristic 0. The vertices in X correspond to the homothety classes {M} of
R-lattices M in V, where R is the ring of integers in K.

We fix a lattice M in V, which induces a projective space P(M) over
R, and consider d linear cycles on P(M) intersecting properly in a cycle
of dimension 0. These cycles are equal to projective spaces P(Ni) for split
R-submodules Ni of M. We put Lj = ni#jNi, and define F as the following
set of vertices in X:

In Theorem 5.1 we express Serre’s intersection number (JID(N1),... P(Nd))
of our linear cycles in P(M) as

where dist is what we call the combinatorial distance function in X, i.e. the
minimal length of a path consisting of 1-simplices connecting {M} with a
vertex in F.

In the case of I~1, this result specializes to a formula in [Ma].
Moreover we investigate the case of several linear cycles meeting

properly in a cycle of higher dimension. In this case, of course, we no

longer have an intersection number, but we can nevertheless describe
the intersection cycle (see Theorem 5.2). It consists of one component
coming from the generic fibre, which appears with multiplicity 1, and
one component coming from the special fibre, appearing with multiplicity
dist({M}, F), where F is defined in a similar way as in the previous result.

Acknowledgements. - I thank Ch. Deninger, G. Kings, K. Künne-
mann, E. Landvogt, Y.I. Manin, P. Schneider, E. de Shalit and M. Strauch
for useful and inspiring discussions. I am also grateful to the Max-Planck-
Institut for Mathematik in Bonn for financial support and the stimulating
atmosphere during the early stages of this project.

2. Intersection theory.

In this section we will list the definitions and results from intersection

theory which are needed later on, thereby fixing our notation.
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Let Q be a scheme, of finite type and separated over a regular ring.
By ZP(Q) we denote the codimension p cycles on Q, i.e. the free abelian

group on the set of integral (i.e. irreducible and reduced) closed subschemes
of codimension p . We write CHP(Q) for the quotient of Zp (SZ) after the
group generated by the principal cycles div ( f ) for rational functions / 7~ 0
on a codimension p - 1 integral closed subscheme, see [Fu], 1.3.

If T C 0 is a closed subset, let ZPT (Q) denote the free abelian group
on the set of codimension p integral closed subschemes of Q, which are
contained in T, and CHf(f2) the Chow group of cycles supported on T, i.e.
Zf(O) modulo the subgroup generated by all div( f ) for rational functions
/ 7~ 0 on some codimension p - 1 integral closed subscheme of SZ which is
contained in T. If T = 0, we put CHPT(Q) = 0.

Now we will briefly recall Serre’s intersection pairing. It is defined

on any smooth scheme SZ over a discrete valuation ring by [Se], V-32.
Two closed, integral subschemes X and Y of SZ meet properly if for every
irreducible component W of X n Y we have codim(X) + codim(Y) =
codim(W). By [Se] we always have the inequality " ~. If X and Y meet
properly, then Serre defines an intersection index iw (X, Y) of X and Y
along W by higher Tor functors, see [Se], V-21.

Let W be an irreducible component of X n Y, let 0~,~ be the local
ring at the generic point w of W, and let px, py be the ideals in 00, w
corresponding to X and Y. If X and Y are locally Cohen-Macaulay, then

by [Se], p. V-20.

We define the intersection cycle of properly intersecting X and Y

by X-Y - Lw iw(X, Y)W where the sum runs over all irreducible

components of X n Y. We can continue this product linearly to arbitrary
cycles X and Y meeting properly on Q, which means that any irreducible

component of X meets all the irreducible components of Y properly. If

Xl, ... , X7. are r closed integral subschemes meeting properly, i. e. so that

every irreducible component W of niXi satisfies codim W == L codim Xi,
then the intersection of Xl, ... Xr is defined inductively: X1- ... - X’ ==

(... ( (X 1- X2 ) - X3 ) ... ) - Xr. Again we can extend this product linearly to
arbitrary cycles Xl, ... , X~. meeting properly.

Gillet and Soul6 have defined an arithmetic intersection pairing for
arithmetic Chow groups in [GiSo]. The local contributions of this pairing
at the finite places (in the smooth case) can be described as follows (see
[GiSo], 4.5.1):
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Assume that 7r : 0 ---+ ,S’ = Spec R is smooth, separated and of
finite type over the discrete valuation ring R and that Q is irreducible.

Let Zp (S2/,S’) be the free abelian group on the closed integral subschemes
Y c Q of relative dimension p over S. Here the relative dimension dims (Y)
of Y over ,S’ is defined as

dims Y = transcendence degree of k(Y) over k(T) - codims(T),
where T is the closure of 7r(Y) in Sand k(Y), k(T) are the function fields.
This relative dimension has the property that

for all closed integral subschemes Y of Q (see [Fu], Lemma 20.1).
Let CHp (SZ/,S’) be Zp (S2/,S’) modulo rational equivalence. For all

closed subschemes T C Q we have = CHd-p(TjS), where d is
the relative dimension of SZ over S.

For closed subschemes Y and Z we can define a pairing

as follows: It suffices to define a pairing

Let V C Y and W C Z be integral closed subschemes. Then we define a

cycle in Y x Z as follows:

VOW= 
0, 

x s W] , 
if V and W are contained in the closed fibre,

 [V x s W], otherwise.

By [Fu], Proposition 20.2, this induces a pairing

Since S2 is smooth over S, the diagonal embedding 0 : SZ -~ Q 
is a regular embedding, and we have Fulton’s Gysin map (see [Fu], §6 and
§20):

Hence we get the desired pairing.

If V and W meet properly, their image under this pairing coincides
with the image of Serre’s intersection pairing in by [Fu], 7.1.2
and 20.2.2.

In particular, if Y and Z are irreducible with p = and

q = codimq (Z), the image of (Y, Z) via
yields an intersection class
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If one cycle is given by a Cartier divisor, say Y = D, then we have
a different description of the image of D. Z in (see [Fu], 8.1.1,
20.2.1 and 6.1c): It is equal to the class of E, where E is any Weil divisor on
Z induced by a Cartier divisor whose line bundle is isomorphic to j*O(D).
Here j : : Z - Q is the embedding of Z into Q and is the line

bundle on Q corresponding to the class of D. In particular, if D and D’ are
linear equivalent divisors on Q, the images of D. Z and D’. Z in 
coincide.

If we have several irreducible cycles Yi, Y2,..., Yr in S2 of codi-

mensions pi, p2, ... , Pr we can define inductively an intersection class

YI.... - Yr E nY2

Let k be the residue field of R. We denote by deg the degree map for
0-cycles in the special fibre Qk of Q, i. e. for all z E we

put [k (P) : k], where is the residue field of P.

Assume additionally that Q is proper over S, and let Y C and

Z C be two irreducible closed subschemes such that p + q = d + 1

which intersect properly on the generic fibre of Q. This means that their
generic fibres are disjoint, so that Y n Z is contained in the special fibre
Qk of Q. Hence we can define an intersection number

where we take the degree of the image of Y. Z E in CH (Qk)
Similarly, if Y E ZP2 (0) for i = 1,..., r are prime cycles with E p2 =
d + 1 which meet properly on the generic fibre, we put (Y1,..., Yr) =

deg(Yi ..... Yr).

3. Hyperplanes.

Throughout this paper we denote by K a finite extension of Qp, by R
its valuation ring and by k the residue class field. Besides, v is the valuation
map, normalized so that it maps a prime element to 1. We write q for the

cardinality of the residue class field, and we normalize the absolute value
on K so that Ixl = 

Besides, we fix an n-dimensional vector space V over K.

Let P(V) = Proj Sym V* be the projective space corresponding to
V, where V* is the linear dual of V. Every non-zero linear subspace W
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of V defines an integral (i.e. irreducible and reduced) closed subscheme
= Proj Sym W * ~ P(V) of codimension n - dim W.

By "R-lattice in V" we always mean an R-lattice in V of full rank.
Every R-lattice M in V defines a model P(M) = Proj of P(V)
over R, where M* is the R-linear dual of M. If the lattices M and N differ
by multiplication by some A E KX then the corresponding isomorphism
P(M) induces the identity on the generic fibre.

Throughout this paper we call a submodule N of M split, if the

exact sequence 0 ~ N - M -~ 0 is split, i.e. if M/N is free
(or, equivalently, torsion free). Every split R-submodule N of M defines a
closed subscheme P(N) = Proj Sym N* - P(M).

LEMMA 3.1. - For every split R-submodule N of M, the closed
subscheme P(N) = Proj Sym N* of P(M) is integral, and has codimension
n-rkN.

Proof. This follows from dualizing the sequence 0 -~ N - Me

M/TV ~0. D

The cycles in P(M) induced by split submodules are called linear, and
linear cycles of codimension 1 are called hyperplanes. The homogeneous
prime ideal corresponding to the linear cycle P(N) - P(M) is generated
by a base of (M/N) * (regarded in M*). In particular, it is generated by
homogeneous elements of degree one.

Now fix a lattice M in V and an R-basis xl, ... , x, of M. Let B be

a matrix in GL(n, R) which we regard as an endomorphism of M via our
fixed basis. Then B induces an automorphism (which we also denote by B)
of P(M). The following lemma can be proven easily:

LEMMA 3.2. - If the hyperplane H in P(M) is given by the linear
homogeneous element

where xi, ... , xn is the dual basis xn, then B(H) is given by the
homogeneous element where
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Now we need an easy matrix lemma. We call a quadratic matrix a
permutation matrix if it contains exactly one entry 1 in every line and

column, and if all other entries are equal to zero.

LEMMA 3.3. - Let A = (aij) be an (n x n)-matrix over R. Then
there exist elements C and D in GL(n, R), where D is a permutation
matrix, such that the matrix CAD = is upper triangular with

Proof. We move a coefficient with minimal valuation in the upper
left corner and eliminate the other entries in the first column. This can be

repeated until our matrix is upper triangular. D

A crucial step for our geometric formulas for intersection indices (to
be proven in Section 5) is the expression of the intersection number of n

hyperplanes in terms of their equations. We can do this for any n hyper-
planes Hl, ... , Hn in P(M) such that their generic fibres H1K, ... , HnK
meet properly on P(V) .

THEOREM 3.4. - Let M be a lattice in V. We fix a basis xl, ... , xn
of M, and denote by x i , ... , z§ E M* the dual basis. Let Hl , ... , Hn be
hyperplanes in P(M) which intersect properly on the generic fibre. Let
fi = E M* be a linear homogeneous element generating the ideal

corresponding to Hi and put A = Then uTe have the following
formula for the intersection number of Hl , ... , Hn :

Proof. By Lemma 3.3 we find some C E GL(n, R) and a permuta-
tion matrix D such that CAD = B = is upper triangular and satisfies
the inequalities

and for all

There is a permutation such that AD is the coefficient

matrix for the hyperplanes H~(l~, ... , Ha(n). By Lemma 3.2, the linear
element corresponds to the hyperplane for all

i = 1, ... , n. Now (Hl,...,Hn) == and

v(det A) = v(det B). Hence we can assume that A is upper triangular with
... ~ v(ann) and v(aij) for i ~ j.

We can assume that nHi # 0, since otherwise our claim is trivial.
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For all a E R we denote by a its image in k. The reduction (Hi)k of Hi
corresponds to the homogeneous ideal generated by Ii == L ajixj in 
Let A be the matrix Now n(Hi)k is the linear cycle corresponding
to the subspace Lk C M~ which is equal to kert A via the identification of
M~ with ~~ given by the reductions of x 1, ... , xn .

We will first assume that He , ... , Hn meet properly on the whole of

P(M). Hence their intersection consists of one point in the special fibre, and
v(all) = ... - = 0. We can therefore assume that all = ... =

1. Hence for all n - 1 the homogeneous ideal in Sym M*
generated by fl = xi, f2 = al2X* + x2, ... , fk = X* is equal
to the homogeneous ideal generated by x i , ... , x . Now we can compute
Serre’s intersection index as follows: Note that all Hi are isomorphic to

JP&#x3E;~-2, hence they are locally Cohen-Macaulay (even regular). Assume that
n &#x3E; 2. The closed subset Hl n H2 of P(M) is given by the homogeneous
ideal (11,12) = (x i , x2 ) ; the corresponding reduced closed subscheme is the
linear cycle P(N) - P(M) for N = (M* /Rxl ~ Rx2 ) * . Hence W = HI n H 2
is a prime cycle. We have H2 ) = 1, hence Hi H2 = W. Besides, W
is a projective space over R, hence also locally Cohen-Macaulay.

The same argument (if n &#x3E; 3) implies that is equal to
the cycle given by the irreducible subset Hl n H2 n H3. Finally we find
that 1 - W where W is the prime cycle corresponding
to the homogeneous ideal (x*,...,x*-,). Now it is easy to calculate

~ Hl , ... , Hn ~ - v ( ann ) - v (det A) , which proves our claim in the case
of proper intersection.

Hence we can now assume that there is an s  n - 1 such that

v(all) = ... = v (ass ) = 0 and v(akk) &#x3E; 0 if k &#x3E; s. We write li = v(aii),
and we can again assume that all - ... - ass = 1. For all m = 1,..., n -1
let Y m be the cycle corresponding to the integral subscheme given by
the homogeneous ideal (x*, ... , x ;.L ) of Sym M*, and let Zr,.L be the cycle
corresponding to the integral subscheme given by (x*, ..., x*- 1, 7r), where
7r is a fixed prime element in R.

Assume that m is a number with s  m  n. Then the intersection of

and Hm has two irreducible components, namely Ym and Zm. Since
both have codimension m, the cycles and Hm meet properly. We
want to calculate and Let y respectively
z be the generic points of Ym respectively Zm. Since m  n, they
are both contained in U - 01. We write A - Op(m),Y. Then
A = R[yi, ... , ) with yi - Since and Hm are
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locally Cohen-Macaulay, we have

As 7r is a unit in A, this is equal to 1A (A/ (yi, - - ., ym)) = 1.

Similarly, we put hence &#x3E;

and we get

Here is a unit in B, hence this length is equal to

since the only ideals in are 0 and (~r~) for

0  k and these are all distinct.

Now we will prove by induction that Hi ... ~ Hr,.L is equal to the class
of + (P(M)) for all m  n - 1. Since HI is
irreducible, we have 11 = 0 Yi , which is our claim for m = 1.

Now we come to the induction step. Assume that our claim holds for
some m with can move to m+ 1 using the above
calculations of intersection indices. Let us now assume that m &#x3E; s, hence

that and are strictly positive. Then meets properly in
the components and and we can calculate Yam. via Serre’s

intersection: Ym. H,,,+ 1 is induced by the cycle + by our
previous calculations.

Note that is contained in (z( , ... , 7r), since both lm and
are strictly positive. Hence Zm is contained in Now we can

determine the intersection

by the recipe we described in Section 2 for intersections with divisors. Since
is linearly equivalent to the hyperplane H’ given by the ideal (x~),

we find that Zm. is equal to the image of Zm ~ H’ in 
Now Z f1 H’ = Zm+l and Zm and H’ meet properly in this irreducible
set with (Zm, H’) = 1, which implies that Zm. H’ is induced by the
cycle 

Altogether we find that Hl ~ ... ~ is the image of + (ll +
... + in which finishes the proof of our
claim. 

~’~ 
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We know now that 77r ...’ is the image of + (li + ... +
in (P(M)). Since s  n - 1, we have &#x3E; 0 and

In &#x3E; 0. Now meets Hn properly, hence we can apply our result in
the case of hyperplanes meeting properly on the whole of and find

ln.

Besides, we have n Hn = and as in our induction step we
can show that Hn is the image of Zn in ~(P(M)). Since Zn is
a k-rational point in the special fibre, we get Hn) = 1.

Altogether we find that

whence our claim. D

4. The Bruhat-Tits building for PGL.

We denote by X the Bruhat-Tits building corresponding to the group
G - PGL(V) (see [BrTi]). X is a metric space with a continuous G-

action and a simplicial structure. For our purposes, we can think of it as
the geometric realization of the following simplicial complex: We call two
lattices in V equivalent, if they differ by a factor in K X , and we write {M}
for the equivalence class of the lattice M. Two different lattice classes {M~}
and ~N’~ are called adjacent, if there are representatives M and N of ~M’~

such that

This relation defines a flag complex, namely the simplicial complex whose
vertex set is the set of all classes ~M~, and whose simplices are the sets of
pairwise adjacent lattice classes. Note that it carries a natural G-action.

If n = 2, then X is an infinite regular tree, with q + 1 edges meeting
in every vertex.

The building X is the union of its apartments, which correspond
to the maximal split tori in G. We can describe them as follows: For

every decomposition V = ®l,i,n Li of V in one-dimensional subspaces
Li generated by some vector vi we define an apartment as the subcomplex
of X given by all lattices M which can be diagonalized with respect to our
decomposition, i.e. M = for some integers k,.
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DEFINITION 4.1. - The combinatorial distance dist(x, y) of two

vertices x and y in X is defined as

dist(x, y) = there are vertices x - xk = y,

so that x. and x-+ I are adjacent for all i = 0,..., 

Hence dist is the minimal number of 1-simplices forming a path
between x and y. Note that dist is in general not proportional to the metric
on X.

LEMMA 4.2. - Let x = IMI and y = {L} be two vertices in X,
and define

and

Then we have dist(z, y) = s - r.

Proof. Note that the term on the right hand side is independent
of the choice of a representative of the lattice classes.

Put d = dist(z, ~/). Then we find lattices M = Mo, Ml , ... , Md such
that Md = aL for some a E KX and such that

Hence 7rd aL C M, which implies s x and M c aL, which implies
r &#x3E; v (c~) . Altogether we find that s - r ~ d.

Let us now show that also s - r &#x3E; d is true. We have by definition
7rs L C M and M C 7rr L. Put L’ = 7rr L. By the invariant factor theorem,
we find an R-basis wl , ... , wn of L’, such that M for some

integers k. Since 7Ts-’L’ C M C L’, all k, are between 0 and s - r.

Now put L2~ = for all i G {0,..., 5 2013 r} and all

j E {1, ... , nl. Then we define for i = 0,..., s - r

Note that Mo - M, and = L’. We have for all i = 0,..., s - r - 1
the inclusions 1fMi+l C Mi C Mz+l. Since either = or 

and are adjacent, we found a chain of adjacent lattices of length
~ s - r connecting {M} and {L}, which implies our claim. D
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5. Intersection indices via combinatorial geometry.

Let us fix a lattice M in V. We will now interpret non-Archimedean
intersection numbers of linear cycles on P(M) with the combinatorial
geometry of X.

Take some d &#x3E; 2 and let ..., P(Nd) be d linear cycles on P(M)
with

which meet properly on P(M). Then Nl , ... , Nd are split submodules of
M of rank ri,..., rd satisfying = (d - 1)n by 3.1. We will always
assume that ri ~ n. For all j = 1,..., d we put c M. Since

all M/Ni are torsion free, the same holds for M / Lj, so that Lj is a split
submodule of M.

Now let F be the set of all vertices in X of the form

for some

(Alternatively, we can also work with the convex hull of F in X.) Note
that the intersection is zero, as P (Nd) do not meet on
the generic fibre. Therefore the sum 7rkl Ll EB ... 0 is direct. On

the other hand, an easy calculation shows that rj. Since

3- dim L3 K (n - - n, we must have dim L3 K = n - r~ and
V == EÐj LjK, so that 7rkl Ll EB ... ~ is indeed a lattice of full rank

in V.

Obviously, F is the set of vertices contained in either a full apartment
or an intersection of affine hyperplanes in some apartment. (Hence its

convex hull is either an apartment of an intersection of affine hyperplanes.)
Let us describe F in two special cases:

i) The case of n hyperplanes.
First note that n hyperplanes H1K, ... , HnK in the generic fibre

P(V) intersecting properly, i. e. not at all, in P(V), define an apartment
A(HLK, - - -, HnK) in X as follows: For all i the hyperplane HiK is the

linear cycle corresponding to an (n - l)-dimensional subspace Wi of V.
Since the HiK intersect properly, nWi is equal to 0. For all 3 = 1, ... , n
put Uj = Then all Uj are one-dimensional and V = We

denote the apartment corresponding to this decomposition (see Section 4)
by A(HlK,... , HnK)-
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If Hl, ... , Hn are hyperplanes in P(M) which intersect properly on the
whole of P(M), then the subset F is just the apartment A(HIK, ... HnK)
corresponding to the generic fibres.

ii) The case of two cycles.

Let Nl and N2 be two non-trivial split submodules of M of rank p
respectively q = n-p, such that the corresponding linear cycles Zl = P(Ni )
and Z2 = meet properly on P(M). Then the corresponding subset
F is

In fact, one can show that F defines a doubly infinite geodesic in the build-
ing X whose boundary points (with respect to the Borel-Serre compactifi-
cation of X) are the parabolics induced by the vector spaces Wi = Ni 
for i = 1 and 2.

We will now show that the intersection number of d linear cycles
meeting properly on P(M) is the combinatorial distance of the set F to the
lattice M.

If n is equal to 2 (i. e. X is the Bruhat-Tits tree associated to

PGL(2, K)), and we consider the case of two hyperplanes in P(M), then
the ensuing formula is due to Manin (see [Ma], p. 232). Note that in this
setting our special cases i) and ii) from above coincide, and the subset F
we are dealing with is a geodesic in the Bruhat-Tits tree.

THEOREM 5.1. - The intersection number P(Nd) on
P(M) can be expressed as follows with the combinatorial geometry of X :

where dist denotes the combinatorial distance in X, and f MI is the vertex
in X defined by our fixed lattice M.

Proof. Recall that ri is the rank of Ni and that the numbers

mi = n-r2 satisfy m2 = n. Besides, put no = 0 and ni = rni + ... +mi
for i = 1,..., d. Then n = nd.

For all i = 1,..., d let gn,, + 1, ... , gn2 be a R-basis of (MINI)
M*. The elements gn2-1 +1, ... , gn, generate the homogeneous prime ideal

corresponding to P(Ni) ~ P(M). Besides, fix a basis gl, ... , yn of M, and
let A’ - (a’,.) be the coordinate matrix of gl , ... , gn with respect to the
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dual basis yi , ... , yn , i. e.

Now choose an element a’- with j # nl such that is minimal

among the entries of the first nl columns. We remove the j-th column and
insert it before the first one. Then we switch rows so that this element sits

in the upper left corner, and we perform some elementary row operations
to eliminate a’ 2 a’ ni * Among the j between 2 and nl and among the
t &#x3E; 2 we choose an entry of minimal valuation. Again, after removing the
corresponding column and putting it between the first and the second one,
and after elementary row operations involving only the last n - 1 rows we
can assume that = 0 for all i &#x3E; 2. We continue in this way until we

reach the nl-th column. Then a’j is zero for j  nl and i &#x3E; j, and the

upper left corner satisfies the following divisibility conditions:

and

for

for ; 1

Now choose an element a’. with i, j &#x3E; nl + 1 n2 such that 

is minimal among the entries with i &#x3E; nl + 1 and nl + I x j x n2.
As before, we permute the columns corresponding to gnl+1 ~ ~ - ~ , g’n2 and

perform elementary row operations involving only the rows with index

bigger or equal to nl + 1 to achieve = 0 for j  n2 and 1 &#x3E; j.

We continue this process until we worked our way through the
whole matrix. We see that after permuting the equations gn,-I+l~ .... 9nZ
corresponding to each of the Nl , ... , Nd, and after switching to another
basis of M (in order to take care of the row operations) we can assume
that our coordinate matrix A’ is upper triangular.

Let us denote the reduction of elements in R or M or of R-matrices

by overlining. Besides we use the following notation for submatrices: For
any n x n-matrix D = (dkl) and any i x j x n we write 
for the n x ( j - i + 1 )-submatrix consisting of the columns i, i + 1, ... , j .
Similarly we write D (i 1 j ) for the ( j - I + 1) x n-submatrix consisting
of the rows i, i + 1, ... , j. By i2 ~ j2 ) we mean the submatrix
where we take columns il, ... , jl followed by columns jl, ... , j2. Besides,

~ j2 ) is the submatrix consisting of all entries dkl with

For n x n-matrices we will furthermore abbreviate Dzj = D(ni-l + 11
+ 1 -~ if i and j are  d. If we divide D into rectangular
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submatrices according to our partition n = + ... + md, then Dij is the
rectangle in position (z,y).

Since ~~_~i,..., gn~ form a basis of the split R-submodule 
of M*, their reductions generate a vector space of rank mi over k, so that
the coordinate matrix + 1 - ni) has full rank 

Since JP&#x3E;(Nl), ... , P(Nd) meet properly, their intersection is empty or
zero-dimensional and contained in the special fibre. Hence is

empty or has dimension zero, so that niNik has dimension  1. Since Nik
is equal to the kernel of (9n, + 1, 9,, ), this means that rk j’ &#x3E; n - 1.

The intersection of is empty iff rk A’ = n. In this
case all elements on the diagonal of A’ are units. After switching to
another basis of M, we can therefore assume that A’ is diagonal. Then
M = L 1 + ... + Ld, so that {M} is actually contained in F, and our
formula holds.

Hence we only have to deal with the case rk A’ = n - 1. Here the
intersection of is not empty. As v(det A’) &#x3E; 0, we find
indices p  q  d with

and

Note that p &#x3E; 2, since nl), and thus All has full rank. All
elements on the diagonal of Ai 1, ... , ~L~ig~i?..., Add are units.
After performing some elementary row operations we can assume that

~_ = 0, if i  ~’ ~ p - I or if j &#x3E; q + 1 and i  j. Note that the divisibility
conditions in Aqq imply that all elements on the diagonal except possibly
the last one are units. Therefore we can eliminate all entries a’ ti in A’ such
that 1 ~ i ~ and elementary row operations.
Hence after switching to another basis ~1, ... , Yn of M we may assume

that our coordinate matrix A’ contains zeros above A22 , ..., and

AQ+l,q+l, ... , Add, and that all columns above Aqq are zero except possibly
the last one.

Now recall that for j = 1,..., d the module Lj = is a split
submodule of M of rank For each j = 1,..., d choose an R-basis

of L~ . We denote by B’ the transpose of the coordinate matrix of wi , ... , wn
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with respect to Yl, ... , Yn, i.e. B’ is the matrix B’ = so that

For all j = 1, ... , d there are matrices Cj, Dj E such that

is a diagonal matrix with entries (3ii such that ... ~
Let C (respectively D) be the matrix with diagonal components

C1, ... , Cd (respectively Dl,..., Dd), and define B = CB’D.

Then D is the transpose of the transition matrix from a base

~i,..., xn of M to our base ~1, ... , If we put

then for all d the elements vnh -1 +1, ... , vnh form a basis of Lh .
The matrix B is by definition the transpose of the transition matrix from
xl,...,xn to vl,...,vn.

Now D~~ is the transition matrix from the dual basis x 1, ... , xn of
M* to gi , ... , Hence the coordinate matrix of gl , ... , gn with respect to

x i , ... , xn is equal to A" = The matrix A" has the property that
if a block Ai~ is zero or zero up to the last column, then the same holds
for ~4~. Besides, = However, the diagonal blocks

Ay , ... , may not be upper triangular any longer.

After permuting the first nl - ml columns we may assume that

v ( an 1 n 1 )  for all j = 1, ... , nl. By a series of elementary column
operations we can eliminate a§§~ ~ , ... , Now we permute the first

nl -1 columns to achieve for all j = 1,... ni - I ,
and we clear out anl -11, ... , Note that these column operations
affect only the first nl - 1 columns, hence the first nl - 1 elements in the
nl-th row remain zero. We repeat this process until is upper triangular.
These column operations amount to passing to another basis f1, ... , ,ln1 of

Now we work on + 1 2013~ n2 ) . First we switch columns

inside this block to achieve v(an2~ )  for all j = ?~i +

1, ... , n2 - 1, and we clear out an2 n 1 + 1, ... , an2 n2 -1, then we eliminate
an2-1n1+1, ..., and so on, until A22 is upper triangular. We do
this with block after block until A" is upper triangular.

Since the columns were transformed block by block, we can find for
each i = 1,..., d a new R-basis
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of (M/Ni ) * , whose coordinate matrix A with respect to the basis x*, ... , x*
is upper triangular and has the property that the columns above

A22, ..., and above ..., Add are zero. Besides, we still

have &#x3E; 0 and v (det Aqq ) &#x3E; 0. Since there exists a matrix

D E GL(mq, R) such that

we still know that rk. ]

Let Hj be the hyperplane given by the linear homogeneous element f~ .
Then H,,, - ~ + 1, ... , H,,, intersect properly and P(Ni) = Hn2_1+1’ ... ’ Hn2.
Hence by 3.4 we have

Besides note that

so that the entries of BA are equal to 

Now by definition, Ni lies in the kernel of all f n2-1 +1, ... , fn2 . Since
Lj is contained in Ni for all i 54 j, this implies that the blocks are

equal to 0 for i 7~ ~. Since all Bjj are diagonal matrices, B is therefore
upper triangular. Besides we have Bi~ = 0, if t  ,y ~ p - 1, and if z  j
and j &#x3E; q.

Since are a basis of the split submodule L~ C M,
their reductions are still linear independent, hence the rank of 

is equal to We will now show that only the last diagonal element

bnJnJ in the block Bjj may not be a unit. Indeed, assume that v(bi2) &#x3E; 0

for some + 1 ~ i ~ ~ 2013 1. By the divisibility conditions along
the diagonal of Bjj we have &#x3E; 0 and v(bnJnJ) &#x3E; 0. For

all 1 = + 1,..., nj we find = so that

0. Similarly, fl (Vn3 = 0, so that and 7~’ are contained
in Njk. Since L~ is contained in all Ni for i # j, the elements and

Vn3 lie also in Nik for all i 7~ J/. Hence we found two linear independent
vectors in ni Nik, which contradicts our assumption that I~(Nl ), ... , P(Nd)
meet properly.

We will now show the following claim:

(1) There exists an index t  p - 1 such that A( 1 --~ + 1 -~ n)
has full rank.
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Let us first assume that p  q. Note that + nq) is

strictly smaller than mq, since v (det (Aqq ) ) &#x3E; 0. Since rk A = n - 1, the
matrix must have full rank Disregarding
the zeros, we find that also the x (nq - ?T,p_i)-matrix

must have full rank (nq-l - This matrix consists of the two vertical

chunks

and

We know that the second chunk -~ 1 1 -~- 1 ~ nq) has
rank  1. Hence the rank of the first chunk

must be &#x3E; 1).

Besides, as v(det APp) &#x3E; 0, there must be an element on the diagonal
of App which has positive valuation, i.e. there exists an index + 1 ~
t ~ np such that ai2 = 0. Since SZ has rank &#x3E; the

upper left corner + 1 1 i - -~- 1 - i) must have full rank
(i - 1 - Now recall that + 1 - np) has full rank, hence the
first i - columns of this matrix, namely -~ 1 ~ i), also have
full rank i - Put

which is just the j-th row of this matrix. We have seen that 
are linear independent, hence there exists a row A 3 -. with 

so that Àjo, Ànp-1 +1, is a full linear independent set of rows in
+ 1 ~ i) .

Now let t  p - 1 be the index of the block in which lies, i.e.

+ 1  j/o ~ nt. We want to show that A( I 2013~ nt -f-1 - n) has full
rank. It obviously suffices to show that A(nt + 1 ---+ + 1 1 n) has
full rank. Removing the first block of rows A(nt + 1 ~ + 1 1 nt )
and putting it before the block A(nt + 1 ~ + np), we see that
it remains to show that the matrix
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has full rank n - Recall that we fixed an element aii on the diagonal
of ApP with positive valuation. Now

Hence in the upper left corner of A we find the rows A3 for j - +

1,..., nt and j = + 1, ... , i - 1, and we know that there are (i - 
linear independent ones among them. So the upper left corner of A has full
rank i - The lower right corner (which is a (n - i + 1) x (n - i)-
matrix) has the same rank as the (n - i + 1) x n-matrix A(i 1 n). Since
rk(A) = n - l, the rank of the lower right corner must therefore be bigger
or equal to n - i which means that this corner has also full rank. Hence A
has full rank. This finishes the proof of claim (1) in the case p  q.

If p is equal to q, similar arguments can be used to prove (1) -
Now we claim that we can calculate our intersection number as

follows: For the index t we found in (1) we have

Put wl = Vnt-1 +1, ... , Wmt = Vnt’ which is a basis of Lt = Since Lt
is a split submodule of M, we can complete this basis to a basis WI, - - - , wn
of M. Since fj = En 1 the coordinate matrix of f1, ... , fn with
respect to the dual basis wi , ... , w* is equal to Using 3.4, we
can therefore calculate the intersection number as follows:

Now 0 for i = 1,..., mt Jt := + 1,..., ntl. Hence
after permuting columns the matrix looks like this (* ~), 1
and we get



1502

Note that = BttAtt. As t is strictly smaller than p,
the determinant of Att is a unit. Besides, as we have shown above, only
the last element on the diagonal of Btt may not be a unit, so that we can
calculate the first term as follows:

It remains to show that the second term is zero, hence that

an invertible (n - mt ) x (n - mt )-matrix over
k. Since fj (wi) = 0 for i = 1, ... , mt and j ~ Jt we can as well show that
the matrix has full rank n - mt. In order to prove this

we may change the base of M and show that A(I --+ + 1 n)
has full rank n - mt, which was done in (1).

Let us fix some h = 1,..., d. We will first show by induction that for
all i &#x3E; n h we have

where the empty product is equal to 1. For i = nh this is trivial. So let us
suppose our claim is true for all i with nh  i  io for some io &#x3E; nh + 1.
Then

We multiply by and get

hence the induction hypothesis implies our claim for io.

Note that (3) implies that v(bntnt ) = Indeed, if i is
not equal to nh for some h = 1,..., d, then bii is a unit. Since B contains no
zero lines, for every nh there must be an index i &#x3E; nh such that = 0.

By (3) we find that
i

L v(det A).

But v(det A) is equal to the intersection number ..., P(Nd)), hence
equal to v(bntnt ) by (2).

Now we can prove
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We take a lattice class {L} corresponding to a vertex in F, i.e. L =

7rk1 Ll + ... + Ld for some integers ki, - - - , Then 

C M) # -kt and M C -kt - so that 4.2

implies Hence we are done if we show that

Recall that BA is the matrix consisting of the diagonal blocks

B11 All, ..., BddAdd ~ Now for all h = 1, ... , d the determinant of Ahh is

11~-12h-1-~-1 a ~.7 ~ and Applying again (3) and the
fact that in every line in B there must be a unit, we find

so that

hence has R-coefficients for all h. Therefore7r (b.t-t &#x3E; B-1hh hh 
.

has R-coefficients, which implies M C 7r-,(b-t -t) (Li -f- ... Ld), as tBM =
L 1 +... + Ld. Now it is easy to see that indeed 

0

One may wonder if our assumption that the linear cycles meet prop-
erly on the whole of P(M) is really necessary. In fact, in 3.4 we have proven
a formula for the intersection number of n hyperplanes meeting properly
only on P(V). Hence it is tempting to try and use this as a starting point
to generalize Theorem 5.1 at least to the case of n hyperplanes HI, ... , H,
in P(M) meeting properly only on the generic fibre P(V). Unfortunately,
the geometric expression dist({M}, A(HlK, ... , HnK)) does in general no
longer coincide with the intersection number (HI, ... , Hn) in this case. In
fact, one can show as in the proof of 5.1 that for Hl , ... , Hn with coordinate
matrix A = (upper triangular and subject to v(aii)  v(a .+li+,) and

v(aij) for i  j) we have HnK)) - 
whereas the intersection number ~Hl , ... , Hn) = v (aii ) (see 3.4) may
be bigger.

We will conclude this paper by generalizing Theorem 5.1 in another
direction. Namely, let us consider the case of d &#x3E; 2 linear cycles on P(M)
meeting properly in a cycle of dimension bigger than zero. So let Nl , ... , Nd
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be split submodules of M of rank rl ..., rd, so that P(NI), - ..., P(Nd) are
linear cycles meeting properly on P(M), i.e. any irreducible component in
the intersection miP(Ni) has codimension

Note that only the case is interesting, since oth-
erwise mP(Ni) must be empty. Since we already dealt with the case

Ei codim P(Ni) = n in 5.1, let us now assume that Ei codim P(Ni)  n.

Put ro &#x3E; 0, and let Lo be the
intersection Lo = f1d 1 Ni . Since all M/Ni are torsion free, the same holds
for M/Lo, so that Lo is a split submodule of M. Hence P(Lo) is a linear

cycle contained in the intersection so it has codimension ) n - ro,
which implies that rklo  ro. On the other hand, we can calculate

so that we find rk Lo = ro.

For j - 1, ... d we put Lj = C M. Then Lo is also a split
submodule of Lj, hence there exists a free R-module LJ with Lj = 
Let F be the set of vertices in X of the form

for some 

Of course, F depends on the choice of L~,..., L~. It is easy to see that the
sum + ... + + is indeed direct. Since

we find that

so that ... ~ is indeed a lattice of full rank in V.

Besides we see that = n - ri .

Then the strategy of the proof of 5.1 can be modified to prove the

following result:

THEOREM 5.2. - Let P(~Vi),... be linear cycles meeting
properly on P(M) such that codimJP&#x3E;(Ni)  n. For any choice of F
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as above, we can describe the Serre intersection cycle I~(Nl ) ~ ... ~ P(Nd) as
follouTs:

Here the first cycle is the closure in P(M) of the linear

cycle on which is just the Serre intersection cycle
JID(Nd)K of the generic fibres. The second cycle 

the linear cycle on the special fibre corresponding to the subspace nq
of Mk, which we regard as a cycle on P(M).

Both our results 5.1 and 5.2 are proven by a complicated series

of direct computations once the correct formulas are found. It would be
desirable to give a more conceptual proof providing deeper insights in the
nature of our formulas and allowing generalizations.

BIBLIOGRAPHY

[BrTi] F. BRUHAT, J. TITS, Groupes réductifs sur un corps local. I. Données radicielles

valuées, Publ. Math. IHES, 41 (1972), 5-252.

[Fu] W. FULTON, Intersection theory, Second edition, Springer 1998.

[GiSo] H. GILLET, C. SOULÉ, Arithmetic intersection theory, Publ. Math. IHES, 72
(1990), 93-174.

[Ma] Y.I. MANIN, Three-dimensional hyperbolic geometry as oo-adic Arakelov geom-
etry, Invent. Math., 104 (1991), 223-244.

[Se] J.-P. SERRE, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, 11,
Springer, 1965.

[We] A. WERNER, Arakelov intersection indices of linear cycles and the geometry of
buildings and symmetric spaces, To appear in Duke Math. J.

Manuscrit reçu le 3 janvier 2001,
accepté le 9 mars 2001.

Annette WERNER,
Universitat Miinster
Mathematisches Institut
Einsteinstr. 62
48149 Mfnster (Allemagne).
werner~math. uni-muenster.de


