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DEGENERATION OF SCHUBERT VARIETIES OF
SLp/B TO TORIC VARIETIES

by R. DEHY and R. W.T. YU

Introduction.

In this paper, we complete our programme stated in [3] to prove the
existence of degenerations of certain Schubert varieties of SL,, into toric
varieties, thus generalizing the results of Gonciulea and Lakshmibai [5].

The essential idea is that we use the polytopes defined in [3] to
construct a distributive lattice, and extend the method used by Gonciulea
and Lakshmibai [5] for minuscule G/P to Schubert varieties in SL,.
Although they also prove the existence of degenerations for SL, /P (and
also Kempf varieties) in the same paper, their approach is different from
the one for a minuscule G/P.

Since all the ingredients used here are based on standard monomials,
we expect that it can be adapted in the other types. However, the difficult
part is to construct a suitable distributive lattice and we shall make it more
precise below.

Let G = SL,+1, B be a Borel subgroup and W be the Weyl group
of G which is the symmetric group of n + 1 letters. Let a;, 2 = 1,---,n, be
the corresponding set of simple roots so that («a;, a}’) = a;; where (a;;); ;
is the Cartan matrix, s; the corresponding simple reflections in W and let
w; be the corresponding fundamental weights. Denote also by ¢(—) and <

the length function and the Bruhat order on W.

Keywords: Schubert varieties — Toric varieties — Flat deformations.
Math. classification: 14M15 — 14M25 — 06D05.



1526 R. DEHY & R. W.T. YU

Recall that for w € W, the Demazure module E,(\) is the b-module
U(b)vyx, where b is the Lie algebra of B, U(b) its enveloping algebra
and vy a vector of extremal weight w of the irreducible representation
V(A) of highest weight A = Z?:l k;w;, k; > 0. Under certain conditions
on w, in [3], we constructed n polytopes Aj,...,A,, where n is the
rank of GG, such that the number of lattice points in the Minkowski sum
Sr kA, = 508, Z?’zlx”— | z;; € A;} is equal to the dimension
of E,(XA). The polytopes Aq,...,A, define a toric variety X equipped
with n line bundles £;,i = 1,...,n (see [11]). The aim of this paper is
to degenerate the Schubert variety S(w) = BwB/B equipped with line
bundles £, = BwB x g C,, into X equipped with £;.

We consider the homogeneous coordinate ring of a multicone over
S, This multicone is the Bt B-orbit of @), Cv,, in @, V(w;), and its
coordinate ring is R = @, gominant H°(Sw, £1), where Ly = Q7 LS*
with A = 3" kjw;. In [8], it has been shown that the map

& éSymleO(Sw, L.)— R

Epyen kn >0 d=1
is surjective and its kernel I is a multigraded ideal generated by elements
of degree (ky,...,kn) with >, k, = 2. On the other hand, we encounter
an analogous situation considering the toric variety X defined by the
polytopes Ay, ..., Ay,. Let By, . &, be the vector space over C generated
by z%, a a lattice point in 377" | kA, Then S = @y, 4 50 Bk, k, i the
homogeneous coordinate ring of a multicone over the toric variety X, and
Biy..k, = HO (X, Q" , LE*). Moreover, since the polytopes A; can be
triangulized by simplices of minimal volume, that is of volume 1/(dim A;)!,
the map @, ;. -0 ®izs Sym*™ HO(X, L;) — S is surjective and its kernel
J is a multigraded ideal generated by elements of degree (kq, ..., k,) with
>, ki = 2; in other words S = C[z®*7]/J where H := {a;;} is the set of
all lattice points in polytopes A;, i =1,...,n.

The basic idea is that one can put a structure of a distributive lattice
on the set H, of lattice points of Aq,...,A,. This distributive lattice,
denoted H equipped with operations V, A, is such that for a,8 € H we
have a+ 3 = aV G+ aA (. Hence that the algebra C[H|/I(H), where I(H)
is the homogeneous ideal generated by z,%s = TavgTang, is the ring S.
Therefore using Theorem 2.5 proved in {5], one obtains a flat deformation of
R to C[H]/I(H) which is the homogeneous coordinate ring of a multicone
over the toric variety X.

The paper is organized as follows. In Section 1, we recall results from
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DEGENERATION OF SCHUBERT VARIETIES 1527

[3]. The theorem on degeneration of [5] is stated in Section 2. Sections
3,4 and 5 are devoted to showing that the conditions of the theorem are
satisfied. Finally in Section 6, we discuss briefly which Schubert varieties
fall into our context.

We shall use the above notations throughout this paper.

1. Distributive lattice on Wv.

For a fundamental weight w;, i = 1,...,n, let W, be the subgroup
of the Weyl group W, stabilizing w;, that is W, = {r € W | 7(w;) = w, }.
Denote the quotient W/W,, by W;. The set W, can, on the one hand, be
identified with the subset of W consisting of elements 7 such that 7 < 754,
for j # 4, i.e. the set of minimal representatives and, on the other hand,
with the set of é-tuples (ry,...,7;) such that 0 < r; < --- < r; < n. The

connection between these two identifications is that (r1,. .., ;) corresponds
to s(r1,1)s(re,2)---s(r;,i) where s(a,b) = 8g84—1--S». The induced
Bruhat order on W;, which we shall also denote by < can be expressed
under the above identifications by a = (a1,...,a;) b= (by,...,b;) if and

only if ay < bx, 1 < k < 4. Furthermore, W; becomes a distributive lattice
(for generalities on distributive lattices, see [6] or Section 2 of [5]) under =<
where

aVb=(max{a;,b1},...,max{a;,b;}) and

(1.1)
Ab= (min{ay, b1 },...,min{a;, b;}).

IS

Recall (see for example [3]) that any w € W has a unique factorization
in the form s(a1,b1)s(az,b2) - s(ag, bg) with 1 < a1 < a2 <--- <ag < n.
We shall be interested in the w’s satisfying by > by > - -+ > by.

For an element w € W, let W = {7 € W; | 7 < W}, where W is the
representative of w in W;. Denote by W¥ := []"_, W. Let us recall the
following partial order from Section 8 of {3].

DEFINITION 1.1. — Let 4 < j and w = s(a,by) - - - s(ak, by ), with
1<a < - <apy<nandb 2by>- - 2bg. Forg=(r1,...,r;) € W¥,
we define

v

o= (0,1,...,j—i—1,7*j—i+17~~,%j)EW;U

TOME 51 (2001), FASCICULE 6



1528 R. DEHY & R. W.T. YU

where 7, = max{k — 1,7x_j4:}, j—i+1 <k <jandforT = (t1,...,t;) €
W, let
T = (tjfi—{»la .o ,t]') c Wiw.

We say that ¢ <, 7 ifq? = 7, or equivalently if ¢ < 7, and we define
TV¢i=1Voe W and T Ap:=7AN¢pE WY (see Equation (1.1)).

A simple consequence of the definition is the following lemma.

LEMMA 1.2. — Let w be as in Definition 1.1. Then together with
the above operations, W™ is a distributive lattice.

An essential property of this partial order is the following theorem
proved in [3].

THEOREM 1.3. — We have ¢ <,, 7 in WY if and only if there exist
liftings ¢', 7" in W of ¢, 7 such that ¢' < 7/ < w.

As we shall see in the next sections, this is used extensively in the
proof.

Remark 1.4. — 1In [3], we constructed for each fundamental weight
w;, a polytope A such that the number of lattice points in the Minkowski
sum Y., k;A? is equal to dim E,, (3", kiw;). The set of vertices of the
polytope A, is indexed by the set W and these are the only lattice points of
A;. Moreover considering ¢, 7 € WY as vertices, we have ¢+7 = ¢VT+OAT.
The polytopes A; have also the important property that they can be
triangulized by simplices of minimal volume so that a lattice point of
Z?:l k;A; can be written as the sum of k; lattice points of A; and ko
lattice points of A, and so on. This property gives information on the
generators of the toric ideal defined by the A;.

We shall end this section by proving certain facts concerning 7 V
¢ and 7 A ¢ which will be needed throughout the paper. These are
generalizations of certain results obtained in [5]. Let us suppose that w
is as in Definition 1.1.

LEMMA 1.5. — Let j > i and ¢ € W*, 7 € W}* be two non-

comparable elements in WY. Let 0 = 7V ¢ and k = 7 A ¢. Then
T(wj) + ¢(wi) = o(w;) + Klwi).

Proof. — This is just a direct consequence of the fact that ¢ +7 =
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DEGENERATION OF SCHUBERT VARIETIES 1529

¢V T+ ¢ AT in the polytope described in Remark 1.4, see [3].
It is also a straightforward computation by using the fact that if
T = (tl, ce ,tj), then
J
(1.2) T(wj) =wj— > (e +-+ o).
k=1
O

LEMMA 1.6. — Letj >iand ¢ € W, 7 € W}’ witho =7V ¢
and k = T A ¢. Then, we have the following:

(1) if s, -85, 7 = o and £(0) = £(1) + k, then s;, ---s;, k = ¢ with
(k) + k = £(p); or equivalently s;, -+ 8;, k = @;

(2) if s, -~ 8,0 = o with £(c) = £(¢) + I, then 8j, -+ -8,k = T with
o) =L(R) + I;

(3) the sets {c;,} and {a;,} have empty intersection and s;,,s;, com-

mute.

Proof. — Note that as a consequence of Definition 1.1, we have
o = 1V¢ and K = TA¢. Using Lemmas 7.17 and 7.18 of [5], we conclude that
there exist o;,,...,a; and oj,,...,qa; all simple enjoying the properties
stated above. g

2. Theorem on degeneration.

Let us recall some basic facts on standard monomials.

Let ¢ € W, and ¢ = s;, -+ s;; be a reduced expression for ¢. Then
the vector Qy := X_q, -+ X_q, Vo, is an extremal weight vector in V (w;)
of weight ¢(w,). It is shown in [10] that Q4 is independent of the choice of
reduced expression of ¢. Further, we have the following lemmas from [10]:

LEMMA 2.1. — The set {Q, | 7 € W;,7 < w} is a Z-basis for
E7, 1 (ws).-

Let {P. | 7 € W;} be the Z-basis of V;(w;) dual to {Q, | 7 € W,}.
Then the set {P, | 7 € W;,7 <X w} is a Z-basis for H(Sz(w),Lyz,,,) =
Eiw(w,;).

TOME 51 (2001), FASCICULE 6



1530 R. DEHY & R. W.T. YU

LEMMA 2.2. — Let 0 - « € W; and 0 = s;. ---s;,k and
{(0) — £(k) = r. Then we have P, = (=1)"X_q, -+ X_qo, Ps.

For a field k, let us denote the canonical image of P, in H*(G/P;, L,,)
by pw,w € W;.

DEFINITION 2.3 ([10]). — A monomial pr,, +**Pr.,Pr,_y,
Pry ., where 7; ; € W}, is called homogeneous of degree (k1,...,k,) and of
total degree 3", k;.

It is called standard on S(w) if for each i,j, there exists 7; ; € W,
whose class in W; is 7; j, and 71,1 X -+ X Trk, X w in W. In other words
Pryy, " Pry, is standard on S(w) if 711 =+ R Trk, Sw W.

THEOREM 2.4 ([10]).

(1) Let w € W. Then, denoting W the representative of w in Wj;, for
T € Wi, pr |s@n)# 0 if and only if 7 < W. Furthermore, {p, | 7 € W*}
is a k-basis for H*(S(w), L., )-

(2) The standard monomials on S(w) of degree (ki,...,k,) form a basis
of HO(S(w), @7, LE*).

Let H be a finite distributive lattice. Denote by P = k[zq,a € H]
and I(H) C P the ideal generated by the binomials {z423 — ZavsZang |
a, 3 € H non-comparable}.

Let R = D, yominant H (S(w), L)) be the homogeneous coordinate
ring of a multicone over S,,. By the previous theorem, R has a basis
indexed by standard monomials on S(w). Thus we have the surjective map
7 : P — R sending x, +— p, where H is the set W". Let I = ker 7 which
is an ideal generated by relations in total degree 2 of the form

(2.1) PPy — D CopPoPy

where p.py is non standard and the pgp,’s are standard. These are called
straightening relations ([1], [6], [10]).

THEOREM 2.5 ([5]). — Assume that W" is a distributive lattice
such that the ideal I is generated by the straightening relations of the form
(22) PPy — 3 CouPoPy

where T, ¢ are non-comparable and 6 > 1. Further, suppose that we have

(1) crvgrng = 1, i.e. prygPrag Occurs on the right-hand side of Equa-
tion (2.2) with coefficient 1.
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DEGENERATION OF SCHUBERT VARIETIES 1531

(2) 7,0 €]9,0= {y € W¥ | ¢ < v < 8} for every pair (0,1)) appearing
on the right-hand side of Equation (2.2).

(3) There exist integers ni,...,nq > 1 and an embedding of distributive
Iattices
n
WY e— U C(nl,...,nd)
d=1

where C(ny, ..., nq) is the set of d-tuples (i1, ... ,1q) with 1 < i; < ny,
such that for every pair (0,v) appearing on the right-hand side of
Equation (2.2), 1(7) U «(¢) = ¢(8) U «(¢p) where U denotes the disjoint
union.

Then there exists a flat deformation whose special fiber is P/I1(W")
and whose general fiber is R.

By Lemma 1.2, if w is as in Definition 1.1, then WY is a distributive
lattice. In the next sections, we shall prove that all the conditions of the
theorem are satisfied. Let us assume in the next sections that w is as in
Definition 1.1.

3. Condition (2) of Theorem 2.5.

THEOREM 3.1 ([9], [10]). — Leti<j, 7€ Wi, ¢ € W and p-py
be a non standard monomial on S(w). Let the corresponding straightening
relation be given by

N

(3‘1) PrPyp = ch Po, Py, -
=1

Then T,¢ <, 0;, Y1 < T, ¢ for all | such that ¢; # 0.

Proof. — The proof given here is just a generalization of the proof
of Proposition 2.5 of [7]. Among the 6; choose a minimal one, which we
denote by 8. Let us reindex the 6; so that 6§ = 6; for 1 <[ < s. Note that
since @ is minimal we have 6 £ 8 for s <1 < N. Since pg,py, is standard,
we can choose K(l ), mgl) € W such that K:(l) =< H(l) = w, the class of n( )i
W; is 6; and the class of Hé) in W is ¢;. Let Z7 = Ul 1 ( ) and restrict
Equation (3.1) to Z;. Then pg,py, |z, is standard on Z; for 1<1<s
and pg,py, |z,= 0 for s <1 < N. By the linear independence of standard

TOME 51 (2001), FASCICULE 6



1532 R. DEHY & R. W.T. YU

monomials, Equation (3.1) restricted to Z; is not zero. Hence p,py |z, # 0.
This implies that 7,¢ < ngl). According to Theorem 1.3 (or Lemma 8.12
of [3]) we have 7, ¢ =<,, 8; note that 7 (or ¢) cannot be equal to 8, because
DPrDg is non standard. From this argument we deduce that 7,¢ <., 6, for
all 1.

Let 0 =7V¢g e WP and k =7AN¢ € W Now 6 € W and
Y € W', By weight consideration, we have o(w;)+&(w;) = 01(w;) +1(w;).
Furthermore 7,¢ <, 6; implies that o <, 6;, or equivalently o < 6,
since both belong to W;. Therefore 6;(w;) < o(w;), which implies that
K(w;) < ¥y(w;). Therefore ¥; < k. In other words ¢ <, k& <y 7, @. O

COROLLARY 3.2. — Let the notations be as in Lemma 1.5. Then
in the straightening relation p.ps = > CoyDoPy, €ither o <, 8 or 0 = o,
Y =K.

Proof. — From Theorem 3.1, we know that for any pair (6,) on the
right-hand side, o <, 8 and ¥ <, k. Moreover if ¢ = 0, then due to weight
considerations, i.e. O(w;) + Y(w;) = o(w,) + kK(w,), we see that k =¢. O

4. Condition (3) of Theorem 2.5.

Considering the set WY := [[""_; W;, we noted at the beginning of
Section 1 that each set W can be identified with the subset of i-tuples
(a1,...,a;) where0 < a; < --- < a; <nand(ay,...,aq;)issmaller than the
representative of w in W;. Hence we have t : W* — |J_, C(n,...,ngq). For
simplicity, we shall denote ¢(7) also by 7. We want to prove the following

lemma:

LEMMA 4.1. — Let 7,¢ be two non-comparable elements in W*".
Then for any (6,v) appearing on the right-hand side of the straightening
relation (2.2), 6 Uy =1 U ¢.

Proof. — Let 7 = (t1,...,t)), ¢ = (r1,...,m), 8 = (a1,...,q5)
and ¢ = (b1,...,b;). A necessary condition for pgp, to appear on the
right-hand side of Equation (2.2) is 7(w;) + ¢(w;) = O(w;) + Y(wi).
Here, we shall prove that this condition immediately implies the assertion,

ANNALES DE L’INSTITUT FOURIER



DEGENERATION OF SCHUBERT VARIETIES 1533

i.e. {tl, .o ,tj}U{Tl, ey T’i} = {al, PN ,aj}U{bl, e ,bl} The pI‘OOf is by
induction on i + j.

The fact that 7(w;)+¢d(wi) = O(w;)+1(w;) implies, by using Equation
(1.2) in the proof of Lemma 1.5,

(4.1) Z(ak+"'+atk)+Z(O¢l+"‘+0&rl)
k=1

1=1
J i
=) (- +ag)+ ) (o +-+ap)
k=1 1=1
Note that
max{ty,...,t;,r1,...,7;} = max{t;,r;}
and that
max{ai,...,a;,b1,...,b;} = max{a;,b;}.

Then due to the equality in Equation (4.1), we must have max{t;,r;} =
max{a;, b; }. There are four cases to consider.

e Case (1)t; = a; > b;. This implies that a;+- - -+ay, = aj+ - +ay,.
Hence denoting 7/ = (t1,...,t;_1) and 6’ = (a1,...,a;_1), Equation (4.1)
implies that 7/(w;_1)+¢(w;) = 6'(w;_1) +¥(w;). By induction we are done.

e Case (2) t; = b; > a;. Let m be the smallest number such that

@j—m > bi—m (if such an m less than ¢ — 1 does not exist, let m = 7). Note
that bivm+1 > Qj—m+1 > Qj—m > bi_m.- Set

7= (tl,...,tj_l) S Wj_l,

= (a1, -, @j—m, bi—mi1, bimmy2, . .- bim1) € Wiiq,
/ . .

= (b1, bimm, Gj—mt1, QGjmm+2, .- -,05) € W; if m#i and
/

= (aj—i41,.-.,a;) if m=1i.

Since 1 < j, we have i —k -1 < j—-k -1 < aj_p for 0 < k < 4.
Therefore ¢’ € W,;. Using the fact that for 0 < k& < m, we have
Z‘ﬁk—l ]—k—léaj_kgbz_k,then

(4.2) (Oé];k + -+ aa],k) + (aifk +- O‘bhk)
= (aj—k +toa, , Fog, 1+ + ap, )+ (ai—k +oeet aa]#’c)'

From Equations (4.1) and (4.2), we can conclude that 7/(w;_1) 4+ ¢(w;) =
0" (wj—1) + ¥’ (w,). The rest follows by induction.

e Case (3) r; = b; > a; is similar to case (1).

e Case (4) r; = a; > b; is similar to case (2). O

TOME 51 (2001), FASCICULE 6



1534 R. DEHY & R. W.T. YU

In fact, we have proved:

LEMMA 4.2. — Let j > ¢, 7,0 € W;, ¢,¢v € W; be such that
T(wj) + (Z)(wz) = H(w]) + 'l[)(u)z) Then 6 U ’(/} =T U ¢

5. Condition (1) of Theorem 2.5.

PropPOSITION 5.1. — Let 7,¢ € W™ be two non-comparable
elements. Then in the straightening relation (3.1), prvePrag occurs with
coefficient +1.

Proof. — As before, denote ¢ = 7V ¢, &k = 7 A ¢. Note that
T,¢ <. o (that is there exist liftings 7,¢,& in W such that 7,¢ < & < w).
Corollary 3.2 implies that the restriction of Equation (3.1) to the Schubert
variety S(&) is prpy = apepx, where a # 0. Since standard monomial basis
is characteristic free, this holds in any characteristics. Hence a = 1. O

So now we have to prove that a = 1. Since the irreducible repre-
sentation V(w; + w;), appears as a direct sum in the decomposition of
V(w;) ® V{w;) into irreducible representations, we have an imbedding
V{wi + wj) — V(w;) ® V(w,). Note that since the weight space of weight
w; +wj is one-dimensional, the element v,,, ®wv,, belongs to V (w; +w,). The
imbedding above induces a projection H(G/B, L,,,) ® H°(G/B, L,,) —
H°(G/B, L., ® L,,). For simplicity we shall denote the image of f ® g
under this projection by fg. We shall construct a basis for Egz ,,(w, + w;)
which is a “rank two” version of the one given in [10].

In the following let ¢ < j (that is no element of W} can be bigger
than an element of Wj?”) and recall from Lemma 2.1 that, for ¢ € W;, we

have denoted by Q4 an extremal weight vector in Vz(w;) of weight ¢(w;).

Let ¥(w) := {(7,0) € W}’ x W | there exist liftings 7,7 in W such
that 0 <7 < w}.

DEFINITION 5.2. — Let w be as in Definition 1.1. Let k € W},
o € W be such that (0,x) € X(w) and let 0 = s;, -+~ s;,k where
r = £(o) — #(K). Define E; . := Qz ® Q. € Vz(w;) ® Vz(w;) and define
Eppi=X-ay - Xeon, Err.

ANNALES DE I’INSTITUT FOURIER



DEGENERATION OF SCHUBERT VARIETIES 1535

Note that Ey . is an extremal weight vector since & is the image of
& (the minimal representative in W) in W;. It is also clear that F, . is a
weight vector of weight x(w;) + o(w;).

PROPOSITION 5.3. — Let w € W be as in Definition 1.1. Then
E, . does not depend on the choice of reduced expression and the set
{Eon | K E WY o€ Wik = o} is a Z-basis for the Demazure module
Ez’w(wi + Wj).

Proof. — Let ¢ = s, -8,k = s, ---8;K Denote by ¢ =
8j,_, '+ 85, k. Then we have o = s;, ¢. Now if i = j,, then we proceed by in-
duction on the length of 0. Otherwise, let k be the largest integer such that
Siy_, 8k X ¢. Then s;, ---5;, K A ¢ and we have ¢ V s;, --- 8,k = 0,
QNS -8R =8, _, -8, K By Lemma 1.6, we have that j. = i; and
s, commute with s;, for [ > k. Thus

X o, Xoa Brxx=Xoq, Xa, - X_

O‘lk+1X7alk~1 e X—oc” ER,/-@-
By induction, Ey ., = X‘o‘hi1 e X_a“ Ey .. Therefore the right-hand side
is X_q, Eyx and we have proved that the definition of E, . does not

depend on the choice of the reduced expression.
We are left to show that these elements form a basis for Fz ,,(w; +w;).

We claim that E,,. € Ez,(w; + w;). It is clear that E; . €
Ez, (wi + w,). Now, since w satisfies the condition of Definition 1.1, we
have w = s, -+ sy K (if £ is [a1, 1]...[a;, ], then s; ...8; & is [b1, 1]...[b,—s, 5 —
i][bj—i41,1]...[b;, 1] where o = (by,---,b,)), thus

E; . € X—aw e X,all EZ’H(wz + wj) C EZ’w(wi + w]).
We have therefore our claim.

Now by the definition of E ., we have
Ea,n :Q0®Qn+ Z Qu®QU

(u,v)el
where I C W, x W; and for each (u,v) € I, we have u < o in W, v > & in
W, and o(w;) + k(w;) = u{w;) + v(w;). It is now clear that the E, .’s are
independent.

Further, one deduces from the expression for E, , above that the
Z-submodule generated by the F, .’s is a direct summand of the tensor
product Vz(w;) ® Vz(w;). Finally, by standard monomial theory, the car-
dinal of 3(w) is the rank of Ez ,,(w; + w;). So the result follows. O
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We can now prove that a = 1.

COROLLARY 5.4. —  Let the notations be as in Lemma 1.5, then in
the straightening relation p,pg = E{il ci Do, Py, the term p,p,. occurs on
the right hand side with coefficient 1.

Proof. — Recall from the proof of Proposition 5.3 that
Eo,n :Q0®Qn+ Z Qu®Qv

(u,w)er
where I C W; x W; and for each (u,v) € I, we have u < 0 in Wj, v > & in
W; and o(w;) + K(w;) = u(w;) + v(w;).
Let us apply p,pg to E; .. Then from the explicite expression of E, «
above, this is either 0 or 1 depending if Q. ® Q4 appears in the right hand
side or not.

On the other hand, if we replace p,ps by the right hand side of
the straightening relation, then it is clear from Theorem 3.1 that the
same evaluation yields a, , where a, . is the coefficient of p,p. in the
straightening relation. But this is non zero from Proposition 5.1. So it
must be 1. O

6. Consequence.

As an immediate consequence, we have:

THEOREM 6.1. — Let w be as in Definition 1.1. Then there exists
a flat deformation whose special fiber is a toric variety and whose general
fiber is S(w).

Proof. — By Theorem 2.4, there exists a flat deformation whose
general fiber is S(w) and whose special fiber is a variety defined by a
binomial ideal associated to a distributive lattice. This latter is toric as
shown in [4]. ]

Remark 6.2. — If we look closely at the proofs, then we realize that
Theorem 2.4 can be replaced by the following.

Suppose that W* admits a structure of distributive lattice such that
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(1) the partial order corresponds to standardness, cf. Theorem 1.3;
(2) weights are preserved, cf. Lemma 1.5;
(3) Lemma 1.6 is satisfied.

Then there exists a flat deformation whose special fiber is a toric
variety and whose general fiber is S(w).

In particular, consider the bijection © of W defined by s; — sp41-;
induced by the non trivial Dynkin diagram automorphism. This induces
a bijection between W; and W, ;_; which preverses the induced Bruhat
order. Now let w be as in Definition 1.1, then © induces a structure of
distributive lattice on WO(®)_ Tt is easy to check that the same proof works.
Thus we have,

THEOREM 6.3. — Let w or ©(w) be as in Definition 1.1. Then there
exists a flat deformation whose special fiber is a toric variety and whose
general fiber is S(w).

Remark 6.4. — As noticed in [3], we can extend our results to the
following elements. Let 0 < k; < ky < -+ < kry1 < n+1l,andfor1 < <,
let S; be the subgroup of W generated by the reflections s, 41, - sk

k11— 1

Now suppose that w = wy - - - w, where w; € S;. Then it is clear that
w; and w; commute if ¢ # j and it follows easily that if each w; satisfies
the condition of Theorem 6.3, i.e. either w; or ©(w;) is as in Definition 1.1,
then the conclusion of the same theorem holds for w.

For example, the element s;s25554 satisfies the above conditions.

Our results apply to all the elements of W in the case of SL3 thus
giving a more general proof to [2]. However, in the case of SL4, there
are precisely 4 elements for which the condition of the theorem is not
satisfied. Namely, they are s1s3s2, $251583, S2515352 and s152535251. The
main problem in these cases is that standardness is not transitive in all the
obvious “orderings”.
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