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GENERICALLY STRONGLY g-CONVEX
COMPLEX MANIFOLDS

by T. NAPIER* and M. RAMACHANDRAN**

0. Introduction.

In [DiO], Diederich and Ohsawa obtain the following:

TueoreMm (Diederich-Ohsawa).— Let Q be a relatively compact
pseudoconvex domain with connected smooth real analytic boundary in
a complex manifold of dimension 2. Assume that the boundary of € is
strongly pseudoconvex at some point. Then ) is holomorphically convex.
In fact, Q admits a C* exhaustion function v which is strictly plurisub-
harmonic on the complement of some compact subset (i.e. Q is strongly
1-convex as a manifold).

Remark. — Strong 1-convexity is equivalent to the existence of a
Stein space Y (the Remmert reduction of Q), a surjective proper holo-
morphic mapping ¥ : Q@ — Y with connected fibers, and a finite subset Z
of Y such that the restriction of ¥ maps Q\ ¥~ !(Z) biholomorphically onto
Y \ Z (by the work of Grauert [G], Docquier and Grauert [DG], Cartan
[Car], and Remmert [Re]).
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1554 T. NAPIER, M. RAMACHANDRAN

A function ¢ of class C? on a complex manifold X of dimension n is
said to be strongly g-convex if the Levi form

0%y _
L(p) = Z 92107, dz;dz;
l’]

has at most ¢ — 1 nonpositive eigenvalues at each point in X. Equivalently,
for each point p € X there exists a germ of a complex submanifold of
X of dimension at least n — ¢ + 1 at p such that the restriction of ¢ to
the germ is strictly plurisubharmonic. The manifold X is called strongly
g-complete (respectively, strongly q-convex) if X admits a C*° exhaustion
function which is strongly g-convex (respectively, strongly ¢-convex on the
complement of some compact subset). The main goal of this paper is to
obtain analogous versions of the above theorem of Diederich and Ohsawa
for g-convex domains in higher dimensional manifolds. The hypotheses will
be strengthened in the sense that we will assume that there is a global
defining function for €2 on X with the appropriate properties. On the other
hand, a version in which the defining function is only locally a maximum
of real analytic functions will also be obtained. Thus the regularity of the
boundary may be weakened in this sense. If X is Kéahler and each point
of some nonempty open subset lies in an irreducible compact analytic
set of dimension g — 1, then well known facts from the theory of Barlet
spaces ([Bal], [Ba2]) immediately give holomorphic convexity. The precise
statements of the main results are given below.

THEOREM 0.1. — Let X be a connected complex manifold of dimen-
sion n and suppose @ is a real analytic plurisubharmonic exhaustion func-
tion which is strongly (n — 1)-convex at some point (i.e. the Levi form L(y)
has at least 2 positive eigenvalues at some point). Then, for almost every
sufficiently large (regular) value a of ¢, the sublevel

Q={zeX|plz)<a}

admits a C* exhaustion function which is strongly (n — 1)-convex on the
complement of some compact subset of Q (i.e. Q is strongly (n — 1)-convex
as a complex manifold).

CoroLLARY 0.2. — Let X be a connected Kahler manifold of dimen-
sion n which admits a real analytic plurisubharmonic exhaustion function
@ which is strongly (n — 1)-convex at some point. Assume that there is
a nonempty open subset V of X such that each point of V lies in some
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GENERICALLY STRONGLY ¢-CONVEX COMPLEX MANIFOLDS 1555

irreducible compact analytic subset of X of dimension at least n — 2. Then
X is holomorphically convex (with Remmert reduction of dimension 2).

Remarks.— 1) When n = 2, the existence of V' is automatic and,
moreover, the Kéhler condition is not needed.

2) If ¢ is a C*° plurisubharmonic function and, for some point p € X
and for some tangent vector v € 79X, we have

(%) (dp)p #0, (9p)p(v) =0, and L(p)(v,v) >0,

then, since
L(e?)(w, w) = e?(L(p)(w,w) + [8p(w)[*)  Yw e T,°X,

the function e? is strongly (n — 1)-convex at p. Thus, in place of strong
(n — 1)-convexity, one need only assume that ¢ satisfies (x) at some point.

3) The results and proofs are related to the work of Huckleberry
in [Hu].

4) We will obtain versions of Theorem 0.1 and Corollary 0.2 in the
context of strongly g-convex functions as well as versions for ¢ a function
which is real analytic with corners. For example, these versions, when
applied with ¢ = 1, will have as a consequence the following version of
the theorem of Diederich and Ohsawa:

TueEOREM 0.3. — Let X be a connected noncompact complex mani-
fold of dimension n. Assume that there exist a continuous plurisubharmonic
exhaustion function ¢ on X, a compact subset K of X, and, for each point
p € X\ K, a finite collection A of real analytic plurisubharmonic functions
on a neighborhood U of p in X such that

z) =maxa(x) VezeU
() = max a(z)
and such that, for each o € A, the real analytic set of points in U at which «
is not strictly plurisubharmonic is of (real) dimension at most 3. Then X
is holomorphically convex with Remmert reduction of dimension n.

For n = 2, this theorem becomes

CoRroLLARY 0.4.— Let X be a connected noncompact complex mani-
fold of dimension 2. Assume that there exist a continuous plurisubharmonic
exhaustion function ¢ on X, a compact subset K of X, and, for each
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1556 T. NAPIER, M. RAMACHANDRAN

point p € X \ K, a finite collection A of real analytic plurisubharmonic
functions on a connected neighborhood U of p in X such that
= ma. Ve eU
p(z) = maxa(z)
and such that each function in A is strictly plurisubharmonic at some

point in U. Then X is holomorphically convex with Remmert reduction of
dimension 2.

For X Kéahler and ¢ > 1, the following version of Theorem 0.1 will be
obtained:

TueorewMm 0.5. — Let X be a connected noncompact Kahler manifold
of dimension n, let ¢ be a positive integer, and let ¢ be a continuous
plurisubharmonic exhaustion function on X such that, on the complement
of some compact subset K of X, ¢ is locally equal to the maximum of a
finite collection of real analytic plurisubharmonic functions for which the
real analytic set of points at which at least one of the functions is not
strongly q-convex is of (real) dimension at most 2q + 1. Then, for almost
every sufficiently large positive real number a, the sublevel

Q={zeX|px)<a}

admits a C* exhaustion function which is strongly q-convex on the
complement of some compact subset of 2.

Again, well known facts from the theory of Barlet spaces then give
the following;:

CoroLLARY 0.6. — Let X be a connected noncompact complex man-
ifold of dimension n and let ¢ be a positive integer. Assume that X admits

(i) a Kéahler metric;

(ii) a continuous plurisubharmonic exhaustion function ¢ such that, on
the complement of some compact subset K of X, ¢ is locally equal to the
maximum of a finite collection of real analytic plurisubharmonic functions
for which the real analytic set of points at which at least one of the functions
is not strongly g-convex is of (real) dimension at most 2q + 1; and

(iii) a nonempty open subset V' such that each point of V lies in some
irreducible compact complex analytic subset of X of dimension at least ¢—1.

Then X is holomorphically convex with Remmert reduction of dimen-
sionn —q+ 1.

ANNALES DE L’INSTITUT FOURIER



GENERICALLY STRONGLY ¢-CONVEX COMPLEX MANIFOLDS 1557

Remark. — As indicated in Theorem 0.3, for ¢ = 1 (i.e. 2q + 1 = 3),
the conclusion holds even if X is not Kéahler (and, clearly, the condition
(iii) holds automatically).

A description of the approach to the proofs of the above results will
now be given. We begin with a brief sketch of Diederich and Ohsawa’s proof
of their theorem. By an observation of Diederich and Fornaess [DiF2], the
set A of points at which there exists a germ of a 1-dimensional complex
submanifold of X contained in 99 is itself a compact complex submanifold
of dimension 1. Other results of Diederich and Fornaess in [DiF1] provide,
on a neighborhood of 912, a C* plurisubharmonic function which is strictly
plurisubharmonic on the complement of an arbitrarily small neighborhood
of A. Finally, Diederich and Ohsawa produce a function on € which is
strictly plurisubharmonic near A (they also produce an example for which

A # 2).

In the situation of Theorem 0.1 (in which a global real analytic
plurisubharmonic defining function exists), we may choose an arbitrarily
large sublevel Q = {z € X | ¢(z) < a } so that the corresponding subset A
of 0 is empty; thus eliminating the need for the last step in Diederich and
Ohsawa’s proof. This is done by applying the theory of Barlet spaces [Bal]
as follows. Let G be the graph over the Barlet space C,,_1(X) of compact
analytic (n — 1)-cycles in X. Then the existence of ¢ implies that the
image of G in X has (2n — 1)-dimensional Hausdorff measure 0. Hence, for
generic a, ¥(G) NN is a set of (2n — 2)-dimensional Hausdorff measure 0.
Thus 9 cannot contain a compact complex analytic set of dimension
n—1. A standard construction, analogous to the work of Richberg [Ri] and
Demailly [De2] (see also Siu [Sil] and Coltoiu [Co]), now gives a strongly
(n — 1)-convex function on a neighborhood of the (real analytic) set of
points in 0Q at which £({y) has rank at most 1. Cutting off and adding a
suitable multiple to ¢ — log(a — ), one gets the required function on €.

Theorem 0.1 and the following well known consequence of the work
of Barlet ([Bal], [Ba2]) together immediately give Corollary 0.2:

TureoreM 0.7 (Barlet). — Let X be a connected noncompact complex
manifold of dimension n. Assume that, for some positive integer q, there
exist

(i) a Kahler metric on X;

(ii) a continuous plurisubharmonic exhaustion function on X;

TOME 51 (2001), FASCICULE 6



1558 T. NAPIER, M. RAMACHANDRAN

(iii) a sequence {Q,} of C* relatively compact strongly q-convex do-
mains in X such that X =], Q, and such that, for eachv, Q,, C Q,41; and

(iv) a nonempty open subset V of X such that each point of V lies in
some irreducible compact analytic subset of X of dimension at least ¢ — 1.

Then X is holomorphically convex with Remmert reduction of dimen-
sionn —q-+1.

The main point is that, by a result of Barlet [Ba2|, the Barlet space
Cq—1(R2) of a strongly g-convex Kihler manifold € is holomorphically
convex. In the situation of Theorem 0.7, properness of the projection
from the graph over a suitable subset of Cq,l(ﬂu) into a sublevel of the
plurisubharmonic exhaustion function then gives holomorphic convexity
of the sublevel and, therefore, of X. For the convenience of the reader, a
sketch of the proof of the above well known theorem (assuming holomorphic
convexity of the corresponding Barlet spaces) is included in Section 5.

The main result of [NR1] is that a connected complete Kéhler
manifold which has at least three ends and which is weakly 1-complete
or has bounded geometry admits a proper holomorphic mapping onto a
Riemann surface. The following is obtained as a consequence:

THEOREM ([NR1, Theorem 4.6]). — Let X be a connected noncom-
pact Kahler manifold (completeness is not required). Assume that

(i) X admits a C* plurisubharmonic exhaustion function ¢ such that,
for every sufficiently large regular value a of ¢ and for M = p~'(a),
L(p) =0 on TYOM;

(ii) For every compact subset C' of X, there is a holomorphic automor-
phism « of X such that v(C) N C = &; and

(iii) X does not have exactly two ends.

Then X admits a proper holomorphic mapping onto a Riemann
surface.

The above theorem and Corollary 0.2 together give the following:
CoRrOLLARY 0.8. — Let X be a connected noncompact Kahler mani-
fold of dimension n. Assume that
(i) X admits a real analytic plurisubharmonic exhaustion function ;
(ii) for every compact subset C of X, there is a holomorphic automor-

phism v of X such that v(C)NC = &;
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(iii) X does not have exactly two ends; and

(iv) there is a nonempty open subset V of X such that each point of V
lies in some irreducible compact analytic subset of dimension at least n — 2
in X.

Then X is holomorphically convex.

Proof. — Suppose that there exist an arbitrarily large regular value a
of ¢, a point p € M = ¢7'(a), and a tangent vector v € Tp'M
such that L(¢)(v,v) > 0. Then the plurisubharmonic function e?¥ is
strongly (n — 1)-convex in a neighborhood of p (for the zero eigenspace
for L(e?), = e?P)(L(p)p + [(09)p|?) is contained in T}°M and hence
must be a subspace of dimension at most n — 2). Hence Corollary 0.2 gives
holomorphic convexity in this case. Otherwise, X is holomorphically convex
by above theorem. O

Remarks.— 1) This corollary was stated in [NR1, Theorem 4.8] for
the case n = 2 (in which the condition (iv) holds automatically) and was
obtained as a consequence of the Levi flat case and the theorem of Diederich
and Ohsawa. So the proof given here is, in a sense, simpler than that given

in [NR1].

2) One may also state versions in the context of g-convex functions.
But when ¢ < n — 1, even if e® is not strongly g-convex at p (for a
plurisubharmonic function ¢ and some point p over a regular value a),
the Levi form need not vanish on T,°M (where M = ¢ '(a)). So, at
least based on what is currently known, one must assume that either the
conditions of [NR1, Theorem 4.6] hold or the conditions of Corollary 0.6
hold. Thus the statements are not edifying.

In Section 1, two (mostly well known) facts are recalled. In the proof of
Theorem 0.1, which appears in Section 2, for a suitable sublevel provided by
Barlet space arguments, these two facts give a strongly ¢-convex function on
a neighborhood of the set of points in the boundary at which the exhaustion
function is not strongly g-convex. In Section 3, basic facts concerning
g-plurisubharmonic functions are recalled. Immediate generalizations of
Theorem 0.1 and Corollary 0.2, in which the real analytic exhaustion
function is only assumed to be g¢-plurisubharmonic with respect to some
real analytic metric (not necessarily plurisubharmonic), are then stated.
Finally, in Section 4, generalizations for exhaustion functions which are
real analytic with corners are proved. Section 5 contains a brief sketch of
the proof of Theorem 0.7.

TOME 51 (2001), FASCICULE 6



1560 T. NAPIER, M. RAMACHANDRAN

1. Strongly g-convex extensions
and complex analytic components.

In this section we recall two (mostly well known) facts. The first is that
any C'* function on a weakly stratified set whose complex tangent spaces
are of dimension < ¢ admits an approximate strongly ¢-convex extension
to a neighborhood. This an (easy) analogue of Demailly’s approximate
extension theorem for strongly ¢g-convex functions [De2]. The second fact,
which is due to Diederich and Fornaess [DiF3], is that the set of g-
dimensional complex analytic germs in a real analytic set of real dimension
2q is a (properly embedded) complex analytic set. Throughout this paper,
all submanifolds and all real analytic and complex analytic subsets are
assumed to be properly embedded in their ambient spaces (except, of
course, when germs are being considered or when otherwise indicated).
We first recall the following weak version of the notion of stratification:

DEFINITION 1.1. — A C™ weak stratification of a closed subset N of
a C* manifold M is a countable locally finite collection of sets {N,}%2,
such that

oo
N=JN
j=1

and such that, for each j = 1,2,3, ..., either N; = @ or Nj is a (properly
embedded) C™ submanifold of the open set

M\OM.
=1

If such a C* weak stratification of N C M exists, then the dimension of
N is given by

dimg N = dim N = supdim N; < 0o
J

(which is clearly equal to the Hausdorff dimension of N). A real analytic
weak stratification of a closed subset of a real analytic manifold and a
complex analytic (or holomorphic ) weak stratification of a closed subset
of a complex manifold are defined analogously.

ANNALES DE L’INSTITUT FOURIER



GENERICALLY STRONGLY ¢-CONVEX COMPLEX MANIFOLDS 1561

Of course, a complex analytic set in a complex manifold admits a
finite complex analytic weak stratification. We also have the following well
known examples:

LEMMA 1.2. — Let N be a closed subset of a C*® manifold M.

(a) If N admits local C* weak stratifications, then N admits a (global)
C*> weak stratification.

(b) If M is a real analytic manifold and N admits local real analytic
weak stratifications, then N admits a (global) real analytic weak stratifi-
cation. In particular, any real analytic subset of M admits a real analytic
weak stratification.

Proof. — For the proof of (a), we may choose a locally finite collection
of relatively compact open subsets {U, }52; of M such that N C |Jo, U,
and such that, for each v, there exists a finite C°° weak stratification

NNU,=N/UN{U---UN.

We may also choose a collection of open subsets {V,}22, of M such
that N C U,(jo:1 V. and such that, for each v = 1,2,3,... and each
J=1...,r,, V, CC U, and Ny N9V, is the empty set or is a C
submanifold of (pure) dimension dim N — 1 in NY. For example, we may
take V, = {z € U, | ¥(x) < a}, where ¢ is a C°° exhaustion function on
U, and a is a large regular value for the functions ¥|nv,..., 9| Ny - The
following sequence then gives a C*° weak stratification for N:

N{NoVy, Ny novy,...,NL now,

NNV, NynW,...,NL NV,

(NENOVR)\ Vi, (N3 NOVa)\ V,..., (NE NaVa) \ V4,

(NENV)\ VL, (NS O Vo) \ Vi, (N2 NVR)\ WA,

(NY NV I\ (VAU UV,_1),... (N noV,)\ (ViU --- UV, 1),

(NlumVV)\(VIU"'UVV—l)a"W(N:u ﬁVy)\(VlU“-UVV_]_),....

Thus (a) is proved.

The proof of the first part of (b) is similar to the proof of (a) (one
chooses V,, to have real analytic boundary for each v). For the proof of the
second part, one need only recall the well known fact, due to Bruhat and
Cartan [BrCl], [BrC2] and Bruhat and Whitney [BrW, Proposition 13],

TOME 51 (2001), FASCICULE 6



1562 T. NAPIER, M. RAMACHANDRAN

that if V is a real analytic set of dimension m, then each point in NV has a
neighborhood U in which

NNU=NyUN,

where Ny is a real analytic subset of dimension strictly less than m in U
and N7 is a real analytic submanifold of (pure) dimension m in U \ Ny. O

If M is a C° submanifold of (real) dimension m in a complex
manifold X of (complex) dimension n and J is the complex structure on X,
then, for each point p € M, TPLOM is the image of the complex subspace
T,MNJ(T,M) of (T, X,J) in Tl}voX under the complex linear isomorphism
(T,X,J) - T3°X given by u— 3 (u—v/—LJu). If ¢ is a real-valued C*
function on X and u € T, X, then

aso@(u— \/—_lJu)) = d@(%(u—\/—_lJu)> = %dgo(u) - %\/-—ldcp(Ju).

Hence d¢p(1 (u — v/=1Ju)) = 0 if and only if dp(u) = dp(Ju) = 0. It
follows that if @1, ..., @2,—m are C° functions on a neighborhood U of p
such that

MNU={zeU|p(z)="=0om_m(x)=0}
a'nd (d(;pl JARERIVA d‘anvm)p 7é 0,

then
2n—m

TPI’OM: ﬂ ker(9p;)p.

j=1
The following lemma is a simple analogue of [De2, Theorem 4]:

LEmMmA 1.3. — Let X be a complex manifold, let K be a closed subset
of X, let N be a closed subset of X \ K, and let a be a C* real-valued
function on X which is strongly q-convex on a neighborhood U of K in X.
Suppose there exists a C> weak stratification {N;}22, of N in X \ K such
that, for each j = 1,2,3,... and each point p € Nj,

dim¢ T, 'N; < ¢ (Le.dimg[T,N, N J(T,N,)] < 2q).

Then, for every positive continuous function § on X, there exists a C™>
function 3 on X such that ( is strongly g-convex on a neighborhood of the
closed set KUN in X, 8=aon KUNj,anda<B8<a+6onX.

ANNALES DE L’INSTITUT FOURIER
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Proof. — We will construct an extension of a|xyun, to a function
which is strongly ¢g-convex on a neighborhood of K U N7 and then proceed
inductively. Let n = dim¢ X. Because N; is a (properly embedded) C*°
submanifold of X \ K and U is a neighborhood of K, there exists a sequence
of C* compactly supported real-valued functions v = {v,, }5°_; on X such
that

(i) each -y, vanishes on K U N; (i.e. v =0 on K U Ny);
(ii) the collection {SUPP Yo }men is locally finite in X; and
(iii) for each point p € Ni \ U, we have

] k
Tp N1 = ker(dy), = ﬂ ker(dym)p = ﬂ ker(dym)p for k = k(p) >0

m=1 m=1
(i.e. (dv)p = {(dym)p}5o~; has rank 2n — dim Ny).

The function

o0
P =
m=1

is of class C'™°, because the sum is locally finite. Moreover, for each point
p € KU N; and each tangent vector v € T]}’OX, we have

L(y*)(v,0) = 2007(0)P =2 |97 (v)[* > 0.

In particular, if p € N1\ U, then, since dim¢ Tpl’ONl < g, the condition (iii)
implies that £(|7]?), has at least n — ¢ + 1 positive eigenvalues (and no
negative eigenvalues) on T, pl’OX .

Now let A : X — (0,00) and 5 : X -» [0,1] be C* functions with
71 = 1 on a neighborhood of K U N; in X. Then the function

a=a+n-A
is equal to a on K U N; and, for each point p € K U N3, we have
L(ar)p = L(a)p + APIL(7*)p > L(@),p

(because |y(p)|> = 0 and (d|v|?), = 0). Moreover, if we choose A so that
A(z) — oo sufficiently fast as £ — oo, then, since « is strongly g-convex
on U, the Levi form £(a1), will have at least n—g¢+1 positive eigenvalues for
each point p € K U N;. It follows that, if we choose 1 to be supported on a

TOME 51 (2001), FASCICULE 6



1564 T. NAPIER, M. RAMACHANDRAN

sufficiently small neighborhood of KUNj in X, then, for a sufficiently small
neighborhood V; of K U N7 in X and a sufficiently small neighborhood Uy
of the closure K1 = Vi, a1 will be strongly g-convex on U; and we will have

1
a; =aon KUN; and a<a1<a+§60nX.

Setting ag = a and Ky = K and proceeding as above inductively
with pairs

(K,N;) = (Ko, N1\ Ko), (K1, N2\ K1), (K2, N3\ Ka),...,

we get a sequence of C' functions {a;} and sequences of open sets {V;}
and {U;} and closed sets { K} such that, for each j =1,2,3,..., we have

Kj-1UN; =K;.1U(N;\ K;-1) CV; CV; = K; CUj,

the function o; is strongly g-convex on Uj, aj = aj—1 on K;_1 U N;, and
oj_1 < o < o1+ 2776 on X. We now get a C™ strongly g-convex
function e on the neighborhood V' =J;Z, V; of K U N by setting

asolv, = ayly, Vi=1,2,3,....
Clearly, aoo = g = @ on K N N;. By induction, we also have, for each j,
a:aogaj:aooga0+2_16—|—2_26+--~+2_’6gag—}-éonV].

Hence
a0 <at+bonV.

Thus if we fix a C* function 7 : X — [0,1] such that 7 = 1 on a
neighborhood of the closed set K U N and such that suppr C V, then
the C'*° function

f=(1—-Ta+Tax: X - R
has the required properties. O

The following fact is contained implicitly in the work of Diederich and
Fornaess [DiF3]. A sketch of the proof is included here for the convenience
of the reader.

LemMA 1.4 (Diederich-Fornaess). — Let S be a (properly embedded)
real analytic set of real dimension at most 2q in a complex manifold X.
Then the set Y of points in S at which there exists a germ of a q-dimensional
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complex analytic subset of X contained in S is a (properly embedded)
complex analytic subset of X.

Remarks. — 1) Clearly, either Y = @ or Y is of pure dimension g.

2) In [DiF2], Diederich and Fornaess prove that if M is a connected
smooth real analytic hypersurface in a complex manifold X of dimension n
and Y is the set of points in M at which there exists a germ of an (n — 1)-
dimensional complex analytic subset of X contained in M, then either
Y=0,Y=M,orY is a (properly embedded) complex submanifold of X
(of dimension n — 1 contained in M).

Sketch of the proof of Lemma 1.4. — The statement is local, so we
may assume that X is an open set in C™ and that S is the zero set of a
real analytic function p : X — R. Given p = (p1,...,pn) € S, there exists
an r > 0 such that the polydisk

Atpyr)={(21,...,20) €C" | |z —pjl <rVj=1,...,n}
is contained in X and such that the Taylor expansion

p(2,2) =) ars(z—p)'(z - p)’
1,J

for p centered at p converges in A”(p;r). The main point is the following
observation (see [DiF3, pp. 383-384] for the proof):

Every germ of a gq-dimensional complex submanifold of X at p which is
contained in S is contained in some (properly embedded) complex analytic
subset Z of dimension q in A™(p;r) which is contained in S.

We may assume that
S:SOU51U"'USQq

where Sy is a finite set and, for each j = 1,...,2¢q, S, is a (properly
embedded) real analytic submanifold of (pure) dimension j in X\ (SoUS;U
.- 'USj_l). Let N = SoUS U-- -US2q,1 andlet Y’ = YﬂSQq = Y\N Then
Y’ is dense in Y because N cannot contain a germ of a complex manifold of
dimension q. Moreover, Y is both open and closed in Sy,. For if p € Y’, then
there is a neighborhood U of p and a purely ¢g-dimensional complex analytic
subset A of U such that p € A C Sz NU. Since dimpg Szq = 2g = dimp A4,
A must be open relative to Soq. Thus Y is open in Sy,. According to the
theorem of Levi-Civita [L] (see also Freeman [Fr]), a C* submanifold M of
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a complex manifold is a complex submanifold if and only if JTM = TM.
Since the condition JT3,S5, = TS5, is real analytic on z € Sy, and since
z € Y’ if and only if a neighborhood of z in Sy, is a complex submanifold of
an open subset of X, it follows that Y” is also closed in Sy,. In particular,
Y=Y \ N is a complex submanifold of dimension g in X \ N.

To complete the proof of the lemma, we fix a point pg € Y NN =
YN N and a constant r > 0 such that the Taylor expansion for p(z, %)
centered at py converges in the polydisk A™(py;8r) C X. By applying
Lemma 1.3 to the set N = SpU .- U Sy_1 C X and a suitable C*°
function a on X, one gets a C* function 8 on X such that 8 > 1 on
A™(po;T), 0 < B < 1 on X \ A™(po;2r), and S is strongly g-convex on a
neighborhood V of N in X. For each point p € Y/ NA"(po; ) NV, we have

A™(pg; 3r) CC A™(p;4r) CC A™(po; 5r),

and hence the Taylor expansion for p centered at p converges in the polydisk
A"™(p; 4r). Therefore, by the claim, there exists an irreducible complex
analytic subset Z(p) of dimension g in A™(p;4r) with

p € Z(p) C SNA™(p;4r).

In particular, Z(p) C Y and Z(p) \ N is an open subset of the complex
manifold Y. Let Z’(p) be the irreducible component of Z(p) N A™(py; 3r)
containing p. The restriction of a strongly g-convex function ¢ to a complex
analytic subset of pure dimension ¢ cannot attain a local maximum at a
point z, because the restriction of ¢ to some germ of an (n — ¢ + 1)-
dimensional complex submanifold at z is strictly plurisubharmonic and the
intersection of the germ and the analytic subset is of positive dimension.
On the other hand, the restriction f3|z/(,) attains its maximum at some
point z(p) € Z'(p) N A™(pg;2r) because B(p) > 1 while 0 < 8 < 1 on
X \ A™(po; 2r). Therefore, since § is strongly g-convex on V', we have

2(p) € Z'(p) N A™(po; 2r) \ V CC Y' N A™(py; 37).

Thus z(p) lies in some (unique) connected component W{p) of the complex
submanifold Y’ N A™(pg; 3r) of A™(po;3r) \ N. We have W(p) C Z'(p)
because z(p) € W(p) N Z'(p) and the subset Z'(p) \ N is both open and
closed in Y’ N A™(pp; 3r). Only finitely many connected components of
Y'NA™(po; 3r) can meet the compact subset A™(pg; 2r)\V of A™(pg; 3r)\N.
Hence the collection {W(p) | p € Y' N A™(pg;r) NV } is finite and is
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therefore equal to {W(p1),...,W(pr)}, for some choice of finitely many
points py,...,px € Y N A™(pg;7) N V. In particular, we have

z(p) e W(p) CW(p)U---UW(pe) YpeY NA™(po;r)NV.
But we also have, foreachi=1,...,k,
2(pi) € W(p:) NA™(po; 2r) C S
and A"(pg;3r) CC A™(z(p;); 5r) CC A™(po; 87).

Thus by applying the claim to the germ of W(p;) at z(p;) and to the
polydisk A™(z(p;), 5r), one gets an irreducible complex analytic subset Z;
of dimension ¢ in A™(z(p;),57) such that

W(p:) C Z C S.

As above, Z; C Y and Z; \ N is open and closed in Y' N A™(z(p;), 5r).
Moreover, the irreducible component Z! of Z; N A™(pg,3r) containing
W{(p;) must equal the irreducible analytic subset Z’(p) of A™(po,3r)
whenever z(p) € W{(p;), because W(p;) = W(p) is then a neighborhood
of z(p) in both Z! and Z'(p). Therefore, since p € Z’'(p) for each point
p €Y' NA™(po;r) NV, we have

Y' NnA™(pe;r) NV C U Z'(p) N A (po;T) NV
PEY'NA™(po;r)NV

C(ZyU---UZ)NA(po;T) NV
CY NA™pg;r)NV.
Passing to closures in the neighborhood A™(pg;r) NV of py, we get
Y NA™(po;r) NV = (ZyU---UZ) N A™(po;r) N V.

It follows that Y is a complex analytic subset of pure dimension ¢ in X.0O

2. The smooth case.

Theorem 0.1 is an immediate consequence of the following version
(for a generically g-convex plurisubharmonic exhaustion function) which
will be proved in this section:

THEOREM 2.1.— Let X be a connected noncompact complex mani-
fold of dimension n, let ¢ be a C*° plurisubharmonic exhaustion function
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which is real analytic on the complement X \ K of some compact subset
K of X, let q be a positive integer, and let S be the real analytic set of
points p € X \ K at which the Levi form L(yp), has rank at most n — q.
Assume that

dimp 5 < 2¢ + 1.

Then, for almost every sufficiently large (regular) value a of o, the sublevel
Q={zeX|plz)<a}

admits a C* exhaustion function which is strongly g-convex on the
complement of some compact subset of Q (i.e. Q is strongly g-convex as a
complex manifold).

Remarks.— 1) In place of the set S, one need only consider the
smaller set Sy of points p € X \ K at which

(dp)p #0  and  rank L(9)lker(ay), <7 — G;

a real analytic subset of S\ C, where C = {p € X \ K | (dp), = 0}. For
if b is a sufficiently large regular value of ¢, X’ is a connected component
of {z € X | p(z) < b}, K’ is the compact subset (K UC) N X', and
¢’ = —log(e® — e¥), then ¢’ is a plurisubharmonic exhaustion function on
X' which is real analytic on X'\ K'. Moreover, for each point p € X'\ K’,
we have

(dSOI)p #0
and rank £(¢'), = rank L(cp’)|ker(a¢)p + 1 = rank £()|ker(ap), + 1,

because the O-eigenspace for L(¢’), is contained in ker(0y), = ker(d¢),
and hence must agree with that of L£(¢')lier(apr), = e?P) (b — er(P))—1

L(p) |xer(a¢),- Thus
S'={pe X'\K'|rank L(¢'), <n—q} = SoN(X'\ K')

and we may, therefore, replace X by X’, K by K’, and ¢ by .

2) For the case ¢ = n — 1 (Theorem 0.1), we need only assume that
each connected component of U of X \ K contains a point p such that

(dp)p #0 and rank E(go)lker(a¢)p >0
(i.e. U\NC ¢ Sp). For by replacing ¢ by e¥, we get dimg S € 2n—1 = 2¢+1.
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For the proof of Theorem 2.1, we first recall some of the basic facts
concerning Barlet spaces. A compact analytic q-cycle on a reduced complex
space X is a formal finite linear combination

Cc = ZmZYZ

of distinct compact irreducible analytic subsets {Y;} of dimension ¢ in X
with positive integer coefficients {m;}. The support of ¢ is the analytic

subset
el = Y

By a theorem of Barlet [Bal], the space Cq(X) of compact analytic g-cycles
in X is a (second countable) reduced complex space. Moreover, we have
holomorphic mappings

GLX

d
¢,(%)

where G = {(z,¢) € X xCe(X) | z € ||} is the graph and ® and ¥
are the associated projections. The map ® is always proper and surjective,
but the map ¥ is not proper or surjective in general. However, as is well
known (see, for example, Campana [Cam] or Fujiki [Fu]), if X is a K&hler
manifold which is weakly 1-complete or which has bounded geometry, then
the restriction of ¥ to the graph over a suitable irreducible component of
Cq(X) is proper.

Proof of Theorem 2.1. — We first show that, for almost every
sufficiently large regular value a of ¢, the fiber M = ¢~1(a) does not
contain a ¢-dimensional compact analytic subset of X. For this, we consider
the graph and holomorphic projections

G——\II—>X

®|

Cq(X)
over C,(X). The image ¥(z,c) = x of each point (z,c) € G lies in a (purely)
g-dimensional compact (complex) analytic set |c| and, therefore, in the set

K US, because ¢ is locally constant on |c|. By hypothesis, dimg S < 2¢+1.
Therefore, since the image ¥(G) of G is equal to a countable union of local
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complex analytic sets in X which are, of course, of even real dimension,
the set ¥(G) \ K must be of (2¢ + 1)-dimensional Hausdorff measure 0.
Hence ¢~1(a) N ¥(G) is a set of 2¢g-dimensional Hausdorff measure 0 for
almost every a € R with a > maxg ¢. On the other hand, any compact
complex analytic set of pure dimension ¢ in X is contained in ¥(G) and
has positive 2¢-dimensional Hausdorff measure. Therefore, for almost every
regular value a € R with a > maxg ¢, the fiber M = p~1(a) € X\ K does
not contain a compact complex analytic subset of dimension ¢ in X.

Similarly, for almost every regular value a € R with a > maxg ¢,
SN M is a compact real analytic set of dimension at most 2g. Hence,
since any germ of a ¢-dimensional complex analytic subset of X which is
contained in M must be contained in S N M, Lemma 1.4 implies that the
set of points in M at which such a germ exists is a purely ¢-dimensional
compact complex analytic subset of X which is contained in S N M.

Combining the above observations, one sees that, for almost every
sufficiently large regular value a of ¢, the fiber M = ¢ ~!(a) is nonempty,
the compact real analytic set SN M is of (real) dimension at most 2¢g, and
M does not contain any ¢-dimensional germs of complex analytic subsets
of X. According to Lemma 1.2, SN M admits a finite real analytic weak
stratification

SAM=S5USU---US,..

For each j =1,...,r, the set
B] = {.’L’ S S]' | dimR(Tij N JTISJ) = 2(]}

is a nowhere dense real analytic subset of S;. For if B; contains an open
subset of S;, then the open set determines a g-dimensional germ of a
complex analytic subset of X which is contained in S N M. This would
contradict the choice of the regular value a.

We now apply Lemma 1.3 inductively. Set By = Sy = @ and ag = 0.
Given j with 1 < 7 < 7 and a C* function «;_; on X which is strongly
g-convex on a neighborhood of the compact set

Lj_1:SOU31U'~'USj,1,

we may apply Lemma 1.3 to the real analytic subset B, of X \ L;j_; to
get a C*° function a; on X which is strongly ¢g-convex on a neighborhood
of the compact set L;- = L;_1 UBj. Applying Lemma 1.3 again, one gets
a C* function ¢; on X which is strongly ¢-convex on a neighborhood of
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Lij=1Lj1US; =L;U(S; \ L}). Proceeding inductively for j = 1,...,r,
one gets a C*° function 8 = «, on X which is strongly g¢-convex on a
neighborhood of SN M in X.

Finally, since ¢ is plurisubharmonic on X and strongly ¢-convex on
X\ (KUS), for a sufficiently small positive constant ¢, the function

Y = —log(a — ) + ¢la + €Bla

will be a C™ exhaustion function on the set @ = {z € X | ¢p(z) < a}, and
1 will be strongly g-convex near 92 = M. O

Theorem 2.1 and Theorem 0.7 together immediately give Corol-
lary 0.2 as well as the following more general version:

COROLLARY 2.2.— Let X be a connected noncompact Kahler mani-
fold of dimension n on which there exists a C* plurisubharmonic exhaus-
tion function ¢ which is real analytic on the complement X \ K of some
compact subset K of X, let g be a positive integer, and let S be the real
analytic set of points p € X \ K at which the Levi form L(y), has rank at
most n — q. Assume that

dimg S <2¢+1

and that there is a nonempty open subset V of X such that each point of
V' lies in some irreducible compact analytic subset of X of dimension at
least ¢ — 1. Then X is holomorphically convex with Remmert reduction of
dimension n — q + 1.

Similarly, one gets the following slightly more general version of
Corollary 0.8 (the proof is identical to that of Corollary 0.8 appearing
in the introduction):

CoROLLARY 2.3.— Let X be a connected noncompact Kahler mani-
fold of dimension n. Assume that

(i) X admits a plurisubharmonic exhaustion function ¢ which is real
analytic on the complement X \ K of some compact subset K of X ;

(ii) for every compact subset C' of X, there is a holomorphic automor-
phism « of X such that v(C)NC = g;
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(iif) X does not have exactly two ends; and

(iv) there is a nonempty open subset V of X such that each point of V
lies in some irreducible compact analytic subset of dimension at least n — 2
in X.

Then X is holomorphically convex.

3. Generalizations for g-plurisubharmonic functions.

Let (X,g) be a Hermitian manifold of dimension n and let ¢ be a
positive integer. A function ¢ : X — R of class C? on X is said to be
g-plurisubharmonic (strictly g-plurisubharmonic) if, for each point p € X,
the trace of the restriction of the Levi form L(y) to any complex vector
subspace of T, Z}’OX of dimension ¢ is nonnegative (respectively, positive).

Remarks. — 1) For a C? function ¢ on X, the following are equiva-
lent:

(i) The function ¢ is g¢-plurisubharmonic (strictly g¢-plurisub-
harmonic).

(ii) For each point p € X and every choice of orthonormal vectors
er,--.,eq in T) X, we have

Zﬁ(cp)(ei,ei) >0 (>0).

(iif) The eigenvalues A; < --- < A, for L(p) at each point satisfy

A4+ 220 (>0).

2) The Laplace operator on X is the elliptic operator given by the
trace of the Levi form:

92
A, = 4
9 Zg azif)zj
where (g%) = (9:;7)~!. This operator is equal to the usual Laplace opera-
tor if g is Kihler. A C? function ¢ is called subharmonic (strictly subhar-

monic) if Agp > 0 (respectively, Ay > 0). Clearly, ¢ is g-plurisubharmonic
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(strictly g-plurisubharmonic) if and only if the restriction of ¢ to any g-
dimensional germ of a complex submanifold of X is subharmonic (respec-
tively, strictly subharmonic) with respect to the restriction of g.

3) If ¢ is a g-plurisubharmonic (strictly g-plurisubharmonic) function,
then ¢ is also (g + 1)-plurisubharmonic (strictly (¢ + 1)-plurisubharmonic).

4) A C? function ¢ is plurisubharmonic (strictly plurisubharmonic)
if and only if ¢ is 1-plurisubharmonic (strictly 1-plurisubharmonic).

5) If o is strictly g-plurisubharmonic (and of class C?), then ¢ is
strongly g-convex.

6) The sum of two g¢-plurisubharmonic functions is g-plurisubhar-
monic and the sum of a g-plurisubharmonic function and a strictly ¢-pluri-
subharmonic function is strictly g-plurisubharmonic. This is one of the
main advantages of working with g-plurisubharmonic functions in place of
strongly g-convex functions.

7)Ifp: X — Rand x: R — R are C? functions, then

L(x(#))(v,0) = X' (9)L(9) (v, ) + X" (9)10p(v)[* Vv e THX.

Hence if ¢ is g-plurisubharmonic (strictly g-plurisubharmonic) and x/, x” >
0 (respectively, x’ > 0,x"” > 0), then x(¢p) is g-plurisubharmonic (respec-
tively, strictly g-plurisubharmonic).

8) Maximum principle. The restriction of a strongly ¢-convex function
to a complex analytic subset Y of pure dimension ¢ has no local maximum
points because, at each point p € Y, there is an (n—g+1)-dimensional germ
of a complex submanifold Z of X for which the restriction to Z is strictly
plurisubharmonic. Since dim,(Y N Z) > 0, the restriction to Y N Z cannot
have a local maximum at p. Similarly, if ¢ is a C? g-plurisubharmonic
function and the restriction of ¢ to some connected complex analytic set
Y of pure dimension ¢ attains its maximum value at some point, then |y
is constant. A proof for g Kahler (and ¢ continuous) appears, for example,
in [NR2, Proposition 1.5], and the proof also works when g is not Kéhler,
provided ¢ is of class C?.

9) Continuous g-plurisubharmonic functions on a Kédhler manifold. By
the work of Wu [Wul, if ¢ is Kéhler, then one may also consider continuous
g-plurisubharmonic functions and still retain most of the above properties.
A real-valued continuous function ¢ on a Kéhler manifold (X, g) is called
strictly g-plurisubharmonic if ¢ is an element of the class ¥(q) defined
by Wu [Wu]. We will call ¢ g-plurisubharmonic if the function ¢ + ¢ is
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strictly g-plurisubharmonic for every function ¥ € ¥(q). According to
[Wu, Proposition 1], the smooth elements of ¥(q) form a dense subset
in the sense that, if ¢ € ¥(g) and § is a positive continuous function,
then there exists a C°° element 1) € ¥(q) such that | — | < § on X. In
particular, it follows that the restriction of a continuous ¢g-plurisubharmonic
(strictly g-plurisubharmonic) function to a g-dimensional germ of a complex
submanifold is subharmonic (respectively, strictly subharmonic). If ¢ and
¢’ are two continuous g¢-plurisubharmonic functions on X, then ¢ + ¢/,
max(¢y, ¢'), and the composition x(¢) of any nondecreasing convex function
x with ¢, are all g-plurisubharmonic. Finally, the weak maximum principle
(strong maximum principle) holds for the restriction of a continuous g-
plurisubharmonic (respectively, strictly g-plurisubharmonic) function to
a complex analytic subset of pure dimension g (see, for example, [NR2,
Proposition 1.5]).

10) The notion of g-plurisubharmonicity studied by Hunt and Mur-
ray [HM] and the notion studied by Stehlé [Ste] are different from the
notion considered in this paper.

After some modifications (which will be described in this section),
the arguments of Section 2 give the following version of Theorem 0.1 and
Theorem 2.1:

Tueorem 3.1.— Let X be a connected noncompact complex man-
ifold of dimension n, let g be a C° Hermitian metric on X, let ¢ be a
C® exhaustion function on X which is real analytic on the complement
X \ K of some compact subset K of X, and let q be a positive integer.
Assume that ¢ is g-plurisubharmonic with respect to g and that there is a
real analytic subset S of X \ K such that  is strictly ¢-plurisubharmonic
with respect to g on X \ (K U S) and such that

dimp S < 2¢g+ 1.
Then, for almost every sufficiently large (regular) value a of ¢, the sublevel
Q={ze X |plz)<a}

admits a C* g-plurisubharmonic (with respect to g) exhaustion function ¢
which is strictly g-plurisubharmonic on the complement of some compact
subset of €.
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Remarks. — 1) If ¢ is plurisubharmonic, then the set of points in
X \ K at which ¢ is not strictly g-plurisubharmonic is precisely the real
analytic set of points at which ¢ is not strongly g-convex. Thus Theorem 3.1
is a direct generalization of Theorem 0.1 and Theorem 2.1.

2) Every complex manifold X admits a real analytic Hermitian
metric g. For example, one may take g to be the Hermitian metric
corresponding to the real analytic Riemannian metric obtained from a
real analytic embedding into RY (for some N). Furthermore, if g is a real
analytic Hermitian metric and ¢ is a real analytic function which is ¢-
plurisubharmonic with respect to g on X, then the set S of points at which
@ is not strictly g-plurisubharmonic is a real analytic subset of X. For if
A1 < --- < A, are the eigenvalues for L(p), at a point p € X (with respect
to g), then p € S if and only if

H1<i1<..‘<iq<n()\i1 + s + )\iq) = O

As a symmetric polynomial in Aq,..., A,, the above expression determines
a polynomial in the coefficients of the characteristic polynomial of L(yp)
(with respect local real analytic orthonormal frames for T%°X). So, in
fact, S is the zero set of a (globally defined) real analytic function on X.

3) In the theorem, one need only assume that S contains the set Sy
of points p € X \ K at which dyp # 0 and the trace of the restriction of
L(yp) to some g-dimensional subspace of ker(d¢), (in T,}°X) is 0 (if g is
real analytic, then Sy is itself a real analytic subset outside the zero set of
dp). To see this, we let b, X', K’ and ¢’ be as in the first remark following
the statement of Theorem 2.1 and observe that

S'={p e X"\K'|¢' is not strictly ¢g-plurisubharmonic at p} =S,N(X"\K’).
For if p € §” and V is a subspace of dimension ¢ in Ty °X = T°X’, then
tr L(¢)|v > e2¢(P)(eb — e (P))~2¢r |<9<p|v|2 > 0.

Thus, if the left-hand side is zero, then V' C ker(dy), and hence p € Sy.
So we may replace X by X', K by K’, and ¢ by ¢'.

4) If g is real analytic and ¢ = n — 1, then we need only assume that
each connected component of X \ K contains a point p such that

(dg)p 0 and b (c«o)nﬂ(aw)p) >0
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(see the second remark following Theorem 2.1). For, replacing ¢ by e?, we
get dimp S € 2n — 1 = 2¢ + 1, where S is the set of points in X \ K at
which ¢ is not strictly (n — 1)-plurisubharmonic with respect to g.

The proof of Theorem 3.1, which is similar to that of Theorem 2.1,
will only be sketched. The first observation is that the proof of Lemma 1.3
also gives the following version:

Lemma 3.2. — Let (X, g) be a Hermitian manifold, let K be a closed
subset of X, let N be a closed subset of X\ K, and let a be a C™ real-valued
function on X which is strictly q-plurisubharmonic on a neighborhood U
of K in X. Suppose there exists a C>° weak stratification {N;}22, of N in
X \ K such that, for each j =1,2,3,... and each point p € Nj,

dimg Tp°N; <q  (i.e.dimg[T,N; N J(T,N;)] < 2q).

Then, for every positive continuous function § on X, there exists a C'™®
function 8 on X such that 3 is strictly q-plurisubharmonic on a neighbor-
hood of the closed set KUN in X, =aon KUNj,anda<fB<a+$§6
on X.

Sketch of the proof of Theorem 3.1. — By the maximum principle, ¢
is constant on any connected compact complex analytic subset of pure
dimension ¢ in X. Thus we may apply the argument in the proof of
Theorem 2.1 (with Lemma 3.2 in place of Lemma 1.3) to get a C°° function
G on X which is strictly ¢-plurisubharmonic on a neighborhood of SN M,
where M = ¢~ !(a) for a suitable regular value a of . If € is a sufficiently
small positive constant, then the function

Y1 = —log(a — ) + o+ €6

will be a C°° exhaustion function on the sublevel Q = {z € X | p(z) < a},
and 1, will be strictly g-plurisubharmonic near 92 = M. Finally, by taking
a sufficiently large positive constant r and a C* function x : R — R such
that x',x" 2 0, x(¢) = 0if t < », X'(¢) > 0if ¢t > r, and x(t) — o
as t — oo, we get the required g¢-plurisubharmonic function by setting

Y = x(¥1). O

Similarly, Theorem 3.1 and Theorem 0.7 together immediately give
the following version of Corollary 0.2 and Corollary 2.2:

COROLLARY 3.3. — Let X be a connected noncompact complex man-
ifold of dimension n and let ¢ be a positive integer. Assume that X admits
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(i) a C*° Hermitian metric g, a C™ g-plurisubharmonic (with respect
to g) exhaustion function ¢, and a compact subset K such that ¢ is real
analytic on X \ K and ¢ is strictly g-plurisubharmonic on X \ (K U S) for
some real analytic subset S of X \ K of dimension at most 2q + 1;

(ii) a C* Kahler metric ¢';
(iii) a continuous plurisubharmonic exhaustion function; and

(iv) a nonempty open subset V such that each point of V lies in some
irreducible compact analytic subset of X of dimension at least ¢ — 1.

Then X is holomorphically convex with Remmert reduction of dimen-
sionn —q+ 1.

We may also prove the following version of Corollary 0.8 and Corol-
lary 2.3 in which the exhaustion function is only assumed to be (n — 1)-
plurisubharmonic, not necessarily plurisubharmonic (as in the plurisubhar-
monic case, g-plurisubharmonic versions for ¢ < n — 1 are not edifying):

COROLLARY 3.4.— Let X be a connected noncompact complex man-
ifold of dimension n. Assume that

(i) X admits a C* Kéhler metric g and a C* (n—1)-plurisubharmonic
(with respect to g) exhaustion function ¢, both of which are real analytic
on the complement X \ K of some compact subset K of X;

(ii) there exists a continuous plurisubharmonic exhaustion function
on X;

(iii) for every compact subset C' of X, there is a holomorphic isometry
v of X such that y(C)N C = @;

(iv) X does not have exactly two ends; and

(v) there is a nonempty open subset V of X such that each point of V
lies in some irreducible compact analytic subset of dimension at least n — 2
in X.

Then X is holomorphically convex.

The proof will require (n— 1)-plurisubharmonic versions of the results
of [NR1]. These versions are contained implicitly in [NR1] and [NR2], but
the proofs are sketched here for completeness. The statements below are
also slightly more general than will be required.

PropostTioN 3.5 (cf. [NR1, Theorem 1]).— Let X be a connected
noncompact Kéhler manifold.
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(a) If Q is a C relatively compact domain in X which has at least
three boundary components and which admits a C*° defining function p
such that dp # 0 near 02 and

tr (L(p)|r10(50)) = 0,
then ) admits a proper holomorphic mapping onto a Riemann surface.

(b) If X has at least three ends and there exist a C'™ exhaustion
function ¢ on X and arbitrarily large regular values a of ¢ such that,
for M = ¢~ 1(a),

tr (L(p)|rronm) >0,

then X admits a proper holomorphic mapping onto a Riemann surface.

Sketch of the proof.— For (a), we fix a boundary component C for
2 and we let u be the harmonic function on 2 with boundary values 1 on
C and 0 on (02) \ C. Then u is C*® at 02 and, by a result of Grauert
and Riemenschneider [GR] and of Siu [Si2], u is pluriharmonic (this fact is
stated and proved in [NR2, Theorem 1.6] for p an (n — 1)-plurisubharmonic
function, but the proof under the weaker hypothesis in (a) is the same).
Therefore, the function ¢ = —log(1 — u) — logu is a C* plurisubharmonic
exhaustion function on Q. Applying a theorem of Nakano [Na] (see also
Demailly [Del]), one gets a complete Kahler metric on §2 and therefore, by
[NR1, Theorem 1], 2 admits a proper holomorphic mapping to a Riemann
surface.

For (b), we may apply (a) to get a sequence of C* domains {2, } in
X such that X = U,Q, and such that, for each v, Q, CC Q,41 and Q,
admits a proper holomorphic mapping ®, onto a Riemann surface Y,. By
Stein factorization, we may assume the fibers of ®,, are connected (i.e. ®,
is the Remmert reduction mapping). Clearly, the fibers of the restriction
of ®,,1 to Q, are precisely the fibers of ®,, so the restriction descends
to a biholomorphic mapping of Y, onto a region in Y, ;. Passing to the
corresponding limit as v — oo, we get a proper holomorphic mapping of X
onto a Riemann surface. O

ProposiTiON 3.6 (cf. [NR1, Theorem 4.6]). — Let X be a connected
noncompact Kahler manifold. Assume that

(i) there exist a C*> exhaustion function ¢ and arbitrarily large regular
values a of ¢ such that, for M = p~1(a),

tr (£()lrron) = 0;
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(ii) for every compact subset C' of X, there exists a holomorphic
isometry v of X such that v(C) N C = @; and

(iii) X has exactly one end.

Then X admits a proper holomorphic mapping onto a Riemann
surface.

Remark. — The condition (ii) is satisfied (for example) by an infi-
nite Galois covering of a compact Kahler manifold. Note that we need
holomorphic isometries, not just holomorphic automorphisms, because the
mappings must preserve the condition (i) on the trace of the Levi form
with respect to the Kahler metric.

Sketch of the proof of Proposition 3.6. — Following the proof of [NR1,
Theorem 4.6], we fix a regular value a of ¢ for which the condition (i) holds
and for which {z € X | ¢(z) < a} has a nonempty connected component
;. Applying (ii) to the compact set {21, we get a holomorphic isometry -y
of X such that

Qy = ’y(Ql) ccX \ﬁl

Since X has only one end, we may choose a regular value b of ¢ such that
¢ satisfies the condition (i) on M = ¢~!(b), some connected component 2
of {z € X | p(z) < b} contains Q; U2, and the set Q3 = Q\ (Q; UQL)
is connected. Applying part (a) of Proposition 3.5 to 23, we get a proper
holomorphic mapping ® of €23 onto a Riemann surface Y. Removing two
distinct fibers F; and F; from 3, we get a connected Ké&hler manifold
X\ (F1 U F3) which satisfies the condition (b) of Proposition 3.5 and hence
admits a proper holomorphic mapping ¥ onto a Riemann surface Z. We
may assume that the fibers of ® and ¥ are connected and, therefore, ®
and ¥ determine a proper holomorphic mapping of X onto the quotient
Riemann surface

YUZ/P(z)~T(z)Vz € Q3\ (F1 U Fy). O

Proof of Corollary 3.4. — If X has at least three ends, then, by [NR1,
Theorem 1] (or by part (b) of Proposition 3.5), X admits a proper holomor-
phic mapping onto a Riemann surface. If X has exactly one end, then we
may choose K so that X \ K is connected. If tr (E(‘P)lT,}'OM) > 0 for some
regular value a > maxg ¢ and some point p € M = ¢~ !(a), then Corol-
lary 3.3 gives holomorphic convexity (see the fourth remark following Theo-
rem 3.1). Otherwise, X is holomorphically convex by Proposition 3.6. O
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4. The real analytic with corners case.

The main goal of this section is the following version of Theorem 0.1
(and Theorem 2.1 and Theorem 3.1) for which, in particular, Theorem 0.3
and Theorem 0.5 are direct consequences:

THEOREM 4.1.— Let X be a connected noncompact complex man-
ifold of dimension n, let g be a C*° Hermitian metric on X, let ¢ be a
continuous exhaustion function on X, and let q be a positive integer. Sup-
pose that, for some compact subset K of X and for each point p € X \ K,
there is a connected neighborhood U of p and a finite collection A of C*
g-plurisubharmonic (with respect to g) functions on U such that

p(z) = maxa(x) VeeU

and such that, for each function o € A, either « is strictly g-plurisubhar-
monic on U or « is real analytic on U and « is strictly q-plurisubharmonic
on the complement U\ S () of some real analytic subset S(«) of U satisfying

dimg S(a) < 2¢+ 1.
Then, for almost every sufficiently large value a of ¢, the sublevel
Q={z€X|p@) <a}

admits a exhaustion function v which, on the complement of some compact
subset H of Q, is locally equal to the maximum of a finite collection of C*
strictly g-plurisubharmonic functions. Moreover, if g is Kihler or ¢ = 1 or
@ Is of class C*, then there exists a C*° g-plurisubharmonic exhaustion
function v’ on Q which is strictly g-plurisubharmonic on Q\ H.

Remarks.— 1) In fact, we will construct the function so that ¢ =
—log(a — ) + ¢|a + nla, where n is a C* function on X and, near 92
in X, ¢ is locally equal to the maximum of a finite collection of C'*°g-pluri-
subharmonic functions « such that a + 7 is strictly g-plurisubharmonic. In
particular, if ¢ is of class C'°°, then, by standard arguments, ¢ is everywhere
g-plurisubharmonic and ¢ + 7 is strictly g-plurisubharmonic near 052, so
we may take ¢’ = 1.

2) If ¢ = 1, then g-plurisubharmonicity (for any Hermitian metric)
is equivalent to plurisubharmonicity. Hence the constructed continuous
function v is a continuous plurisubharmonic exhaustion function on §2
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which is strictly plurisubharmonic on @\ H. Thus X is holomorphically
convex with Remmert reduction of dimension n and Theorem 0.3 follows. In
particular, €2 is strongly pseudoconvex in this case and hence the existence
of a C*° plurisubharmonic exhaustion function ¥’ on Q which is strictly
plurisubharmonic on the complement of some compact subset follows.

3) If g is Kahler, then ¢ x\k is a continuous g-plurisubharmonic
function and v|g\ g is a continuous strictly g-plurisubharmonic function.
Therefore, by applying Wu’s approximation theorem [Wu, Proposition 1]
(and replacing H by a slightly larger compact set), one gets, as claimed,
a C* g-plurisubharmonic exhaustion function ¥’ on Q which is strictly
g-plurisubharmonic on Q \ H. In particular, Theorem 0.5 follows. More-
over, as will be clear from the proof, for g Kéhler we need only as-
sume (in Theorem 4.1) that, for each a € A, either « is a continuous
strictly g-plurisubharmonic function on U or « is real analytic (and g-
plurisubharmonic) with dimg S{a) < 2g + 1.

4) As in the smooth case, one need only assume that, for each o € A,
either « is strictly ¢-plurisubharmonic or « is real analytic and some real
analytic set S(a) of dimension € 2¢ + 1 contains the set Sp(a) of points
p € U at which da # 0 and the trace of the restriction of £{&) to some
g-dimensional subspace of ker(da), (in Tpl’OX ) is 0 (if g is real analytic,
then Sp(a) is itself a real analytic subset outside the zero set of da).

5) Also as in the smooth case, if g is real analytic and ¢ = n — 1,
then one need only assume that, for each U and «, either « is strictly
g-plurisubharmonic or « is real analytic and there is a point p € U
such that

(da), #0 and  tr (E(Oé)|ker(aa),,> > 0.

Theorem 4.1 and Theorem 0.7 together give the following version of
Corollary 0.2 which is a direct generalization of Corollary 0.6:

COROLLARY 4.2. — Let X be a connected noncompact complex man-
ifold of dimension n and let q be a positive integer. Assume that X admits

(i) a C*> Kihler metric g, a continuous exhaustion function o, and a
compact subset K with the properties described in Theorem 4.1;

(ii) a continuous plurisubharmonic exhaustion function; and
(iii) a nonempty open subset V such that each point of V lies in some

irreducible compact analytic subset of X of dimension at least q — 1.

TOME 51 (2001), FASCICULE 6



1582 T. NAPIER, M. RAMACHANDRAN

Then X is holomorphically convex with Remmert reduction of dimen-
sionn —q+ 1.

As in the proof of Theorem 2.1, for the proof of Theorem 4.1 one
considers the projection mapping from the graph over a Barlet space
in order to choose a sublevel  whose boundary 992 does not contain
any g-dimensional compact analytic sets. However, in the situation of
Theorem 4.1, one cannot rule out the existence of germs of g-dimensional
complex analytic sets contained in 2. Thus one must construct a strictly
g-plurisubharmonic function on a neighborhood of the union of such germs.
By the work of Demailly [De2], Greene and Wu [GW], and Ohsawa [O],
a strictly g¢-plurisubharmonic function exists on some neighborhood of
any analytic subset with no compact irreducible components of dimension
at least g (see [NR2, Theorem 1.2]). We will adapt their arguments to
the situation of Theorem 4.1. The main idea in the construction of such
functions is to produce a g-plurisubharmonic function on the analytic
subset and to then extend this function to a neighborhood. For the
extension, one applies the following lemma:

LemMA 4.3 (Richberg [Ri]). — If ¢ is a C™ strictly g-plurisubhar-
monic function on a complex submanifold Y of a Hermitian manifold X,
then there exists a C'* strictly q-plurisubharmonic function 1 on a neigh-
borhood of Y in X such that |y = .

Remark. — This is essentially a special case of a theorem of Rich-
berg [Ri] (although Richberg only states it for ¢ = 1). A proof appears
in [NR2, Proposition 1.3] (for the Kéhler case, but the proof works in the
Hermitian case as well).

Lemma 4.3 will be applied to submanifolds Y of dimension g; i.e. to
functions ¢ which are strictly subharmonic. The existence of strictly
subharmonic exhaustion functions is due to Greene and Wu [GW]. De-
mailly [De2] produced a relatively simple construction on Hermitian man-
ifolds. The following is the main step:

LEmMA 4.4 (Demailly [De2, Lemma 7]).— Let V and W be open
subsets of a Hermitian manifold X such that, for each connected component
Vo of V', there is a connected component Wy of W such that

WonVy #£ o and Wog V.

Then there exists a C* real-valued function u on X such that v > 0 on X,
u=0on X\ (VUW), and u is positive and strictly subharmonic on V.
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Remark. — In the conclusion of [De2, Lemma 7], u is only taken to
satisfy suppu € V U W in place of the property u = 0 on X \ (V U W).
However, Demailly’s construction actually gives a function satisfying the
stronger condition.

Applying Demailly’s arguments, we get the following:

LEMMA 4.5.— Let X be a Hermitian manifold, let B and C be
compact subsets with B C C, and let ¢ be a positive integer. If there
exists a C* strictly q-plurisubharmonic function on a neighborhood of B
in X and there exists a (properly embedded) complex submanifold N of
dimension q in an open subset Q of X \ B such that C'\ B C N and such
that no connected component of N is contained in C, then there exists a
C strictly g-plurisubharmonic function on a neighborhood of C' in X.

Proof.— By hypothesis, there is a C* function 8 on X which is
strictly g-plurisubharmonic on a neighborhood U of B in X. It suffices to
show that, for each point p € C \ B, there exists, on a neighborhood
of C in X, a C*™ g-plurisubharmonic function - which is strictly g¢-
plurisubharmonic on some neighborhood S of p in X. For we may then
cover the compact set C'\ U by finitely many such open sets S and form the
corresponding g-plurisubharmonic functions 1, ..., v, on a neighborhood
of C' in X. For a sufficiently large positive constant a, the C'*° function

Btam+--+m)
will then be strictly g-plurisubharmonic on a neighborhood of C' in X.

For the proof of the claim, suppose p € C \ B. Then there exist
connected open subsets Vy and Wy of the complex manifold N such that
peVo CCN,VonWy # o, Wy ¢ Vg, and Wy cC N\ C. By Lemma 4.4
(Demailly), there exists a C* real-valued nonnegative function v on N such
that v = 0 on N \ (Vo U W) and u is positive and strictly subharmonic
on Vj. Applying Lemma 4.3 (Richberg) to the restriction u|y,, one gets an
open set Vi in X and a C strictly g-plurisubharmonic function v on V;
such that Vi NN =V, V; CC Q C X \ B, and v|y, = uly,. Fix € with
0 < € < 2¢ < u(p) = v(p). Since u vanishes on N \ (Vo U Wy) and since
Wy CC N\ C, the compact subset {z € N | u(z) > €} of VoUW, and the
compact set C'\ Vy are disjoint. Hence we may choose the neighborhood V;
of V, so thin that, for some neighborhood V, of C'\ Vy = C\ V5 in X,
we have

v<e on ViNW,.
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Now fix a C*° function x : R — R such that x'(t) > 0 and x"(¢) > 0
for all ¢, x(t) = 0ift < ¢, and x/(t) > 0if t > 2¢. Then we get a well-defined
C*° g-plurisubharmonic function v on the neighborhood

V=ViuW,

of C' in X by setting

[ x(z)) ifzeWn
V(x)_{o if 7€ Vy
and v is strictly g-plurisubharmonic on a neighborhood of p in X. O
Proof of Theorem 4.1. — The proof will consist of four steps.

Step 1. Choice of a suitable sublevel of ¢ as in the proof of Theo-
rem 2.1.

We will not consider the global set of points at which there exists a
g-dimensional germ of a complex analytic subset of X contained in a fiber
M of the function ¢ (as in the proof of Theorem 2.1). It will be easier to
work with the local analytic sets (given by Lemma 1.4) in the levels of each
of the functions « described in the statement of the theorem (although one
can show that the global set is fairly nice).

By replacing K by {z € X | p(z) < ¢} and ¢ by max(¢ — ¢,0) for
some constant ¢ > maxg ¢, we may assume that ¢ > 0, K = {z € X |
o(z) =0} # @, and @ is everywhere in X (not just in X \ K) locally equal
to the maximum of a finite collection of C'*° g-plurisubharmonic functions.
By hypothesis, we may fix a locally finite (in X \ K) covering {U;}2; of
X \ K by relatively compact connected open subsets of X \ K such that,
for eachi=1,2,3,...,

#lu, = maxa,
where A; is a finite collection of C'°° g¢-plurisubharmonic functions on U;
and, for each function a € A;, either « is strictly g-plurisubharmonic (in
which case we set S(a) = @) or « is real analytic on U; and « is strictly g-
plurisubharmonic on the complement U, \ S(a) of some real analytic subset

S(«) of dimension at most 2¢g + 1 in Us.

Every compact complex analytic subset Y of pure dimension ¢ in X
is contained in K U S, where

SED U S(a) Cc X\ K.

i=1 a€A,
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In fact, for each 7, we have

ynu,c |J S.
a€cA,
For the restriction of ¢ to any local complex analytic set of pure dimension
q satisfies the maximum principle. Hence ¢|y is locally constant on Y. If
p € Y\K, then p € U; for some i and, choosing a € A; with a(p) = ¢(p), we
get ¢ = o = a(p) on the connected component of Y NU; containing p (since,
on this connected component, o < ¢ = ¢(p) = a(p) and a|(yny,) satisfies
the maximum principle). Since Y is of pure dimension ¢, this component
must be contained in S(a) and the claim follows.

Proceeding now as in the proof of Theorem 2.1, we let
G L X

d
()

be the graph and holomorphic projections over the Barlet space of compact
analytic g-cycles in X. The image ¥(G) of G under ¥ is equal to a countable
union of local complex analytic sets in X which are contained in KUS. Since
these complex analytic sets are of even real dimension and since S is equal
to a countable (locally finite in X \ K) union of local real analytic sets of
dimension at most 2¢+1 in X, ¥(G)\ K must be a set of (2q+1)-dimensional
Hausdorff measure 0. Therefore, recalling that K = ¢~ 1(0) # @, we see
that, for almost every positive real number a and for every function « in

the collection
A=J4,

a is a regular value of a and the set
a1l (a)N¥(G)

is of 2g-dimensional Hausdorff measure 0. It follows that, for every such
value a, the (nonempty, compact) fiber M = ¢~1(a) does not contain any
complex analytic subsets of dimension ¢ in X. For any such analytic subset
would contain a compact irreducible analytic set Y of dimension ¢. In
particular, Y would be a set of positive 2¢g-dimensional Hausdorff measure
contained in M N ¥(G). But this is impossible because

Mn¥G) c |Ja(a)nu(G)
acA
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and the right-hand side is a set of 2¢-dimensional Hausdorff measure 0.

Similarly, for almost every a > 0, for every ¢ = 1,2,3,. .., and for every
a € A;, a is a regular value of @ and, if S(a) # @, then S(a) Na~!(a) is
a (properly embedded) real analytic subset of dimension at most 2q in the
(2n — 1)-dimensional real analytic submanifold a~!(a) in U;.

Fixing a (generic) positive real number a with all of the above
properties, we will construct the desired function i on the sublevel

Q={zeX|p(x)<a}.

Step 2. Construction of a strictly g-plurisubharmonic function on a
neighborhood of the q-dimensional germs of complex analytic sets contained
in the boundary.

For every i, each a € A; is strictly g-plurisubharmonic on U; \ S(«)
and hence the set Y(a) of points in M(a) = a~!(a) at which there
exists a g-dimensional germ of a complex analytic subset of X contained
in M(a) must be contained in the real analytic set S(a) N M(c). Since
dimg (S(a)NM(a)) < 2q, Lemma 1.4 (Diederich and Fornaess) implies that
Y () is a (properly embedded) complex analytic subset of pure dimension g
in U, 3.

By passing to a refinement of the covering {U;} of X \ K and
reordering, we may assume that, for some positive integer m, we have

NcM=pHa)cUU---UU, CC X\ K
and
Ui cCX\(MUK) fori=m+1,m+2,m+3,....

(Of course, if we choose a outside the countable set of local minimum values
for ¢, then we will have 02 = M, but this is not necessary.) Fix a covering
{Ci}, of M by compact subsets and fix finite collections of open subsets
{Vi}72, and {W;;}7_; of X such that, for all 4,5 =1,...,m,

c;cv,nM, V,ccU;, WOV;CW,-J CCUiﬂUj,

and W; ; is smooth with real analytic boundary (for example, one may take
Wi ; to be a sublevel for a large regular value of a real analytic exhaustion
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function on U; N Uj). Setting

CEG U Y@nc;,

i=1 a€A,

z= ) U [(Y(@UY(B)NUiNUsing N W, and
1,j=1 a€A,,BEA,

B=2ZnC,

we will apply Lemma 4.5 to the compact sets B and C. Note that, in the
above definitions, [(Y(a) UY(B8)) N U; N Ujsing is the singular set of the
(properly embedded) complex analytic subset (Y (a) UY(8)) NU; NU; of
pure dimension g in U; NU; and that this set contains the complex analytic
subset (Y ()sing UY (B)sing) N Us N U;.

We first produce a C* strictly g¢-plurisubharmonic function on a
neighborhood of B in X. Forming a finite real analytic weak stratification
of the compact real analytic subset

4,j=1 a€A,,BEA,

(of real dimension at most 2¢—2) in X and following with a finite complex
analytic weak stratification of the complex analytic subset Z \ Zy (of real
dimension at most 2¢g—2) in X\ Zy, we get a real analytic weak stratification
of the compact subset Z of X of real dimension at most 2q — 2. Therefore,
by Lemma 3.2, there exists a C'™ strictly g-plurisubharmonic function on a
neighborhood of Z in X; and hence on a neighborhood of B since B C Z.

To get the g-dimensional complex submanifold N of an open subset
Q of X \ B required in Lemma 4.5, we first set

Y= G U Y(a)NV,.
i=1 a€A,

Clearly, given a point p € C'\ B = C\ Z, we have p € Y (a) NV, for some
i€ {l,...,m} and some a € A;. If j € {1,...,m} and § € A;, then

pZZ> [(Y(@UY(B) NUiNUjlsing N\ Wi
O [(Y(@UY(B) NU;NUjlsing N V; NV,
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Hence, if p € Y(B8) NV, then we may choose a relatively compact
neighborhood Q(p, j,3) of p in V; NU; \ Z such that

Y(e) N Q(p, 4,8) = Y(8) N Q(p, J, 5)

and such that this set is a (properly embedded) complex submanifold of
dimension ¢ in Q(p, j, ). Otherwise, we may choose a relatively compact
neighborhood Q(p, j, 8) of p in the open set V;\ [ZU(Y (8)NV;)]. Therefore,
if @ is the neighborhood of C\ B in X \ Z (C X \ B) given by

peC\B j=18€A,
then the set
N=YnNnQ
is a g-dimensional complex submanifold of @ which contains C'\ B.

Furthermore, each connected component Ny of N meets X \ C. For
if Ny were contained in C, then Ny would be closed relative to X \ Z
and hence Ny would be a complex submanifold of dimension ¢ in X \ Z.
On the other hand, the compact set Z is contained in a finite union of
local complex analytic sets of dimension strictly less than q. Therefore, by
the Remmert-Stein-Thullen theorem, the closure Ny of Np in X would be a
compact analytic subset of dimension q. Since we would also have Ny C M,
this would contradict the choice of M = p~1(a). Thus Ny ¢ C.

Therefore, by Lemma 4.5, for a sufficiently small relatively compact
neighborhood R of C in X, there exists a C* strictly g-plurisubharmonic
function on a neighborhood of the closure R in X.

Step 3. Construction (as in the proof of Theorem 2.1) of a strictly g-
plurisubharmonic function on a neighborhood of the entire set of boundary
points near which ¢ fails to be the maximum of a collection of strictly
g-plurisubharmonic functions.

For each i = 1,...,m, we have
Ci\RcC\CcV,\ |J Y(a).
acA,

Hence we may choose an open set D; with smooth real analytic boundary
in X such that

C\RcCD;ccV;\ | Y(o).
acA,
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In particular,

M\R=|JCi\Rc|JD:.

We may form a finite real analytic weak stratification of dimen-
sion < 2q for the compact set

m

EEU U S(a) N M(a) N D;

i=1 a€A,

as follows. We first form a finite real analytic weak stratification of the
compact real analytic subset

Hl
iC:

U (@) N M(a) N OD;.
€A,

We will proceed inductively to form a finite real analytic weak stratification
of each of the compact sets

!
F=Rul]J | S@nM@)nD;=F_u | Sa)nM(a)nD;,
i=1 acA, aEA;

for | =1,...,m. Given such a weak stratification for F;_;, we may choose
a (locally finite) real analytic weak stratification of the real analytic subset

J S(e)nM(a)

a€A,

of U;. Since only finitely many strata will meet the compact subset D; of
U, and since

S(CM) ﬁM(a) NoD, C Fy C Fj_,

for every a € A;, the intersections of such strata with D; \ F;_; together
with (and preceded by) the weak stratification of F;_; gives a finite real
analytic weak stratification of F; of dimension at most 2q. Therefore, by
induction, we get the desired weak stratification

E=FU---UE;

of E = F,,.

We now proceed to construct a strictly g-plurisubharmonic function
on a neighborhood of R U E as in the proof of Theorem 2.1 (in which a
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strongly g-convex function was constructed on a neighborhood of the set
SN M). The first observation is that, for j = 1,...,k, the set

B] = {.’L’ S Ej l dlmR(TxE] n JTIE]) = 2q}

is a real analytic subset of dimension strictly less than 2q in the real analytic
submanifold E; of X \ (Ey U---U E;_;). For if B; contains a nonempty
connected set which is open relative to E;, then (by the theorem of Levi-
Civita [L]) for some open subset P of X, the set A= E; NP = B;NP
is a complex submanifold of dimension ¢ in P. Fixing a point p € A, we
may choose the neighborhood P so that, for each i = 1,...,m, we have
PccV,ifpe D;iand PND; = @ if p ¢ D;. Thus S(a) N M(a) N A
is a (properly embedded) real analytic subset of A whenever p € D; and
a € A;. Moreover, since A C F, we have

A= | U S(@nM@)na

1<is<m, peD, @€A
and, therefore, since A is a connected complex manifold, we get
AcC S(a)NnM(a)NV;

for some i € {1,...,m} and some a € A, with p € D;. But then A
determines a ¢g-dimensional germ of a complex submanifold of X at p which
is contained in M(a), and hence p € D; N Y (a); contradicting the choice
of D;. Thus dimg Bj < 2¢q for j =1,...,k.

Set Ly = R and, for j = 1,...,k, let L; be the compact set given by
Lj ELQUElU...UEj.

Given a C* function on X which is strictly g-plurisubharmonic on a
neighborhood of L;_; in X, we may apply Lemma 3.2 to L;_; and the
real analytic subset B; \ Lj_; of X \ Lj—; to get a C* function on X
which is strictly g-plurisubharmonic on a neighborhood of the compact set

Applying Lemma 3.2 to L; and to the real analytic submanifold E; \L; of
X\ L, one gets a C* function on X which is strictly g-plurisubharmonic on
a neighborhood of L;. Proceeding inductively, one gets a C*° function 8 on
X which is strictly g-plurisubharmonic on a neighborhood of Ly = RU E.
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Step 4. Construction of the required function on the entire sublevel.

Given a point pe M\ (RUE) =J,C; \ (RUE), we have

peC\(RUE)C D;\ |J S(e)nM(a)
a€EA,

for some i. If @ € A; and p ¢ M(a) = a~!(a), then, since ¢(p) = a and
¢lu, = maxqeeq, @, we have a < ¢ near p. If p € M(a), then, clearly,
p € S(a). Thus there is a neighborhood P of p in X on which ¢ is equal
to the maximum of a finite collection of C*° strictly g-plurisubharmonic
functions. It follows that, if € is a sufficiently small positive constant, then,
for any such point p, we may choose the neighborhood P so that the sum of
each of the corresponding functions with €g is strictly g-plurisubharmonic.
Hence the function

Y = —log(a— @) + (v +€b)|a

will be a continuous exhaustion function on €2 and, outside some compact
subset of €2, 1 will locally be equal to the maximum of a finite collection of
C® strictly g-plurisubharmonic functions. Thus the theorem is proved. O

5. Barlet spaces and g-convexity.

This section contains a brief summary of some facts from the theory
of Barlet spaces, including a sketch of the proof of the consequence
Theorem 0.7.

Let X be a reduced complex space and consider the graph and
(holomorphic) projections

GLX

d
()

over the Barlet space Cq(X). The map ® is always proper and surjective,
but ¥ need not be surjective and, if C;(X) # @, then ¥ is not proper.
On the other hand, if X is a Kdhler manifold which admits a continuous
plurisubharmonic exhaustion function or which has bounded geometry
and Z is an irreducible component of C4(X) such that |c| is connected
for every ¢ € Z, then the projection of the graph over Z is proper
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(see Campana [Cam]|, Fujiki [Fu], Barlet [Bal], [Ba2]). Moreover, such
an irreducible component always exists (see Proposition 5.3 below). The
following version will suffice for our purposes:

ProposiTion 5.1.— Let (X,g) be a Kéhler manifold, let q be a
positive integer, let Z be a connected closed subset of Cq(X), let

GLX

g

be the associated graph (over Z) and projections, let © be a relatively
compact open subset of X, let Gy = V~1(0), and let

W ={ce Z||c| C O} (asubset which is open relative to Z).
Suppose that Gy = ®~1(W); that is, for each ¢ € Z, we have
elN® #92 < || CO.

Then the restriction g = ¥|g, : Go — O is a proper mapping.

The proof, which is standard, consists of a theorem of Bishop [Bi]
together with the following special case of a theorem of Stoll [Sto]:

LEmMMA 5.2 (Stoll). — If (X, g) is a Kahler manifold and q is a positive
integer, then the function v : C4(X) — R given by

v(c) = vol4(c) (counting multiplicities) Vc € Cq(X)

is locally constant.

For the proof, one applies Stokes’ theorem to the pullback of the
Kahler form to the graph over a (suitable) smooth path in C4(X) joining a
given pair of generic g-cycles.

Proof of Proposition 5.1. — By a theorem of Bishop [Bi], a subset S
of C4(X) is relatively compact if and only if the volume function is bounded
on S and there exists a compact subset of X which contains |c| for every
c € S. Here, the volume function is equal to a constant v on Z by Lemma 5.2
and, by hypothesis, for each compact subset K of ©, the support of each
element of the set S = {¢c € Z | |[¢(/N K # @} is contained in the
relatively compact subset © of X. Hence the subset ¥~1(K) = ¥ ' (K) of
Go N (K x S), which is closed relative to X x Cq(X), is compact. a

ANNALES DE L’INSTITUT FOURIER



GENERICALLY STRONGLY ¢-CONVEX COMPLEX MANIFOLDS 1593

Since a continuous plurisubharmonic function is locally constant on
compact analytic subsets, the hypotheses of Proposition 5.1 hold for any
relatively compact sublevel © and any connected closed subset Z of Cy4(X)
whose elements have connected support. An irreducible component Z with
this property always exists:

ProposiTION 5.3.— If Y is an irreducible compact analytic subset
of dimension q in a reduced complex space X and Z is an irreducible
component of the Barlet space Cq(X) containing the q-cycle cg = 1-Y,
then the support |c| of each g-cycle ¢ € Z is connected.

Proof. — First observe that each g-cycle ¢ € Z near ¢co = 1-Y is also
given by a single irreducible g-dimensional analytic set with multiplicity 1.
For if {c,} is a sequence in Z converging to cg, then, for each v, we have

/
ca =Y, +c,

where Y, is an irreducible compact analytic subset of dimension ¢ in X
and ¢, = 0 or ¢, € C4(X). Given a neighborhood U of Y in X, we have

Y, Cle,|CU

for all v sufficiently large. Hence Y, — Y by the Remmert-Stein-Thullen
theorem and, therefore, ¢|, — 0. Thus ¢, = 1-Y,, +0 =Y, for all sufficiently
large v. On the other hand, the set S of g-cycles ¢ € Z for which |¢| is not
connected is open relative to Z. Moreover, the closure S is an analytic
subset of Z. For if ® : G — Z is the graph over Z and

¢ 2.7
<I\lﬂ
Z

is the Stein factorization of ®, then ¢ € S if and only if the fiber 371(c) is
not a singleton. Hence S is the image of the analytic set

S'={(w,2z)€ Z'x Z'| B(w) = B(z) } \ diag.

under the proper mapping S’ 3 (w, 2z) — B(w). Therefore, since co € Z \ 'S
and since S is open in Z, we must have S = @. O
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Finally, in order to get holomorphic convexity from a mapping from
the graph over a subset of a Barlet space, we will need the following well
known fact:

LEMMA 5.4.— Let Y be a normal complex space and suppose that
there exists a surjective proper holomorphic mapping ¥ : X — Y of a holo-
morphically convex complex space X onto Y. Then Y is holomorphically
convex.

Proof of Theorem 0.7. — According to the hypothesis (iv), there
is a nonempty open subset V' of X such that each point z € V lies in
some irreducible compact analytic subset Y, of dimension at least ¢ — 1 in
X. Clearly, we may assume that V is connected and relatively compact
in X. Fix a continuous plurisubharmonic exhaustion function ¢ on X
(hypothesis (ii)) and a real number a > supy, o, and let © be the connected
component of {x € X | ¢(x) < a} containing V. In particular, since ¢ is
constant on connected compact analytic subsets of X, we have Y, C © for
each point z € V. It suffices to show that © is holomorphically convex. For
by passing to Remmert reductions and applying a theorem of Narasimhan
[Ns, Corollary 1], one gets an exhaustion of X by an increasing sequence
of holomorphically convex domains each of which is Runge in any of the
larger domains. It will then follow that X is holomorphically convex.

According to the hypothesis (iii), we may choose a relatively compact
domain Q in X which contains © and which admits a C*° exhaustion func-
tion which is strongly g-convex on the complement of some compact subset
of Q. By a theorem of Barlet [Ba2|, the Barlet space of compact analytic
(g — 1)-cycles in a strongly g-convex Kéahler manifold is holomorphically
convex. Hence the complex space

C=Cq1(Q)UC(QU---UCL(N)

is holomorphically convex, because a strongly g-convex function is also
strongly (g + 1)-convex. Let Z be the (countable) collection of irreducible
components of C which contain at least one of the cycles

1Y, (zeV).

By Proposition 5.3, |c| is connected for each ¢ € Z € Z. The union of the
images under the projection mappings of the graphs over the elements of
Z is equal to the union of a countable collection of local analytic sets in
X. Since this union contains the open set V', the image of at least one of

ANNALES DE L’ INSTITUT FOURIER



GENERICALLY STRONGLY g-CONVEX COMPLEX MANIFOLDS 1595

these projections must contain an open set which is also contained in V.
Thus we get holomorphic mappings

G—LX

2|

Z

where Z is some irreducible component of C (a holomorphically convex com-
plex space) containing only cycles with connected support, G is the graph
over Z, and the projection ¥ maps G onto a set containing an open set
which we may take to be V' (possibly after shrinking V'). Since ® is a proper
mapping, G is holomorphically convex . Therefore, since the open subset
Go = ¥~1(0) is closed as a subset of the sublevel (poW¥)~1((—o00,a)) of the
continuous plurisubharmonic function ¢ o ¥, the theorem of Narasimhan
[Ns, Corollary 1] (applied to Remmert reductions) implies that Gg is
also holomorphically convex. Moreover, by Proposition 5.1, the restriction
Uy = ¥lg, : Go — O is a proper mapping and, since the image contains
the open subset V', this mapping is also surjective. Therefore, by Proposi-
tion 5.4, © is holomorphically convex.

Applying the theorem of Narasimhan as described in the beginning,
one gets holomorphic convexity of X. It remains to check that the Remmert
reduction T : X — R is of dimension n — q + 1. First, the condition (iv)
immediately implies that the dimension m of the generic fiber of T is at
least ¢ — 1 and hence dim R < n — ¢ + 1. For the reverse inequality, we
choose a relatively compact domain €2 in X which admits a C*° exhaustion
function 1 that is strongly g-convex on the complement of some compact
subset of . Since each point of some nonempty open subset of X (for
example, the inverse image of the set of regular values of T) is contained in
an irreducible compact analytic subset of dimension m = dim X — dim R,
the above arguments imply that there is an irreducible component Z of
Cm(X) such that each element of Z has connected support and the image
of the graph G over Z in X contains a nonempty open subset of X. Since
X is weakly 1-complete, Proposition 5.1 then implies that the mapping
G — X is proper and surjective. The set

Q={ceZ||dc}

is then an open subset of Z and we may choose 2 so large that Q # .
We have QQ # Z, because Q # X while ¥(G) = X. So we may fix a g-cycle
co € Q\Q and a sequence {c, } in Q converging to ¢y. We may also fix a real
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number b such that 1 is strongly g-convex on {z € Q | ¥(x) > b}. Since
the compact connected analytic subset |cg| of X is not contained in £ but
the sequence of connected compact analytic subsets {|c,|} of € converges
to |co|, we have max|., ¢ — oo. Thus |c,| meets {z € Q | ¢(z) > b}
for v sufficiently large, and hence the restriction of ¢ to |c,| assumes its
maximum at some point at which ¢ > b. Since 1 is strongly g-convex at
such a point, it follows that m = dim|c,| < ¢. Thus dimR =n—-m >
n — q+ 1 and we have equality as claimed. O
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