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OVERSTABILITY AND RESONANCE

by A. FRUCHARD and R. SCHÄFKE

1. Introduction.

In this article we consider two problems, the existence of nicely
behaved solutions of certain nonlinear differential equations of first order
and, as an application, the phenomenon of Ackerberg-O’Malley resonance
for second order linear differential equations.

Consider first the analytic slow-fast equation

where x E [a, b] C R, u E R, and E &#x3E; 0 is a small parameter (in this article,
all derivatives are taken with respect to the variable x).

We are interested in the asymptotic behavior as c - 0 of families
of solutions of (1) depending upon c. In order to simplify notation and
discussion, we talk of solutions instead of families of solutions and often,
we omit the E-dependence. In our context, a solution bounded on an
interval I c [a, b] is a function defined and bounded on a rectangle of the
form I x ]0, Eo], Eo &#x3E; 0 such that for every ~, x ~--~ u(x, E) is a solution of (1)
for that value E of the parameter. Note that no regularity condition with
respect to c is required. We call slow curve a solution uo of the reduced
equation 0 = u, 0).

We suppose that the interval ]a, b[ contains 0 and that equation (1)
admits a slow curve that is attractive for x  0 and repulsive for x &#x3E; 0. We

will show that canard solutions [4] having bounded derivatives of any order

Keywords : Resonance - Canard solution - Overstability - Singular perturbation.
Math. classification : 34E.
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in a neighborhood of 0 exist if and only if the equation has a formal solution
whose coefficients have no singularity at x = 0. To that purpose, we will
use so-called overstable solutions of ( 1 ) ; here ( 1 ) is to be considered in the

complex domain. More precisely, we will first show that a necessary and
sufficient condition for ( 1 ) to have an overstable solution is the existence
of a formal solution with coefficients analytic at x - 0, and then we will
establish a correspondence between overstable solutions and (real valued)
canard solutions.

The above results concern local solutions (i.e. solutions defined for x
close to 0) as well as global solutions (defined on a neighborhood of the full
interval [a, b]). While several results obtained recently [5], [6], [9] permit to
treat the local solutions (some of them will be presented briefly in Section 2),
one main point of our work is the construction of global solutions using
the local ones (cf. the proof of Theorem 6 in Section 3.3). It is essentially
based on the Phragmen-Lindel6f theorem and thus on the analyticity of the
equation.

We studied the above problem with a specific application in mind,
as will be explained below. Originally, the problem of resonance posed by
Ackerberg and O’Malley [1] concerned a boundary value problem

where y is a real valued function of a real variable x E [a, b], cp and 0 are
sufficiently smooth and E &#x3E; 0 is a small parameter. This problem generally
has a unique solution ~) and its asymptotic behavior as E - 0 has to
be studied.

In case the function 1 ~ ’~ cp(x, 0) has a constant sign on [a, b], say
positive, a boundary layer appears at x = a and on the rest of the interval,

~) tends to the solution of the so-called reduced equation

satisfying the condition yo(b) = B. If the sign of ~po is negative, the
boundary layer appears at x = b.

If the function vanishes at some point xo E ]a, b[ - for simplicity,
we suppose that xo = 0 - and if  0, then, generically, two
boundary layers appear at a and b and the solution tends to 0 in the open
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interval. It can happen, however, that there is only one boundary layer
and y(x, c) tends to a non trivial solution go of the reduced equation (4)
in the remaining interval (in the sense of uniform convergence on compact
subsets of the remaining half-open interval). In this case, we say that (2)
exhibits resonance in the sense of Ackerberg- O’Malley.

N. Kopell [14] showed that this problem is equivalent to finding a
solution of (2) tending to a non trivial solution of the reduced equation
which might not necessarily satisfy the boundary conditions.

In the case that 0, i.e. cpo has a simple turning point in x = 0,
W.D. Lakin [15] and L.P. Cook - W. Eckhaus [10] have shown independently
that a necessary condition for resonance is the existence of a formal solution

~(x, ~) _ (2) having coefficients Yn that are analytic in a
neighborhood of x = 0. This condition had been proposed by Matkowsky
[17]; so it is called Matkowsky condition. We would also like to mention the
work of Olver [18] and de Groen [11] in this context.

In [19], Y. Sibuya reduces the problem to -2x and shows

that the Matkowsky condition is sufficient for resonance if o is analytic
with respect to x in a disk with center 0 containing [a, b] (and analytic with
respect to c near E = 0). This condition was improved by C.H. Lin [16]:
The Matkowsky condition is sufficient in the case that both Sp and 0 are
analytic in a neighborhood of [a, b] x {0}.

We are mainly interested in the case of a turning point of higher
order. Then the Matkowsky condition might not be necessary: In this
context, we present a simple example of a linear first order equation whose
formal solution has poles at x - 0 but for which a canard solution exists
nevertheless. This led us to strengthen the notion of resonance: We require
that all derivatives of y are uniformly bounded. In the present work, we
need the additional hypothesis that ~o has a zero at x = 0, too, and that
its order is at least that of at x = 0. Then we show that the Matkowsky
condition is necessary and sufficient for resonance.

Even if one of the results for a simple turning point is already known,
we think that our method is simpler than C.H. Lin’s and also we obtain a

slightly better result (we show the existence of an analytic solution tending
uniformly in neighborhood of [a, b] to a solution of the reduced problem (4)
as E - 0 in sectors of angular opening close to The case of a simple
turning point is also treated in a recent article [5], [6], where a control
parameter is introduced. This method is somewhat related to Kopell’s
article [14].
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Our method of proof is based on the study of a related Riccati
equation. More precisely, the transformation y’~y = + u yields an
equation of slow-fast type (1) and hence the above mentioned results apply.
The precise relation between canard solutions of this Riccati equation
and resonant solutions of (2) is presented in Section 4. This connection
had already been established by J.-L. Callot in his thesis [7]. In order
to simplify matters for readers unfamiliar with nonstandard analysis, we
present statements and some proofs in "standard" notation.

At the end of the article, we present a construction of an analytic
equation of the form (2) satisfying the Matkowsky condition such that
all non zero formal solutions diverge. In fact, one could be led to believe
that resonance appears only if the formal solutions are convergent (up to
a multiplicative factor); there seems to be no simple example where the
Matkowsky condition is satisfied, but the formal solutions diverge. Our
construction also shows that the general result concerning the Gevrey-1
character of the formal solution is optimal. Thus, we hope to convince some
readers, that the problem of resonance is not imaginary.

2. Overstability for a non linear first order equation.

Consider the analytic slow-fast equation (1) with the properties and
notation introduced in the introduction. We suppose that the slow curve

is uo = 0 and that the reduced equation is 0 = f (x)u, where f (x) is the

partial derivative f(r) = 0, 0); this can always be achieved by a
simple change of variables u = + cu( x). In this way, we obtain an
equation of the form

where f and P satisfy the following hypotheses:

. The function f is analytic in a neighborhood (in C) of the real
interval [a, b], a  0  b, and real valued on the real axis.

. We &#x3E; 0 for all x E [a, b] B {0}; moreover there exist
A &#x3E; 0 and p E 2N + 1 such that f(x) == O(x)) as r - 0.

. The function P is analytic in a neighborhood of [a, b] x x ~0~
in C3.
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2.1. Statement of the principal result.

Recall that we talk of solutions instead of families of solutions and
that a solution bounded on an interval I C [a, b] is a function defined and
bounded on a rectangle of the form I x ]0, Eo], Eo &#x3E; 0 such that for every E,
x ~ u(x, E) is a solution of (5) for that value E of the parameter.

DEFINITION 1. A local canard solution is a (real valued) solution
of (5) that is defined and bounded on some interval ] - S, b ~, 6 &#x3E; 0.

A global canard solution is a solution of (5) defined and bounded on
the interval [a, b].

A solution u is called local, resp. global, Coo-canard solution if for
any n E N, the derivative exists and is bounded on some interval

] - b, b ~, 6 &#x3E; 0, resp. on [a, b].

Note that a C°°-canard solution is more than a canard solution that

is infinitely often differentiable.

DEFINITION 2. - Let D C C be a simply connected domain
containing 0 and S _ 5’(a,/3) = JE E C*; a  arg(E)  (3} be a

sector. An analytic solution u = u(x, e) is called overstable on D x S,
if for any domain D’ whose closure is a compact subset of D, there exist
some Eo &#x3E; 0 such that the solution is defined and bounded on

D’ x JE E S, lei  Eol.
We say that u is a local overstable solution in direction d if there exist

a neighborhood D of 0 (in C) and a sector S containing e di such that u is
overstable on D x S.

We say that u is a global overstable solution in direction d if there
exist a neighborhood D of [a, b] (in C) and a sector S containing e di such
that u is overstable on D x S.

Remarks:

1) The sector S in the definition is an infinite sector, but we only
need E sufficiently close to 0. Note that we do not define overstability on
a sector by requiring boundedness on all proper subsectors; this is useful
when defining asymptotic expansions, etc. to achieve compatibility with
differentiation and to simplify some statements, but is not needed here.

2) Note that the solution u might not be defined on the whole
domain D. In the (original) context of nonstandard analysis, an overstable
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solution was defined and "limited" on the "S-interior" of D for infinitely
small E in the sector S.

3) Taking the special form of (5) into account, it is natural only to
consider canard solutions and overstable solutions close to u = 0 as we will

do in the sequel.

4) As was the case for the canard solutions, no regularity with respect
to E is required. In particular, if for any direction d there is an overstable
solution in D x S, where ,5’ contains d then these solutions can simply
be combined to an overstable solution on D x C*. On the other hand,
an analytic dependence of c seems, in general, only possible in sectors of
angular opening smaller than 7r .

The principal result for first order equations in this work is the

following.

THEOREM 3. - With the preceding hypotheses and notation, the
following statements are equivalent:

1) There exist a formal solution û(x, E) = of (5) whose
coefficients un are analytic near x = 0.

2) There exist a local overstable solution of (5) in direction d for
every d.

3) There exist a global overstable solution of (5) in direction d = 0.

4) There exist a global C’-canard solution of (5).

5) There exist a local C’-canard solution of (5).

Remarks:

1) The most interesting implications in our opinion are 1) O 3),
1) 4=~ 4) and 5) ==&#x3E; 4). It seems that the latter implication cannot be proved
without using complex analysis. See also Example 1 below.

2) Statement 3) can be improved and made more precise: For every
6 &#x3E; 0 there is a neighborhood D of [a, b] and an overstable solution of (5) on
D x t9(2013Tr-t-, -7T2013 b) analytic with respect to x and E (cf. Theorem 6).

3) The existence of a local overstable solution in one direction d
already implies statement 1. This could be proved similarly to 5) ~ 1),
but a shorter proof will be given at the end of Section 3.1.
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2.2. Examples.

Before proving the theorem, we present two simple counterexamples
(if the hypotheses are not satisfied). The first is an equation (non analytic
with respect to E) having a formal solution without poles but no canard
solution. The second example is an equation admitting a canard solution
(not "C"’) but no formal solution.

Figure 1. The two solutions of ~u’ - xu + 0152 vanishing
as z - +oo for E - -1 and a = 

Example 1. - Consider the equation

where cx might depend upon E but is constant with respect to x. The general
solution can be written

If the asymptotic expansion of a = a(E) as E tends to 0 is the zero series,
then equation (6) has a formal solution without poles: the zero series.

On the other hand, if E log a(E) tends to a limit then the equation
has a "boundary" ("but6c" [4]) in the points x == :i::J2ë. For example, if

cx = exp -1/ then there are no canard solutions, if 0152 = then

there are local canard solutions but no global canard solutions whenever
a  - J2 and J2  b. The above Theorem 3 states that there are no

such "boundaries" for differential equations analytic in x and E (if a formal
solution without poles exists) .

Example 2. - Consider
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This equation does not have a formal solution whose coefficients are analytic
at x = 0; its first term is ul (x) = 1/x2. On the other hand, we will see that
it has a canard solution.

Figure 2. The solutions u and v for E = 4 . *

To see this, make a change of variables t = x2 and let v(t) = u(x)
This leads to the equation

Consider now its solution v with initial condition = 0. It is defined

on R and given again by variation of constants. Hence

(One can also write b in terms of the normalised complementary error
function erfcx( namely erfcx t / /2E). )
For t &#x3E; 0, we have . Thus the solution f of (8) with
initial condition 0, which is given by u(x) = f)(x’), is bounded
and even tends to 0 uniformly - on R.
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Note, however, that this solution u has an unbounded fourth derivative
and is therefore no C°°-canard solution. Indeed, by differentiating (8) we
obtain

hence u~4~ (o) = 6 2~r/~.
In the complex plane, the so-called "landscape" [5], [8] corresponding

to (8) is the surface C x R :3 (x, z) described by z = R(x) : Re( fo 2~3 d~);
here it has four mountains containing each one of the half axes - positive
or negative real or imaginary - and four valleys in between. The solution f
has, as analytic continuation, a solution close to the slow curve on the two
mountains containing the real axis, but on the other two mountains, it is

unbounded. An overstable solution would be close to the slow curve on a

complete neighborhood of 0.

Figure 3. Top: absolute value ofu. Bottom. landscape described

by z == R(x) 2 Re(x4).

3. Proof of Theorem 3.

We will prove that each of the statements implies the following
one and that 5) ~ 1), but first, we describe the formal solution of (5).
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These considerations are needed in Section 3.5, but might be of interest
already here.

3.1. The formal solution of (5).
The computation of formal solutions &#x3E;

having coefficients analytic at x = 0 yields the following equation:

where are defined by

If 0,, (x) - ..., denotes the coefficient of en in the expression

we obtain the following recursion formula (with uo - 0) :

If ui , ... , could already be calculated and have no poles at x = 0 and if

as r - 0 then (11) yields Un : == ( 1 / f ) (un_ 1 - Øn-1) which is analytic
near x - 0. Conversely, condition (12) is clearly a necessary condition
for un to be analytic near x = 0. Thus we have shown

PROPOSITION 4. - There is a formal solution of (5) whose coefficients
are analytic near x = 0 if and only if the order of the zero x = 0

of un - Øn(UO, ..., un) is at least p for every integer n. In this case, the
coefficients are given recursively by uo = 0 and

Observe that the coefficients un (x) of a formal solution of (5), if they
are analytic at x = 0, are automatically analytic in a common domain;
this follows immediately from the proposition.
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Note that for every n &#x3E; 1, if ul, ..., un-1 could already be calculated
and have no poles at x = 0 then there is a function E) analytic with
respect to both variables and bounded in a neighborhood of x = 0 (in the
sense of the beginning of Section 2) such that

This will be useful later.

On this occasion we give a proof of the statement in Remark 3 below
Theorem 3. Suppose that u is a local overstable solution in one direction d.
We show that u has an asymptotic expansion u(X,E) - 
as E 2013~ 0 in direction d, i.e. for every n we show the existence of

analytic ul (x), ..., Un- 1 (x) and of vn (X, c) analytic and bounded in some
neighborhood of x = 0 and for E in some sector containing direction d, such
that

This of course implies the existence of a formal solution.

We proceed by induction. For n = 1 we use 

Eu’(x, c) - EP(x, u(x, E), E); first this shows that f(x)c-1u(X, c) is bounded
in some neighborhood of the origin (using Cauchy’s formula) and hence
also c-1u(X, E) is bounded in some neighborhood of 0 if we exclude a small
disk around 0. Then the boundedness of 1 u(x, c) on a full neighborhood
of 0 follows by the maximum principle.

Suppose now that statement (15) is true for some n. Using (14),
insertion into (5) implies

where Rn is analytic at (o, 0) .
As f (x) has a zero of order p at x = 0, Rouche’s theorem applied to small
circles around 0 (and for sufficiently small E) implies that un-1 - CPn-1 also
has a zero of order at least p at x = 0 and hence un = (1 / f ) (un_ 1 - CPn-1)
is analytic in some full neighborhood of 0. Thus =

eRn (x, c) and as before vn+1 (x, E) = c-1 (vn (x, c) - Un (x) ) is bounded in

some neighborhood of 0. D
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3.2. From the formal solution to overstable solutions.

In this section, we begin the proof of Theorem 3. Concerning the
implication 1) =~ 2), we use a general result of [9] (Proposition 8.3), which
can be expressed in terms of the present article in the following way.

PROPOSITION 5. - If equation (5) admits a formal solution whose
coefficients are analytic near x = 0 then it has a local overstable solution
for any direction d.

Proof. For the convenience of the reader, we include a sketch of the
proof. The proof presented here is somewhat simpler than in [9] because
the equation is scalar and the existence of a formal solution is assumed.

We first prove that the formal solution is Gevrey of order one uniformly
in x in some disk D(O, r), r &#x3E; 0, i.e. it satisfies

For that purpose, we rewrite (5) in the form

and assume that f and P are analytic and bounded for lxl  R, Jul  ul ,

Icl  C1, and that f vanishes only at x = 0. By assumption, we can
write f(r) = with g analytic at x = 0, 0. The formal

series c) satisfies the following equation using the shift operator ,S’

given by Scp : x H (cp(x) - 

This equation has a unique fixed point in the set of formal series 

having coefficients analytic at x = 0; this is, of course, the formal solution ic
of (5). Using a "majorant equation", we will prove that it is Gevrey of
order 1.

At this point, we introduce the so-called Nagumo norms. Choose some

p E ~ ]0, R[ and define d(z) = R - lxl if &#x3E; p, d ( x ) = R - p otherwise, and

These are norms, and they have several nice properties. The most useful
ones are:
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(the proofs are straightforward, see [9], Section 3).
Given two formal series

we write

The following statements are crucial (see [9], Lemma 4.4; we omit the
arguments (x, E) and (z) here):

With the notation

and analogously G - Consider now the "majorant"
equation U = with

This equation is of the form U(z) = zA(U(z), z) with A holomorphic
in (0, 0) E (C2. By the implicit function theorem, it has a unique fixed point
U = U* (z) with U* (0) = 0 and U* analytic in 0. Moreover the property

where ~(u) : (x, E) H E) - P(x, u(x, E), E)) implies that
on (0) (x, E) « U* (z) for any n. Thus the fact that the first n coefficients
of and the fixed point fL coincide, yields t « U* (z). This proves that
the formal solution fL is Gevrey-1 on any disk Ixl  r with r  R.

The Gevrey property implies that the formal Borel transform v = B û
of û, given by ! is analytic on Dr x Da
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for some a &#x3E; 0. Given T C the truncated Laplace transform uT = ,CTv
of v given by

is a quasi-solution in the direction arg(T) in the sense that there are

A, ~o, b &#x3E; 0 such that for any c E ~S’(arg T - 6, arg T + 6, Eo) and any x E Dr:

This follows essentially from the fact that b) - ST(â) . ST (b), where
ST = is exponentially small for any two Gevrey-1 formal series and
hence also is exponentially small

(see [9] for the tedious, but straightforward proof.)

Finally Gronwall’s lemma shows that the solution Us of (5) with initial
condition Us (0) = UT (0, E) satisfies

on the set of all Ixl  r, JEJ  ~ 1, argE E ~T - 6,T + 6] satisfying
IUé(X,E)1 I  IUT(x,E)1 ~ 1; here M is some constant independent of r, E.
Thus ug (r, E) remains bounded on the disk Ixl I  min(r, A/M) and hence
is a local overstable solution in the direction arg T.

We refer to [9] for more details. D

Another proof consists of imbedding (5) in an equation with p
additional parameters

and using the result 6 of [6]. Let F be the antiderivative of f vanishing
at x = 0 and let Cr be the connected component containing 0 of the set

~x E C I  For sufficiently small r, the functions f and P are
analytic in a neighborhood of the closure of Cr, resp. Cr x 101 x {0}. By
the cited result, for every direction d and E with arg E = d, summation
"to the least term" of the unique formal solution

(un analytic on [a, b]) provides a
value of the parameter a = for which (18) has an overstable
solution in this direction. As it was supposed that (5) without parameter
already has a formal solution with analytic coefficients, 4 has to be the zero
series; hence a = 0.
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Observe that the overstable solution provided by the theorem will in
general not depend analytically upon E in a full neighborhood of E = 0; this
corresponds to the divergence of the formal solution. The first proof yields
overstable solutions that are analytic with respect to E in small sectors
with vertices at the origin. The alternative proof yields solutions that are
(infinitely) piecewise polynomial in E on annuli.

3.3. Analytic continuation of an overstable solution.

We show here the following somewhat surprising statement concerning
local and global overstable solutions.

THEOREM 6. - If equation (5) has an overstable solution in some
neighborhood of x = 0 for every direction d then for any 6 &#x3E; 0 there exist

a neighborhood D of [a, b] and an analytic overstable solution of (5) on
- -. , ,... - . -,

We again consider the antiderivative F of f vanishing at x = 0.
By the hypotheses on f, the function F has real values on the real axis.
Furthermore, there are a, b E R with a  a  b  b such that F(b)
and the functions f and P of (5) are analytic with respect to x in a simply
connected domain D containing [ii, b]. It is therefore sufficient to show the
existence of an overstable solution in a domain containing ]ii, b[. Without
loss of generality, we can also assume that F(a) &#x3E; F(b). For simplicity
of notation we will write a, b instead of a, b.

Before going into details, we would like to give an overview of the
proof and introduce some essential tools. To fix ideas, we suppose for the
moment that E is a positive real number. First, we consider the landscape
described by z = R(x) .- Re(F(x)). It seems well-known that a solution
of (5) with initial condition near the slow 0 can be continued

analytically along any path descending this landscape and remains close to
the slow curve there. We present in Lemma 7 a statement adapted for use
in this article.

Under our hypotheses, the landscape has a saddle point at x = 0
where p -f- 1 mountains and p + 1 valleys are interlaced. Notice that, since
the equation is real on the real axis, [a, b] is contained in the union of two

crest lines. A priori, a solution continued analytically from some initial

point on one mountain, will not remain bounded or may even cease

to exist when continued on the other mountains. Here, we already supposed
that a local solution exists, i.e. a solution remaining close to the slow curve
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on a small part of each mountain. We have to show that there is a solution

remaining bounded on some neigborhood of [a, b], i.e. on two mountains.

For E E C B R+, the landscape function R has to be modified to

with d = arg c. As arg c approaches 2 7r or - 2 7r, the real axis becomes less
steep; indeed it is a part of the separatrices of the saddle if | | arg E 2 03C0.
Hence if |arg E| I - 2 7r - 6, 6 small enough, then there is an overstable

solution from a to b because the local overstable solution can be continued

analytically.

Second, it is possible to "measure" the exponential closeness of

solutions of (5); see Lemma 8 for a statement adapted to our needs - it is
essentially based on the linearization of (5) around a solution. We say that
two functions and (3(c) have a relative type A if for any A  A,

Two solutions of (5) with initial conditions close to the slow curve at some
point xo, when continued analytically along some descending path, become

exponentially close, with a type given by the loss of altitude. Conversely,
two solutions with a relative type A in some point xo remain exponentially
close when they are continued analytically along a path not surpassing a
relative altitude of A.

Consider now the solutions of (5) vanishing at x = a

(resp. x - b). Using the local overstable solution, we will show that

these solutions are overstable on some x-neighborhood of ]a, 0] (resp. ]0, b])
and for E in the sector ,S’(- 2 7r + 8, ! 7r - 6) for small positive 6.

As there is an overstable solution on ~a, b~ for the directions

d = ~ ( 2 ~r - 6), 6 small, their values at x = 0 are of relative type Rd (b) for
these values of d. In other words, there is some 6 &#x3E; 0 such that for all q &#x3E; 0

the following estimate holds:

as E -~ 0 and arg E ) == ~ 1f - 6. At this point, we use a third ingredient, the
Phragmen-Lindelof Theorem. It implies that the estimate ( 19) remains valid
for arguments of E - 6) and yields exactly the relative type
needed (in Lemma 8) so that the solution ua remains bounded on [a, b] -
and hence is overstable on [a, b].
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Let us now give more details. First, we present a statement concerning
analytic continuation of solutions of (5) (see e.g. Theorem 2 of [8] in a

version using nonstandard analysis and in [21] in the linear case, see also
Proposition D of [5]) For the convenience of the reader, we include a proof.
We needed to modify the known result in the following way:

(a) We construct a solution on an entire x-domain and not only a
restriction to a path.

(b) The solution we construct is analytic with respect to c in a
sector that can be chosen large if the domain permits this. For the sake of
simplicity, we will only present the result for a particular kind of x-domain.

LEMMA 7. - Let x, E D and consider a C1 family r = ~~ys ; s E [0, l~ ~
of paths starting at x 1, i. e. a C1 mapping r : ~0, l~ 2 --~ D such that

F(~,0) = x, for all s E ~0,1~. Let di  d2 be two directions in S’.

Suppose that all the paths in the family r are downward for every direction
in d2] ; in other words,

1

where Rd(X) := Re(F(x) e-id). Denote by K the image r([o, of r.

Finally, assume that ul = U1 (E) is an initial condition analytic in E and
satisfies ul = 0(1) as E ~ 0.

Then there exist Eo &#x3E; 0 such that the solution u of (5) with initial
condition u(xl, s) = ul (E) is analytic in a neighborhood of S x (K B Ix, 1)
where and satisfies

u(x, E) = 0(1) as ,S’ :3 E ---t 0 uniformly on K.

Proof. First of all, by compactness it is possible to enlarge the
sector ,S’ and the family of paths r such that (20) remains valid. Therefore
it suffices to show that u is analytic in the interior of S x K. By the same
compactness argument, there exist C, 6 &#x3E; 0 such that for all (s, t) E ~0,1~2
and d E [d1, d2l one has 1~~(t)1  C and  -6-

By shrinking D somewhat, if necessary, we can assume that for r, E &#x3E; 0

sufficiently small, the absolute value IP(x, u, E)I is bounded by some
constant M for  r and |E|  E0 .

Let p G ]0, r[. We show that for sufficiently small p, there exist E1 &#x3E; 0

such that for every E E ~S’ with lEI  E1 and every s E ~0, 1~, the function
vg : t H U(E,1’s(t)) is defined on [0, 1] and satisfies  p. Since E is
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small we have ] = p. It is sufficient to show that the set

I  p} is invariant under (5), i.e. if I = p then d/dt I  0

for sufficiently small E. We calculate

where d : = arg E and j i

If )vg (t) ) = p then we find

hence d/dt Ivc(t)12  0 provided |E|  E1 := min(Eo, bp/MC). This proves
the existence of u along every path of F and also that u(x, E) = 0(l)
as ,S’ ::1 E -~ 0. The analyticity with respect to E follows from the theorem
on analytic dependence upon parameters. D

Our second auxiliary statement corresponds essentially to Proposi-
tions 1 and 2 and Theorem 1 of [8] (cf. also the commentary ’relation
entree-sortie’ below Proposition E in [5]). Here again we needed to change
the latter statements somewhat for our needs and to give them a more

quantitative meaning than in [8].

LEMMA 8. - Let uo be a solution of (5) defined in some simply
connected r-domain Q and for all sufficiently small E with arg E = d. Let Xl
and X2 be two points of S2 a path in Q connecting them. Let u be
another solution of (5) defined in some neighborhood of Xl and let finally
a &#x3E; 0 such that

Suppose that for x E 7([0, 1]) we have a.

Then the solution u can be continued analytically along’)’ and the
estimate
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Proof - We use the fact that the difference YE = ~(.,~) 2013 uo (., é)
satisfies an equation of the form

where PI is some function analytic in a neighborhood of Q x 1013 satisfying
I there.

For any path C containing xi, where y, is defined and satisfies

I y, (x) I  6 with some sufficiently small b, we conclude that yE satisfies

uniformly on C and hence, by the hypotheses of the lemma, = 0(1)
as E - 0.

By a classical theorem on the existence of solutions of ordinary
differential equations, y, can be continued analytically along q and satisfies
the estimate

on it. D

Continuation of the proof of Theorem 6. - Remember that the

meaning of a and b has changed since the beginning of the proof: It is

sufficient, at this point, to prove the existence of an overstable solution in
some domain containing ]a, b[.

For r ~ ] 0, F (b) [, we denote by Cr the connected component of the
set . containing 0. If r is sufficiently small, then
Cr is compact and for every direction d E there exist an overstable

solution uj in some domain containing Cr.
Denote by ~ 7r &#x3E; 8 &#x3E; 8’ &#x3E; 0 the numbers satisfying r = F(b) sin 6 =

F(a) sin 6’ (see Figure 4 below). Consider the domain A enclosed by the
- -" ..." , _... , --’’’ "....... -

arcs {x E D ; arg( cos 6’1 and

{.c E D; arg cos 61 and by
the two parts of the boundary of Cr making these into a Jordan curve,
which is C1 except in a and b. For sufficiently small r &#x3E; 0 the closure of
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this domain is contained in D. We have A = Da U Ab U Cr, where Aa
and Ab are the domains, containing a (resp. b) on their boundary, whose
F-images are the triangles with vertices F(a), pa, qa (resp. F(b), pb, qb),

Figure 4. The domain A and its F-image (here F (x) = x2 ) . Primes
denote the points whose F-images are the points without primes.

We consider now the "closed" sector,

and similarly S6,; we have 88 C S,5,. We denote by ua resp. ub the solutions
of (5) with initial conditions ua (a, E) = 0 resp. = 0.

We clairra that these solutions are overstable in Aa X ,S’s~ resp. Ab x ,S’s .

We prove here the claim for ua. Given D’ relatively compact in the
interior of Aa, we have to show that ua can be analytically continued on
D’ x ,S’b~ (Eo) for Eo small enough and satisfies ua - 0 as I E ---t 0 uniformly
on D’. Here . It suffices to prove that for

any 6  6’ there exist Eo such that ua can be continued on Aa x ,S’s~ (Eo),
where Da is defined as Aa with 8 instead of 6’.

Consider the family r of paths starting from a whose images
by F are the segments joining F(a) to each point of §5a, §a], where

Parametrizing these segments
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linearly, we have for any i and any path y of r:

Hence Lemma 7 applies and yields the claim.

As we already have an overstable solution u din a neighborhood of Cr
for every direction d E ~1, Lemma 8 yields that both ua and ub can be
continued analytically to overstable solutions on Cr x ,5’s~ , resp. Cr x ?5.
In particular, they are both defined in x = 0 for any E small enough in 88.
Moreover, by Lemma 8, we have

for any r  r and for E sufficiently small with I  2 7r - 8. For
convenience, we write it in the form

Consider now the function

with, . This function

is analytic and bounded in the sector 55 (Eo) and satisfies, for small E with
I arg (E) = 2 7r - 6, the estimate

The classical Phragmen-Lindelof theorem implies that this estimate holds
f or all sufficiently small E in Using again Lemma 8 (this time with
Uo = ub, u = ua), we conclude that for arg , the

solution ua is overstable on the entire domain A. As 6 becomes small

with r E ]0, F(b) ~ [ chosen above, the proof is complete. 0

Remark. - We restricted the theorem to the case that f is real valued
on the real axis and [a, b] is a real interval, but Theorem 6 can easily be

adapted to more "complex" situations.
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3.4. From overstable solutions to canard solutions.

PROPOSITION 9. - If there exist a local (resp. global) overstable

solution of (5) then there also exist a local (resp. global) Coo-canard
solution.

Proof. Given a local (resp. global) overstable solution we construct
one having real values on the real axis, namely the solution having a
certain real initial condition on some point of the real axis and then we
use Lemma 8. For example, using the notation of the preceding section,
if F(a) &#x3E; F(b), the solution vanishing at some point a  a sufficiently close
to a is overstable on some neighborhood of [a, b]. (By the way, this is the
solution called ua of the above proof.)

The restriction of such an overstable solution to the real axis is

obviously a canard solution. It is a C°°-canard solution, because by Cauchy’s
formula, the derivatives will also be bounded on [a, b]. D

3.5. From canard solutions to the formal solution.

We have already proved all the implications i) ~ i+1) of Theorem 3
(the last one is trivial). To complete its proof, it is sufficient to show that

the last statement implies the first.

THEOREM 10. - If equation (5) has a local Coo-canard solution, then
it also has a formal solution Û(E, X) - having coefficients
analytic in a neighborhood of x = 0. These are determined recursively
by (13).

Proof. We give an indirect proof; so suppose that (5) has a

C°°-canard solution u = u(x, E) on some interval [-6,6] independent oaf E
but there is no formal solution of (5) without poles at x = 0. Using
Proposition 4, we can suppose that there is some n &#x3E; 1 such that

with q  p, 0 and g analytic in some neighborhood of x = 0. We will
show that some derivative cannot be bounded as E - 0 and thus

obtain a contradiction.

Let us first give a brief overview of the proof. Consider the difference
between u and the (n - I )-th partial sum of the formal solution. Seen under
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some adequate "magnifying glass", i.e. using an appropriate change of the
dependent and independent variables, this difference is a bounded solution
of a certain regularly perturbed differential equation. Hence its dominant
term satisfies a certain differential equation which is shown to have no

polynomial solution. Taking into account that the change of variables in
some sense "flattens" the derivatives, we deduce that some derivative of

sufficiently high order must be unbounded as E - 0. We now give a
detailed proof.

We consider the following change of the dependent variable (in the
case n = 1, replace the sum by 0):

LEMMA 11. - If u is a solution of (5), then the function v defined by
(23) satisfies an ordinary differential equation of the form

where g, Q and R are analytic for x in some small interval [-8,8], small E
and v in some disk, and remain bounded as E -~ 0.

Proof. Insertion of (23) into (5) yields

where we write ~u for ~~-i Ukék. By using (21) for k = 1, ..., n - 1 and
multiplying by r/~~’~, we obtain

Now

with

Moreover, with R : = Rn by For-
mula (14) in Section 3.1. This implies the lemma together with Formula (22).

n
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We will use now the attractivity of the slow curve to show that v
remains bounded as c - 0 on [-6, 0[. For fixed x  0 this follows simply
from the existence of an asymptotic expansion away from 0 (see [12] or
[W], Theorem 40.1). We first show that this persists for some x = of

order E1/p+1.

LEMMA 12. - For all r &#x3E; 0 there exist C1 &#x3E; 0 and Z &#x3E; 0 such that

r for all x  _Zc1/(p+1) and 0  ~  C1.

It is sufficient to show this for sufficiently small r. We already know
that v(x, c) = on every interval of the form [a, -8] with 6 &#x3E; 0

independent of E. If c is sufficiently small, it remains to show the statement
on ~-b, -Z~l~~p+1~ ~ [ for some properly chosen Z.

By the hypotheses, for r &#x3E; 0 sufficiently small, there is K &#x3E; 0 such

that K for all x  0, Ivl  r and small E. Moreover, there

exist /-t &#x3E; 0 such that

It is sufficient to show that the set ()v)  r} is an invariant set

for (24) on the interval if Z has been chosen properly.
It is hence sufficient to show that for x  -ZE’I(P+’), we have v’ (~, x )  0

if v (E, x) = r (and similarly V’(E, x) &#x3E; 0 if X) = - r) -
For x = -ZE1/(p+1) such that V(E, X) = r, we find using (24)

and hence  0 if z &#x3E; Z where Z is chosen greater than
and if E is sufficiently small. D

We now make the following change of variables:

Thus we have F(X, E) = XP(A + 0(1)) uniformly for X in bounded subsets
of the real axis with 0 independent of E.

As v satisfies equation (24), the new function V satisfies

where the dot denotes differentiation with respect to X, where tends

to 0 as E tends to 0 and P denotes a function analytic and bounded
- 0) on all bounded X, V-sets. Lemma 12 provides some number

Xo  0 such that V(Xo, E) remains bounded. By compactness, there is a
sequence - 0 such that V(Xo, Ev) has a limit, say V. For the sequel,
fix such a sequence Ev.
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LEMMA 13. - Suppose that W is the solution of

with initial condition V. Then for every integer m &#x3E; 0 and for

every real X we have

Proof. Consider (26) and (27) in the complex domain. As W is a
solution of a linear ordinary differential equation without finite singularity,
W is an entire function. By the classical theorem on the dependence
upon parameters, it follows that V(X, cv) is defined for every point X
and sufficiently large v. Moreover, we have - W(X), as v -- 0,
uniformly for X in any bounded subset of C. For the derivatives this follows
using Cauchy’s formula or the differential equation. 0

The proof of the following lemma is immediate (compare degrees and
use p &#x3E; q) .

LEMMA 14. - Equation (27) has no polynomial solution.

We return now to the proof of Theorem 10. Lemmas 13 and 14

imply that for every positive integer m there are a e R and &#x3E; 0

independent of v such that for sufficiently large v
(one could choose o We conclude

that (with 6v = é~/(P+1)) we have

for sufficiently large v and hence also

Thus, for m &#x3E; n(p + 1), this absolute value tends to infinity as v - oo,
contradicting the hypothesis of the theorem. D

4. Application to linear differential equations of second
order.

In this section, we return to equation (2)
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where p and V) are analytic with respect to (x, E) in a neighborhood of
[a, b] x {0} in C2. As in the introduction, cpo and 1/Jo are obtained from p
and 0 by putting E = 0. We suppose that cpo has a unique zero in [a, b] and
denote by p its order. Moreover, we suppose that po is positive on ~a, 0 ~
and negative on ]0, b] (and hence p is odd).

As before, the derivatives are taken with respect to x and we often
omit to indicate the dependence upon E. The word "bounded" always
denotes "bounded uniformly with repect to ~" . Again the dependence of
the solutions upon E needs not be analytic unless explicitly stated.

DEFINITION 15. - Let I C [a, b] be an interval containing 0 in its
interior. Then a C°°-resonant solution on I is a solution of (2) that is

bounded on I (in the above sense) that does not tend to the zero function
~ 0 and whose derivatives of any order are bounded on I. A local

C°°-resonant solution is a Coo-resonant solution on some open interval

containing 0. A global Coo-resonant solution is a Coo-resonant solution

on [a, b].
A local analytic resonant solution in direction d is a solution of (2)

analytic in some neighborhood of x = 0 that does not tend to the zero
function as E -~ 0 in some sector containing d. A global analytic resonant
solution in direction d is a solution of (2) analytic on some domain
containing [a, b] that does not tend to the zero function as E 2013~ 0 in some

sector containing d.

From this point on, we have to make a rather restrictive hypothesis.

HYPOTHESIS (H). - The function 1/Jo has a zero of order p or higher
atx=0.

If this hypothesis is not satisfied, it seems possible to show that the
existence of a resonant solution implies that 1/Jo has a zero of order &#x3E; p - 1

and that tends to a nonnegative integer congruent to 0
or 1 mod p + 1 as r - 0. We hope that we can deal with this more general
setting in a future article.

THEOREM 16. - Under the preceding hypotheses and with the above

notation, the following statements are equivalent :

1) There exists a formal solution ~ of ( 2) whose
coefficients yn are analytic in a neighborhood of 0.
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2) There exists a local Coo-resonant solution.

3) There exists a global Coo-resonant solution.

4) There exists local analytic resonant solutions for every direction d.

5) There exists a global analytic resonant solution for the direction
d=0.

Remarks:

1) The implication 1) # 3) generalizes C.H. Lin’s Theorem [16].

2) Statement 5) can be improved as below Theorem 3: for every 6 &#x3E; 0

there is a neighborhood D of [a, b] and a global analytic resonant solution
of (2) on D x S ( - 2 ~r + 8, ~ 7r - 6) analytic with respect to x and E. This
slightly improves Lin’s Theorem even in the case of a simple turning point
(i.e. cpo has a simple zero at x = 0; p = 1).

3) If p = 1 then Hypothesis (H) is not needed: It is possible to reduce
all situations such that it is satisfied by going over from (2) to a second
order equation for y’, etc.

Proof. As indicated in the introduction, we use the corresponding
Riccati equation: We put v = y’/y and obtain the following equation:

which has the slow curve vo = It is at this point that

Hypothesis (H) is needed; it guarantees that the slow curve is analytic
on [a, b]. The change of variables v = vo + u yields an equation of the form

with f and Q=-o)(o+- (-o)-(o+)-o-
This equation satisfies the hypotheses of Section 2 and Theorem 3 can be
applied. It is hence sufficient to establish a correspondence between the
formal solution of (2) and that of (29) as well as one between Coo-resonant
solutions of (2) and canard solutions of (29) resp. analytic resonant solutions
of (2) and overstable solutions of (29). In other words, Theorem 16 relies
on the following statement. 0

PROPOSITION 17. 1) Equation (2) has a non trivial formal solution
~(.r~) = with coefficients analytic near x = 0 if and only
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if (29) has a formal solution with coefficients

analytic near x = 0.

2) Let y be a solution of (2) and let u = ~’/~ - vo - y’ /y + 
be the corresponding solution of (29). Then y is a local (resp. global) Coo-
resonant solution of (2) if and only if u is a local (resp. global) C°°-canard
solution of (29). Furthermore y is a local (resp. global) analytic resonant
solution of (2) if and only if u is a local (resp. global) overstable solution
of (29).

Proof. 1) If equation (2) has a non trivial formal solution
~ with coefficients analytic on [a, b] then its first term

yo is a nontrivial solution of a non singular linear first order equation (divide
the reduced equation by and hence does not vanish on [a, b~ . It follows
that (29) also has a formal solution u = whose coefficients

are analytic on [a, b]. Conversely, if is a formal

solution of (29) then the expression exp( is a

formal series that (formally) satisfies (2).

2) The equivalence between Ackerberg-O’Malley resonance (not in the
C°° sense) of the linear equation (2) and the presence of canard solutions
of the associated Riccati equation (28) had been established in [7]. These
results of Jean-Louis Callot can also be found in [3].

Here, u = y’/y - vo is equivalent d~) and clearly
this establishes a correspondance between analytic solutions.

As the solutions u of (29) and v of (28) are related by u = v - vo, the
statements concerning u are equivalent to those concerning v. It remains

(for the equivalence of C°°-resonance and C°°-canards) to show that y~n&#x3E;
is bounded for every n if and only if is bounded for every n. To show

this, induction yields

where Qn is a polynomial. As yo does not vanish on [a, b] this shows that
are bounded for all n" implies "v~n&#x3E; are bounded for all n" . Conversely,

by (30), can be written in terms of v~n-1~ and y, y’,..., y(n-1). Thus
by induction, "v(n) are bounded for all n" implies are bounded for

all n" . D
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5. Construction of equations exhibiting resonance.

We want to construct equations of the form

where g is analytic with respect to x, E in some neighborhood of 0 E ~2
such that (31) has resonant solutions and all its formal solutions diverge. It
seems that there is no simple example of such an equation. For simplicity,
we only treat the case yo (x) = 1, which is equivalent to g(x, 0) = 0. We will
always suppose that JEJ  Eo with some fixed 1. The advantage of
having a fixed coefficient of y’ is the following: If yl is a solution of (31),
then a second solution is given by Y2 - TY1, where

The method of construction is as follows:

1) We construct a function z : D x S -~ C, where D = D(O, 1) C C is
the open unit disk and ,S’ is the open sector S(- ~~ 7r, ~~ 7r, Eo) on the Riemann
surface of the logarithm, that has the following properties:

uniformly on D and

where T is the operator defined by (32).

2) We show that the equation (31) satisfied by z, i.e. the one with

is a non trivial example of an equation having an analytic resonant solution,
in the sense that the only convergent formal solution is the zero solution.

Briefly, we construct an equation (31) such that its analytic resonant
solution has a prescribed monodromy when E surrounds the origin once.
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Remarks:

1 ) The constant function yo (x) - 1 can be replaced by any function
that does not vanish on the closure of D. The coefficient 2x of y’ can be
replaced by other functions of x or (x, e) ; this is particularly interesting in
the case xp with odd p.

2) The function e2~~ can be replaced by any function analytic in the
sector I arg E + 7r  ~7r that is exponentially small as E ---t 0. The sector S
can be replaced by any good covering. The size of the x-neighborhood on
which z is constructed depends on the constant (here 2) in the exponent and
on the good covering. This allows the construction of resonant equations
on any convex x-domain containing 0.

3) The above function z has not necessarily real values for real x, E,
but this can be accomplished by using a more "symmetric" monodromy
relation, for example

for I arg),,E  ~1r.
The first part of the above outline is rather technical and involved. We

will present the details at the end of this section (Theorem 19). In Part 2,
we have to show that g mentioned there is analytic in x, E and that all non
zero formal solutions of the corresponding equation diverge. The fact that z
is not a single valued function of E because of (34) already indicates that
if it has an asymptotic expansion as E ---t 0 it will not be convergent.

Suppose we have already shown the existence of a function z

satisfying (33) and (34). Reducing eo if necessary, we can define a function
g : D x S - C by (35). As g remains bounded as E - 0 the analyticity of g
follows from

PROPOSISITION 18. - The function 9 defined by (35) is single valued,
. -1

Proof. This could be verified by a short calculation, but there is
another way of proof. Let us define g by (35). Then z satisfies (31) with this
function g. We have seen that Tz satisfies the same equation z does, hence
the right hand side of (34) also does. Using (34), we obtain that z(x, E) and

satisfy the same equation (31) for x E D and arg E + 7r  ~7r.
Using again (35), the proof is complete. 0
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for x E D, ~  -;Î7r, the difference
) is exponentially small for x E D. By a theorem of

Ramis-Sibuya (see below, too), z(x, E) has an asymptotic expansion of
Gevrey order 1 as E - 0. We denote by the

corresponding formal series.

As z is not single valued, the series z necessarily diverges for some
values of x ~ 0. In the sequel, we will even determine the asymptotic
behavior of as n - oo for x ~ 0, 4 7r Z.

Because of (33), we have as ±7r, E ~ 0,

and

Of course, these approximations are only uniform with respect to x in
compact subsets of the above sectors. This implies

in the above cases. Using the Cauchy-Heine formula [19]

(x E  eo, |arg E|  7r) one obtains

Using (36), this yields the existence of some constant C and some analytic
function 0 such that

as n - oo in the above cases.
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This confirms the divergent Gevrey 1 character of z. A priori, it might
be possible to construct a convergent series solution by multiplying z by a
certain formal series independent of x. This is not the case, because z(x, e)
is already convergent for x = 0. Observe that every formal series solution
of (31) is necessarily a product of z and some formal series independent
of x. In fact, the Wronskian of two solutions is a multiple of ex2 IE: and
hence there cannot exist two linearly independent formal solutions.

Therefore, if we have found a function z satisfying (33) and (34), we
obtain an example of an analytic equation (31) having an analytic resonant
solution such that all non zero formal solutions diverge.

One might think that some related series 

converges for certain values of r, s. This is not the case, however.

The derivative = would have to be

convergent, too, but dz/dx (0, e) diverges. In fact, by (33) and (34), the
derivative dz/dx (0, e) of z satisfies

for  ~7r. As before, this implies that the coefficients dn of its
asymptotic series as c 2013~ 0 satisfy dn N C - 2-n (n - 1)! as n - oo, hence
it is divergent.

Beginning with the above equation and replacing by any given
exponentially small function (and replacing our covering by other "good
coverings" ), it is possible to construct analytic equations (31) such that, for
its unique formal solution z satisfying c) = 1, the derivative dz/dx (0, c)
is a prescribed Gevrey-1 series; this will be further discussed in a subsequent
article.

It remains to show

THEOREM 19. - For Eo sufficiently small, there exist a function z
satisfying (33) and (34).

Proof. We put z(x, ~) - 1 + and it remains to be shown

that there exist a function u : D x S - C such that u(O, E) =- 0, u = 
as c - 0 uniformly for x E D and

E S, | arg e + 03C0| I  This will be done by rewriting (37) as
a fixed point equation. Thus we introduce two Banach spaces:
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. B(D), the vector space of all functions v(r, e) analytic on D x V,
- ’" " i ..... .

, for which there exist some constant C such that

for XED, s E V. As norm )) ))2 on B(D), we choose the
infimum of these constants.

. £(D), the vector space of all functions w(x, é) analytic on D x S,
for which there exist some constant K such that

As norm 11 111 on £(D), we choose the
infimum of these constants.

For functions v : V - C and w : S - C independent of x, we introduce
analogously the Banach spaces Band ~.

We use the following lemma that will be proved later.

LEMMA 20. - There is a continuous linear operator E : ,l3 ~ E such
that for every v E B its image w = Ev satisfies

We define another operator by

Then it is sufficient to show the existence of a fixed point u of ~DT
close to 0 E ~(D) satisfying ~(0,c) == 0. Here Dr ---t B(D) is

defined by

and D- denotes the subset of containing all functions with

w (x, ~) ~  2 . The operator T is well-defined because is exponentially
small.

As usually, it is shown that ED! is a contraction for sufficiently
small eo. Thus, it has a fixed point u Using the definitions of T
and ~D, we show that u(0, e) m 0. D

Proof of Lemma 20. - The construction of a holomorphic function
with prescribed monodromy is classical. Given v analytic on V, the function
w : 7r, -~ C defined by
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can be continued analytically to an analytic function, also called w, on
all of ,S’ that satisfies (38). Unfortunately, w has a logarithmic singularity
at c == -co and is not in ~. To overcome this difficulty, we consider
some average of integrals similar to (39), roughly speaking, we integrate
with respect to Eo. A factor Elp is introduced to accomodate the norms
of B and £.

For v E B, we define

where we : S - C is defined by

Here . If then the path of integration
is the line from 0 to é (), if arg E  - ~ 1f, the path of integration is above E,
if arg E &#x3E; 1 7r, the path of integration is below E (see Figure 5).

Cauchy’s formula shows that we satisfies (38) for every 0 and hence
so does w = ~v. It remains to show that w C E and that there exist K &#x3E; 0

such that for all v E B.

Let us first estimate For we 

IMI hence 2 with C1 = 

7r  arg c  2013 ~ 7r, we will show that

with the above Ci, where (see Figure 5) is the path described by
JL = eo ecPi and § E [- ~ 7r, 8 - 7r] in the case 8  1/J, but § E [0 - 7r, - ~ in

the case 1/J  8. In fact, if 0  1/J = arg c -p 7r  1/4 7r then we can use paths of
integration y from 0 to eg arbitrarily close to ry1 U -y(B, W) (where qi is the

line from 0 to eo e-57ri/4) that are still in the interior of V. The estimate

for all such ~ and the yield

As in the former case, we obtain J,Yl For the
yi I I 1 8

remaining integral, it is sufficient to use I  Eo on y (0,W ) . By combining
the two integrals, we obtain (41 ) for 0  arg + 7r (without the term eo) .
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Figure 5. The path 11 U 1(0, ~), on the left in the
case 0  1/J, on the right if ~  8.

In the case arg E + 7r  0, we first use Cauchy’s formula which shows

where now the path of integration from 0 to eg is above c. The estimates of
the integral are identical to the above subcase, only there is another term
to estimate -1 v (~)  This proves (41) in the second subcase, too.

For ~7r  argc  ~7r, we show analogously

Recall that In order to show that

~ : ,13 -~ ~ is continuous, it is hence sufficient to show that

for every E arg :S - ~ 7r, lEI I  By splitting the exterior
integral in two parts at 8 = arg + 7r, if this value is in [- ~ 7r, ~ 7r], it can

be seen that the double integral assumes its maximum for arg E = -7r.

Thus, it is sufficient to estimate ds in this case. As

the denominator is at least sin s, the theorem of Fubini-Tonelli yields (43)
with K = 2 ~~4 ~ sin s ds (by integrating over the triangle 0~~ ~ 7r
instead of the set 0  8  g ~r, (9  s  4 ~r) . D

Remark. Bernard Malgrange, whom we would like to thank here,
suggested another proof of Lemma 20 using the a operator. This proof is
outlined below.
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For convenience, we now think of sectors as subsets of C; thus the
directions d and d ~ 2-x are identified. We do not indicate the radius

of the sectors - it is always co. For simplicity, we introduce a second
sector ,S’ ( - 4 ~r, 4 ~-) .

It is sufficient to show the existence of two analytic functions wl
on ,S’ ( - 4 ~r, £ 7r) and W2 on ,S’ ( - 4 ~r, 4 ~r ) such that

The idea is to first solve the problem in the class Coo and then to add a
correction in order to obtain an analytic solution.

Let 0152 be Coo on ,S( 4 ~r, 4 ~r) such that 0 on and 1

on ,S ( 8 ~r, 4 ~r ) . Then define W2 by

. WI := W2 :== (0152 - I)v on 5’(~7r, ~7r) and

. ~i,~2:=0on~(-~~7r),resp.~(-~7r~).
Then conditions (44) are satisfied, but WI, W2 are not analytic:

We have aWl = == 9 where 9 :== 9(o~) = is Coo on the punctured
disk D (0,E0)B{0}

Then we construct a Coo correction h defined on the punctured disk
such that 0h * g. This can be done using the classical formula [hor]

The initial problem (44) is then solved by the analytic functions

wl := wl - h, w2 : w2 - h.

If a is chosen as a function of the angle, say a(r eei) = ~(8),
then g (and hence is bounded as soon as v(z)/z is, because

g(z) = This shows that a bounded

linear operator from B to ~ can be constructed in this way.
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