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1. Introduction.

Let K be a connected Lie group acting on a Poisson manifold M by
Hamiltonian transformations. Let M - t* be the associated moment
map.

In [9], V. Guillemin and S. Sternberg introduced and studied a class
of Hamiltonians that they called collective. These functions have the form
f o where f is a smooth function on t*. The Hamiltonian flow §t of
a collective Hamiltonian has a very distinctive feature: its orbits can be

reconstructed from the geometry of the action of I~ and the Hamiltonian
flow of f on t*. Guillemin and Sternberg introduced collective Hamiltonians
as the mathematical model of various instances in physics in which it is

claimed that one physical system moves "as if it were" another physical
system. For example, in nuclear physics one has the "liquid drop model"
of the nucleus. Besides these physical motivations, collective Hamiltonians
form a completely natural class, given a Lie group action.

In the present paper we will focus on what we call collective geodesic
flows. Suppose that N is a connected manifold on which a connected Lie
group K acts. It is well-known that the lift of the action of K to T*N is

Hamiltonian with moment map given by

where ÇN is the vector field on N induced by ~ c t and p E Suppose
that f : t* - R is a quadratic form. The special form of 1jJ ensures that for
each x E N, the restriction of f oo to Tx N is also a quadratic form. We call
the Hamiltonian flow of such a Hamiltonian a collective geodesic flow. Note
that in general f 0 ’Ø restricted to could be degenerate, even if f is
not. However, it is quite easy to see using (1) that if the action is transitive
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then f o 0 is non-degenerate if f is. Thus, if the action of K is transitive
and f is a positive definite quadratic form, then Ot is the geodesic flow of
the Riemannian metric determined by f o 0. We will see in Section 4 that
the set of Riemannian metrics which arise in this fashion is the same as

the set of submersion metrics on N = HBK which come from arbitrary
left invariant metrics on K. We call them collective Riemannian metrics.

In general, collective metrics are not invariant under the right action of
K on HBK because the quadratic Hamiltonians in t* do not need to be
AdK-invariant.

As we explained before, the flow of a collective Hamiltonian can
be built from two ingredients: the geometry of the action of I~ and the
Hamiltonian flow of f on t*. In the present paper we will prove results that
concern these two aspects.

The main dynamical question we would like to address is the

following:
When does a collective Hamiltonian have positive topological

entropy?

We begin by studying quadratic Hamiltonians on real forms of

sl(2; C) s9 sl(2; (C): so(4) = so(3) s9 so(3), so(3) s9 sl(2) and sl(2) s9 sl(2).
Let g be a real form of sl(2; (C). There exists a basis X2, X31 of

g such that

where n = 1 if g is compact, and n = -1 otherwise. With respect to this
basis of g there is the canonical, bi-invariant bilinear form (, ) given by

where nii = n if i = 1 and 1 otherwise.

For i = l, 2, let gi be a real form of sl(2; (C). Let (, ~ denote the bi-
invariant inner product on g = gi s9 g2 such that (, ) restricted to gi is the
inner product (, ) i .

Fix g - gi s9 g2 and let n2 - 1 if gi is compact, and -1 otherwise.
We identify g* ~ g via the invariant inner product (, ~ and we define for all
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for diagonal I, J and B : 92 - gi an arbitrary linear map. The Hamiltonian
HB is the general form of a quadratic Hamiltonian on g.

Denote by Ci the quadratic Casimir on gi. In coordinates

for x E E g2. The common level sets of the Casimirs are the closure

of the coadjoint orbits.

Define

Note that n1ai, n2bi &#x3E; 0 for all i.

The Casimirs Cl , C2 are independent integrals of all Hamiltonian vec-
tor fields on g, and for c1, c2 ~ 0, the common level set 0ci,c2 - n

C~- I (C2) is a 4-dimensional symplectic manifold. Because 0,
it follows that is Liouville integrable on each orbit Vel,e2 such that

0. We will call these orbits regular and the points in them regular
points.

Our first theorem (proved in Section 2) is based on a careful analysis
of a Melnikov-type function. Let Bij == 

THEOREM A. - Suppose that 0. Let B : 92 - 91 be a

non-zero linear map. For all sufficiently small E &#x3E; 0, the topological entropy
of the Hamiltonian flow EHB is positive on an open set of

regular coadjoint orbits of g = 92; if f : g - R is a C’ first integral
of HE, then f is functionally dependent on HE, C1 and C2. In addition,
if B21B23 = 0, then given a regular coadjoint orbit VCl,C2 with cl or C2
positive there exists Eo &#x3E; 0 such that for all 0  E  Eo the topological
entropy of the Hamiltonian flow of HE is positive on VCl,e2’

In Section 2 we explain in detail how this theorem fits in with all the
known cases of completely integrable Hamiltonians on g. These comparisons
suggest that the set of completely integrable Hamiltonians (as well as the
set of quadratic Hamiltonians with zero entropy) form an algebraic variety
whose geometry is yet to be explored. Also as a result of these comparisons
we find what appears to be an inconsistency between our results and part 2
of Theorem 3 in [1] (see Section 2).
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There is work by A.P. Veselov [25] and by V.V. Kozlov and D.A.
Onishchenko [16] which appears related to our Theorem A. Veselov’s paper
[25] derives non-integrability results for so(4) based on the work by Kozlov
and Onishchenko, but his paper only contains statements. Kozlov and
Onishchenko study the case of e(3) and their results are based on Melnikov-
type calculations. Theorem A cannot be derived from these calculations,
however, because they are not carried out in sufficient detail.

Suppose now that # is a real semi-simple Lie algebra. If # admits
an injection of Lie algebras g ~ ~ then Theorem A plus a simple
argument show that ~ admits quadratic Hamiltonians whose flow has
positive topological entropy. This naturally raises the question: when does
b admit an embedding of g? The answer is given by the following theorem
proved in Section 3:

THEOREM B. - is a real semi-simple Lie algebra not isomorphic
to a real form of al = s](2; C), a2 = sl(3; CC) or to a1 or a2, then

there exists an injection of Lie algebras g ~ f), where g is a real form

of sl(2; C~) ~ sl(2; C), i.e., g is a real Lie algebra isomorphic to one of

so(3), sl(2) or sl ( 2) EB sl(2).
In other words, the theorem says that the only real semi-simple Lie

algebras (up to isomorphism) that do not admit an embedding of a real
form of sl(2; C)Csi(2; C) are: si(2; R) ~ su(1, 1) ~ so(2, 1), sl(3; R), su(2, 1),
so(3,1) ^~ sl(2; C), sl(3; C), su(2), and su(3).

As we explained before, combining this theorem with Theorem A we
can prove:

COROLLARY. - be a real semi-simple Lie algebra not isomor-
phic to ai, i = 1, 2, or one of their real forms. admits a quadratic
Hamiltonian whose flow has positive topological entropy, and contains a
subsystem isomorphic to a subshift of finite type.

It follows from the corollary that most compact semi-simple Lie
groups carry many left invariant metrics with positive topological entropy.

We conjecture that the three real forms of the complex simple Lie

algebra a2 = sl(3 ; C) along with a1 = sl(2; C) and a2 = sl(3 ; C) also admit
quadratic Hamiltonians that have chaotic dynamics. The two remaining
simple Lie algebras - and so(3) - obviously do not.

Now that we have addressed our main problem at the level of Lie

algebras we turn to the following problem related to the geometry of the
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moment map of a Hamiltonian action. Let K be a connected Lie group

acting by Hamiltonian transformations on a Poisson manifold M. Suppose
that t admits an embedding of p (and we know that most semi-simple Lie
algebras do). Let G be a semi-simple Lie group with Lie algebra g. When
does the moment map hit a regular orbit? Equivalently we could ask,
when does the moment map 1bK hit an element that projects via t* ~---~ g*
to a regular element in g*?

In Section 4 we present two criteria that give a positive answer to
these questions.

Let g be a real form of sl(2; C)EBsl(2; C) and let G be a semi-simple Lie
group with Lie algebra g. Let M be a Hamiltonian G-space with moment
map 0. We will say that the G action on M is full if there exists an orbit
with dimension &#x3E; 4.

Criterion 1. - Let M be a Hamiltonian G-space, and assume that
the G action is full. Then, O(M) contains regular coadjoint orbits.

Suppose that H is a semi-simple Lie group, h =Lie(H), and a real
form g of sl(2; C)EBsl(2; C) embeds into b ; let G x H be a subgroup with Lie

algebra g. Let K C H be a closed subgroup, t Ll b its Lie algebra. Because
H is semi-simple, we identify 0* ri b via the Cartan-Killing form (,).

Criterion 2. - The moment T* (KBH) --+ g* hits a regular
orbit iff g contains a regular element.

Section 4 also contains a formula for the topological entropy of a
collective Hamiltonian and an application of the description of collective
motion to the Poisson sphere.

Finally in Section 5, using the previous results, we are able to show
that many compact homogeneous spaces admit collective Riemannian

metrics close to the bi-invariant one with positive topological entropy.
These collective metrics Poisson commute with the bi-invariant metric

(a remarkable property which comes almost for free).
THEOREM C. For the following homogeneous spaces there are

collective Riemannian metrics arbitrarily close to the bi-invariant metric
such that they Poisson commute with it and whose geodesic flow has
positive topological entropy:

(1) Spheres: = SO(n)BSO(n + 1 ) for n &#x3E; 3;

(2) Real and complex Stiefel manifolds: SO(m - r)BSO(m) and SU
(m - r)BSU(m) for r &#x3E; 2 and m ~ r + 2;
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(3) AI: S’O(m)BS’U(m) for m &#x3E; 4;

(4) AII: Sp(m)BSU(2m) for m -&#x3E; 2;

(5) BDI/AIII: Real oriented and complex Grassmannians: SO(p) x
SO(q)BSO(p + q) and S(U(p) x U(q))BSU(p + q) for p - 1, q &#x3E; 3 and
p, q ? 2;

(6) DIII: U(m)B,S’O(2m) for m &#x3E; 2;

(7) CI: U(m)BSp(m) for m -&#x3E; 2; and

The list in the theorem is by no means complete but it is quite
illustrative of the techniques developed here which apply to many other
spaces. The list does include all simply-connected rank-one symmetric
spaces except Cp2, (the Cayley projective plane) and the obvious
case ,S’2.

For the geodesic flow, positive topological entropy has a very concrete
geometric meaning. Given points p and q in M and T &#x3E; 0, define nT (p, q)
to be the number of geodesic arcs joining p and q with length  T. R. Mane
[18] showed that

and hence if htop (g) &#x3E; 0, the average number of geodesic arcs between two
points grows exponentially. It should be noted that for bi-invariant metrics
this number grows polynomially.

Acknowledgements. - The second author thanks Northwestern Uni-
versity and the Centro de Investigacion en Matematica, Guanajuato,
Mexico for hospitality and financial support while this work was in progress.

2. Quadratic Hamiltonians on real forms
of sl(2 ; C) (D sl(2; C).

2.1. Preliminaries.

In this subsection we recall some definitions and terminology and we

give some background material on topological entropy.
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2.1.1. Terminology and Definitions.

A Poisson structure P on the smooth manifold M is an element

of Hom(T*M, TM) such that for any f E C°° (M), the vector field

preserves both P and f. This condition is equivalent to

the statement that the is a Lie bracket on

A smooth map between Poisson manifolds is a Poisson map if

it preserves Poisson structures. There are two basic examples of Poisson
manifolds: the cotangent bundle of a smooth manifold, and the dual of
a Lie algebra. If g is a Lie algebra, then we can view g C C°° (g* ) by
the := ~~.c, ~) for all ~ E g, p E g*; the Poisson structure on
g* is defined for all E g and p E g* by := - (~c, ~~, r~~ ~ .
If g is semi-simple, then there is an ad-invariant inner product (, ) on g
that identifies g* ~ g. The Poisson bracket on g* pulls-back to a Poisson
bracket defined by ) for all f, g E C°°(g), where

, - . , ,

V denotes the gradient with respect to (, ). ’1’he ad-invariance implies that
x = X f (x) _ is the Hamiltonian vector field on g associated with

this Poisson structure.

A Casimir of a Poisson structure 7~ is an element f E C°° (M) such
that X f = P df - 0. Two functions f, g C C°° (M) will be said to be
in involution (or to Poisson commute) 0. A Casimir Poisson

commutes with all smooth functions. The rank of the Poisson structure P

at x E M is the rank of the linear map P x : Tx M; since 7~ is skew

symmetric the rank is even and im Px is a symplectic subspace of Tx M.
If we assume that rank ~~ is constant, then im P generates a distribution
that is involutive, and so Frobenius’s theorem implies that through each
x E M there is a maximal integral submanifold of this distribtion, Mx, and
this distribution comes equipped with a symplectic form. These integral
submanifolds are called symplectic leaves and locally the foliation of M by
symplectic leaves is a fibration, and the components of the fibration map are
Casimirs of 7~ [27]. In the case of the dual of the Lie algebra, the symplectic
leaves are the coadjoint orbits and the Casimirs are the invariants of the
coadjoint action.

An action of a Lie group G on a Poisson manifold (M, ~) is Poisson if
there is a Poisson (M, P) - (g*, Pan) such that 0 is G-equivariant.
For each ~ E g, let ÇM denote the induced smooth vector field on M;
if ÇM = for all ~ E g, then we say the action is Hamiltonian. G

equivariance implies that for all ~ C g, = Equivalently, if
we view g C C°° (g* ) as the subspace of linear functions, then because
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is a Poisson map ~~*~, ~*r~~(m) _ -~~(m), [~, r~]~ _ 
Given a Hamiltonian action of G on (M, P), there is the distinguished
subspace C C°° (M). We follow Guillemin and Sternberg and
call H C a collective Hamiltonian. The map o is classically
called the momentum or moment map.

2.1.2. Topological entropy.

In general the topological entropy is defined for an arbitrary contin-
uous flow (or map) on a compact metric space.

Let (X, d) be a compact metric space and let CPt : X ---t X be a
continuous flow. For each T &#x3E; 0 we define a new distance function

Since X is compact, we can consider the minimal number of balls of radius
c &#x3E; 0 in the metric dT that are necessary to cover X. Let us denote this
number by ~V(6;,T). We define

Observe now that the function E - is monotone decreasing and
therefore the following limit exists:

The number ht,,p (0) thus defined is called the topological entropy of the
flow Ot. Intuitively, this number measures orbit complexity of the flow.
The positivity of htop indicates complexity or "chaos" of some kind in
the dynamics of Ot. The topological entropy htop (0) may also be defined
as using the entropy of the time one-map or it may be defined

in either of the following ways. All the definitions give the same number

htop (cp) which is independent of the choice of metric [12], [26].
A set Y C X is called a (T, c)-separated set if given different points

y, y’ E Y we have dT(y, ~’) &#x3E; E. Let S’(T, c) denote the maximal cardinality
of a (T, c)-separated set. Then
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A set Z C X is called a (T, c)-spanning set if for all x E X there exists
z E Z such that c. Let Af(T’,6’) denote the minimal cardinality
of a (T, E)-spanning set. Then

Given a compact subset K C X (not necessarily invariant) we can
define the topological entropy of the flow with respect to the set K,

K), simply by considering separated (spanning) sets of K.

The following proposition gives an idea of the dynamical significance
of the topological entropy (for proofs see [12], [26]).

PROPOSITION 2.1. - The topological entropy verifies the following
properties:

(1) For any two closed subsets Yl , Y2 in X ,

(2) If Y1 C Y2 then ht,,p (0, ht,,p (0, Y2);

(3) Let 0’ : Xi - Xi for i = 1, 2 be two flows and let X2 be
a continuous map commuting with ~t i.e., 0207T = If 7r is onto, then

htop(cp2) and is finite-to-one, then htop(cp2).
(4) Let 0’ : Xi for i = l, 2 be two flows and let

the product flow on X 1 x X2. Then

(5) Given c E R, let cot be the flow given by cot := O,t. Then

lclhtop(4).

2.2. Sketch of proof of Theorem A.

The proof of Theorem A is based on the Melnikov method. Let

us recall this method (we follow Robinson’s explanation in [23]): assume
H : smooth function on a compact symplectic manifold, and
that F is a second, independent smooth function that Poisson commutes
with H. Assume that for a regular value of h, the level set ~H - hl
contains a hyperbolic periodic orbit -y for the flow Ot of the Hamiltonian
vector field XH. Let W ~ (~y, h) denote the stable/unstable manifolds of q.
We assume that W + (~y, h) = W - (~y, h). Let HI C C, (M4; R) be a second
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function and H + EH1, 0’ t the flow of Ht. Because -y is hyperbolic,
there is a nearby hyperbolic periodic orbit 1t for 0" t on ~HE = hl, with
stable/unstable manifolds W ~ (~yE, h) . In general, W + (~yE, h) ~ W - (~yE, h)
but they do intersect; the points of intersection are called homoclinic points.
The Birkhoff-Smale homoclinic theorem tells us that when transverse

homoclinic points exist, there is an invariant set in a neighbourhood of
and on this invariant set is equivalent to "flipping a coin." That is,

for some cross-section to q, the first-return map has an invariant set on

which it is conjugate to the shift map on the space of bi-infinite sequences
of Os and Is. These facts imply that the topological entropy of Ot is positive.

To detect this dynamical complexity, we must measure the "splitting"
of stable and unstable manifolds. To do this, we use the second integral
F. By stable manifold theory, 1t and compact subsets of W ~ (~yE, h)
depend differentiably on c. By stable manifold theory, there is a smooth
map z± : : x (-1], TI) - M such that = W ~ (~yE, h)
and z*(., 0) = id. We can write

zeros of G(., E) are points of intersection of stable and unstable manifolds
and non-degenerate zeros are transverse points of intersection. We write

G(p,,E) = EM(p) + O(E2), and M(p) can be computed by

M(p) is commonly called the "Melnikov function." By the implicit function
theorem, for small E a (non-degenerate) zero of M implies there are

(transverse) homo clinic points.

The basic strategy in our proof of Theorem A will be to set up and
compute the Melnikov function. A few additional twists appear, though.
First, the integrable system ( "H" ) from which we perturb will have two
hyperbolic periodic orbits 1:i: such that W+ / - (1+, h) = W -~+ (q- , h) . The
basic picture remains the same as above, but we must now ensure that
the perturbed manifolds do intersect, but do not coincide. Unfortunately,
we cannot show this for every hyperbolic periodic orbit. Instead, we must
vary the periodic orbits and show that there is at least one pair of periodic
orbits where M has the desired properties. This necessitates some involved
calculations.

Figure 1 depicts the integrable system and its hyperbolic periodic
orbits in schematic fashion.
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Figure l. Hyperbolic periodic orbits on a regular coadjoint orbit in so(4).

2.3. Real Forms of sl(2; C).

Let g be a real form of sl(2; C), i.e., a real Lie algebra that is

isomorphic to either so(3) or sl(2). It is well-known that there exists a

basis of g such that

where n = 1 so(3) and n = -1 otherwise. With respect to this
basis, the canonical bi-invariant bilinear form or Cartan-Killing form (, ) is
given by

where nii = n if i = 1 and 1 otherwise. The automorphism group, Aut (g ) ,
is also the isometry group of (, ). Thus

LEMMA 2.2 (Principal Axis Lemma-1). Let Q E 32(g*) be a

quadratic form on g, where g is a real form of sl (2; (C) . Then there exists a
0 E Aut(g) such that for all i, i = 1, 2, 3,
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for some 11, 12, 13 E R. so(3) then we can assume that Ii x 12 x 13 ;
sl(2), then uTe can assume that 13 - 12.
For i = 1, 2, let gi be a real form of sl(2; C). Let ~, ) denote the bi-

invariant inner product on g - gi s9 g2 such that (,) restricted to gi is

the inner product (, )i. Because Aut(gl) x Aut(g2) C Aut(g), the following
lemma is clear:

LEMMA 2.3 (Principal Axis Lemma-2). - Let Q E 82(g*) be a

quadratic form on g, were 9 is a real form of sl(2; C). Then
there exists 0 E Aut (g) such that

where I and J are in the diagonal form of Lemma 2.2 and B : 92 - 91 is
a linear operator, and B : 91 --~ 92 is its adjoint with respect to the inner

products (, )i on 9i.

2.4. Hamiltonians.

Let g = gi s9 92 and let ni = 1 if so(3) and -1 otherwise. We
identify g via the invariant inner product ~, ) and we define for all

for diagonal I, J and B : 92 ~ gi an arbitrary linear map. On account of
the Principal Axis Lemma-2 the Hamiltonian = HI, j + HB is the
general form of a quadratic Hamiltonian on g.

As in the introduction, denote by CZ the quadratic Casimir on gi. In
coordinates

for x e gl, ?/ C 02.

Define
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Note that n1ai, n2bi &#x3E; 0 for all i. The vector field XH,,, is then given by

The Casimirs Cl , C2 are independent integrals of all Hamiltonian vec-
tor fields on g, and for cl , ~2 7~ 0, the common level set Oel,C2 - rl

C~’ (02) is a 4-dimensional symplectic manifold. Because 0,
it follows that is Liouville integrable on each orbit 0 Cl ,C2 such that

0. 
’

For future reference, we compute that

2.5. The orbits.

Henceforth, we assume that 0. An open and dense set of

I, J clearly satisfy this condition.

In order to set up the Melnikov integral, we fix the non-zero values for
the Casimirs C1, C2, and pick orbits of XH¡,J that are heteroclinic

connections between two hyperbolic periodic orbits. To do this, we pick a
periodic orbit of XHJ IOC2 and a heteroclinic orbit of XH¡ lOcI joining the
two hyperbolic fixed points (where is the canonical

(,) 1-orthonormal basis of gi). Note that ci &#x3E; 0 by hypothesis. This is a
restriction only if gl = sl(2; R); in this case, for negative values of ci there
are only elliptic periodic orbits for XHI on 

The formulas for the heteroclinic connections may be found in [14].

2.5.1. Heteroclinic connection.

The heteroclinic connections are given by
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where E { :i: 1 }. The semi-circles in the left half of Figure 1 depict
these connections.

2.5.2. Periodic orbits.

The hypothesis on the coefficients Ji implies that n2bi &#x3E; 0 so the
ratios - 4 and are positive. Let /

w - 2 J +2 ‘3 2 :- 0". For each fixed, non-zero value of c2 ,I 
- ’ 

1 31
the range of the function hJ ---t , = -y(hj;C2) is (0,00). We assume that
0  q  1. Then the periodic orbits of XHJ are given by the following
expressions with rl , r3 E ~ ~ 1 ~ :

where sn", cn,y and dn,y are elliptic functions which satisfy dn~ = _ry2 cn"
sn,y, sn’y = cny dny and cn’y = 2013dny sny [11].

Although equations (17-19) appear to give 4 distinct periodic orbits
of in fact only two are actually distinct periodic orbits; for example,
the periodic orbits with ri = r3 = 1 and -rl - r3 = 1 are distinct, while
the remaining two periodic orbits are time translates of these two. See
Figure 1.

For future reference, we will denote by yj := yJ,l. Also note that
the solutions for ry &#x3E; 1 can be obtained by the following substitutions
in equations (17-19): interchange 1 and 3 everywhere they appear, and
substitute r, - ,-1 where -y appears.

Let s = (Sl, S3) and r = (ri, r3). The heteroclinic orbits of 
that connect the periodic orbit and (t) -

are then given by + Õ)).

Figure 1 shows the periodic orbits and their stable and unstable
manifolds in a schematic fashion. The parameters s, r appear due to the

anti-podal 22 s9 ~2 symmetry.

2.6. The Melnikov integral.

The functions a:ls,r(U,6) parametrize branches of W-(s’r) -
W(cr+). The Melnikov integral, which measures the first-order splitting
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of the unstable manifold of the periodic orbit a"’ (t) and the stable man-
ifold of after perturbing the Hamiltonian by the addition of
EHB , is given by (see Section 2.2):

where nl,i = nl for i = 1 and 1 otherwise, ’Ei3k is the sign of the permutation
if ]*, kl = f 1, 2, 31 and 0 otherwise and Ot is the flow of 

Ms,r is independent of u because the parameter u is the flow direction.

Let us now explain how to compute Ms’r : Let A

and K is one-quarter the real pe-

riod of the elliptic functions cnl’ and dny while 4iK’ is an imaginary
period of each of these meromorphic functions. Let us remark that 0,

K 2013 , K’ -&#x3E; 00 and snl’ ---t sin, cny --&#x3E; cos and dn" - 1; as q - 1,
K - 00 and K’ ~ 2 and snl’ ~ tanh, and cn,y , dnl’ ---t sech [11].

We also let

Let

so that T is the period of the solution to with HJ = ~j and

C2 = C2. We rescale time by T = 2, t. We can then write

where and for

; and
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the coefficients can also be written as

The Fourier series (22-24) extend as holomorphic func-
K

tions on the strip

For 1 odd (resp. l even) let cl,l = 0 (resp. c2,1 = c3,1 = 0). Let

and we adopt the convention that for 1 = 0, 1 cosech( 2w ) = let

us define

for j = 1, 2, 3. It is convenient to note that y = 1(hJ, C2) is homogeneous of
degree zero in (h J, c2 ), which implies that K, K’, q and the coefficients cj,l
share this property, while T is homogeneous of degree - 1/2. The function
w = h J, c2 ) is homogeneous of degree - 1 in (h J, c2 ) and 1/2 in cl . The
functions fj (0; cl , h J, c2 ) and g~ (8; cl , h J, c2 ) are therefore homogeneous of
degree 0 in (cl , h J, c2 ) .

The functions cj : l -~ l (resp. t -- decrease exponen-

tially in Ill (resp. Itl), so (20) can be calculated by integrating the terms
from equations (22-24) term-by-term against Xj(T)xk(T). Using the residue
theorem to integrate each term xs (T) C’ ’r, we compute that (0 = T 0,
r2 = rlr3):
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Then we get that

Let us remark that ms’r vanishes iff Ms,r vanishes, and since the question
of when Ms,r vanishes will preoccupy us and m’,’ is a simpler function, we
will utilize the latter and refer to it as the Melnikov function.

2.7. Case m~~(9) =0.

We will investigate the conditions which imply that changes
sign. Because (0) is a real-analytic function of 8, any zero has a finite
order of contact and by the results of [23] and [7], the topological entropy
of the flow of HI, J + EHB is positive for all sufficiently small E &#x3E; 0. Indeed,
there exists a subsystem (or a factor) isomorphic to a Bernoulli subshift of
finite type.

For the purposes of this section only, we will assume that r = ( 1,1 ) ,
0 is fixed and we will let mS (0) = ms~~’ (8; cl , h J, c2 ) for this choice

of r and cl , c2 .

Assume that for some s, ms (0) =- 0. Taking the mean of over

[0, 27r] and using the fact that only g, has a non-zero mean, we compute

Inspection of the coefficients of fi, gj shows that gl, f2, g3 are even
functions and /i,~2? f3 are odd functions of 8. This means that ms (9) - 0
iff

where cxi (resp. Qj) is the coefficient on f i (resp. gj) in equation (31).
From the formulas for the cj,i , we see that - c3,1 - 0 (resp. cl,l = 0)
for even I (resp. odd I). Equations (26) and (32) imply that al - 0
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Equations (32,33) are therefore satisfied iff for all 1,

A necessary condition that there exists a non-trivial solution to (34) is that
tanh( 17’ ) = cotanh( for all odd l. Since this is clearly impossible,
132 = a3 = 0. A necessary and sufficient condition that a solution to
(35) exists is that u) = K, . Since K - K, = 0K’’ 2 0
and

see that there is no non-trivial solution to (35) on any regular coadjoint
orbit Oe1,C2’ Therefore equations (34,35) are satisfied iff = 0 for

i, j = 2,3. From equation (31) we conclude that B22 = B23 = 0 and
that

summary:

LEMMA 2.4. - If there is an s E and a regular coadjoint
orbit GC1,C2 such that ms(8) _ 0, then B2i = 0 and +

S3n, vra;TB3i = 0 for i = l, 2, 3.

Because the functions fj all have zero mean, if = 0, then all
other must have zero mean. Therefore, intersections of other stable and
unstable manifolds in the perturbed equations are inevitable, so the ’best’
situation that can occur is that (0) = 0 for all s’ - this is a necessary (but
not sufficient) condition for the perturbed stable and unstable manifolds
to coincide. If (8) m 0 for all s’, then Lemma 2.4 implies that B = 0.
Thus:

PROPOSITION 2.5. If there is a regular coadjoint orbit GC1,C2 such
that for all s E x ms(O) -= 0, then B’-7 = 0 for all z, j = 1, 2, 3.

Lemma 2.4 implies that if mS(O) == 0, for some s, then there are

two other s’ for which (0) crosses zero. Thus, at least two of the four
heteroclinic connections split, and Burns and Weiss’s work [7] implies that
the Hamiltonian flow of has positive topological entropy. Since
the same argument applies to all for all r:

COROLLARY 2.6. If HE .- + cHB is a non-trivial pertur-
bation of H1,J such that XHE IOC1,C2 has zero topological entropy, then

ci, h j, C2) is bounded away from 0 for all s, r E {::l::1}.
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We will now show that we cannot bound ms’r away from zero for all

s and r and all regular coadjoint orbits OC1 ,C2’ *

2.8. Case ms’r (8) is non-zero.

In this section, we investigate some necessary conditions for the

Melnikov function rrzs,r to never have zeros. In this situation, the stable
and unstable manifolds of the perturbed hyperbolic periodic orbit no longer
intersect; this would be the situation if the perturbed system were also
integrable, for example.

Xia [28] gives a sufficient condition for intersections of stable and
unstable manifolds of hyperbolic homo- or heteroclinic fixed points to
persist under perturbations. Namely, he starts with an exact symplectic
manifold (M, w = da, and an exact symplectic map f : (H, cv) ---t

(H, w), f *a - a = dSf, with hyperbolic fixed points p f, q f E M such that
= W s (q f ) . If ,S’ f (q f ) = ,S’ f (p f ), then for all sufficiently C1-close

exact symplectic maps g such that ,S’9 (p9 ) = Sg (qg), the stable and unstable
manifolds continue to intersect: 0, where pg, qg are the

perturbed hyperbolic fixed points for g. If this theorem were applicable to
the Poincare map of the flow of XH, IOC1,C2’ then it would clearly preclude
the possibility that ms,r (8) is nowhere zero. However, a simple argument
shows that the theorem is inapplicable in our case.

Let us also observe that is homogeneous of de-

gree 0 in (ci, h j, c2). In the sequel, we will have occasion to compute
expressions such as .’, s (0; w). This is shorthand for a limit

27 m(;A,j,C2) where hJ,c2 are fixed positive quanti-) mr,s (0; À, h J, c2 ) where h J, C2 are fixed positive quanti-
ties. We will write cv) (resp. to emphasize the para-
metric dependence of ms,’ on w (resp. on both and y).

Let us now sketch the argument why Xia’s persistence theorem is

inapplicable. we have that ~ sinh(l~) - 0, and
~ cosech(l~) - 0 for all l ~ 0. This implies that 2: gj (0; w) - cj,o and

fj (0; cv) - 0. Recall that cl,o is a function only of HJ and C2, so these
limits can be taken by letting C1 2013~ 0 while holding HJ and C2 fixed. If

q  1 (resp. ~ &#x3E; 1), then only 0 (resp. ~3,0 7~ 0), so

where j = 1 (resp. j = 3). With B21 i- 0 (resp. B23 i- 0), this will

be non-zero, and so for small values of w we see that will be
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bounded away from zero. This implies that the intersection of the stable
and unstable manifolds of the two hyperbolic fixed points (of the Poincare

does not persist on an open set of regular coadjoint orbits.
A more careful argument shows that on each regular coadjoint orbit there
are hyperbolic periodic orbits for which is bounded away from zero.

Let us now investigate necessary conditions for to be

non-zero for all values of aJ, 1. We will prove that for a fixed s, W, q)
can be non-zero for all &#x3E; 0 for at most 2 values of r. This will imply
that for the remaining values of r, must alternate sign. This
will prove Theorem A.

Let :== 2~ as above. As ~ -~ 0+, we have that ç-1 sinh(~) - 1,
sinh ~ cosech(l~) 2013~ ~-, and sinh ~ sech(l~) - 0. This implies that 

Then

Recall that the functions yrj are parametrized by the constants of motion
hJ and C2, so the limit in (37) can be taken by letting C1 ~ oo while holding
h J and c2 fixed.

Let us assume that for some sand r, &#x3E; 0 for all w &#x3E; 0

and 0 E R; since sinh( &#x3E; 0 for all w &#x3E; 0, the expression in (37) is

non-negative. Using equations (17-19) and multiplying the limit in (37) by
we arrive at

Vq  1 and b’8. Taking the limit of the LHS in (38) as q - 1 then gives

‘d8. Letting 8 ---&#x3E; ± ~ shows that B22 = 0.

Inequality (38) now implies that I r1ry-1 ~- 

r3 Cn-, (0) -&#x3E; 0 for all 8 and 0  ry  1. Since + K) = dn-, (0),
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we also have that

we conclude that

In summary,

LEMMA 2.7. - If for some s and r the Melnikov function ms,r is

nowhere zero for all (¡J &#x3E; 0 an d all 0  7  1, then B22 = 0 and

where M = sign 

Let us return to the case where, for a given r, 0

for all cv &#x3E; 0 and 0  q  1. Let us examine the case -Y-1  1. In

this case, the formula for cv, q) can be obtained from Ms,r (0; 
by interchanging the subscripts 1 and 3 everywhere. Equation (37) becomes

Taking the limit as K - 1 shows that 0 for all w &#x3E; 0

and y &#x3E; 1, also. Arguments similar to those above now prove that

Since the case where 0 for 0  -y  1 is similar,
we can combine inequalities (40, 43) and conclude that

LEMMA 2.8. - If for some s and r, the Melnikov function 0 ---+

is nowhere zero for all values of w &#x3E; 0 and ~y &#x3E; 0, then
and B22 = 0.

PROPOSITION 2.9. - There does not exist a Melnikov function m’,’

such that for all s, r E {:!:1} and all w, q &#x3E; 0, the function

0 - mS,r(o; w, r) is nowhere zero.

Proof.- If such an existed, then because 7~ 0,
Lemma (2.8) implies that B2i = 0 for i = 1, 2, 3. Therefore, for all s and r
and w, -,, úJ, q) is a zero-mean function (equation 31 ) . Absurd. 0
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THEOREM A. Suppose that I E and J E ~S’2 (g2 ) satisfy
0. Let B : 92 - 0i be a non-zero linear map. For all

sufficiently small E &#x3E; 0, the topological entropy of the Hamiltonian flow of
HE :- on an open set of regular coadjoint orbits 
is positive; if f : g -~ R is a Cw first integral of HE, then f is functionally
dependent on HE, C1 and C2. If B21B23 = 0 then given a regular coadjoint
orbit with ci or c2 positive there exists Eo &#x3E; 0 such that for all

0  E  Eo the topological entropy of the Hamiltonian flouT of HE is positive
on OC1,C2’ *

Proof. Let 0’ t g --&#x3E; g denote the flow of XHE and let 0.

Suppose that 0, for all 0. Then, for each pair (r, s)
and all &#x3E; 0 ms,r (0; I) is either nowhere zero or it is identically zero.
This is impossible by Propositions 2.4 and 2.9. Therefore, there is an (r, s)
and &#x3E; 0 such that crosses zero. By continuity, there is
an open set of regular coadjoint orbits such that crosses

zero.

If B21 = 0 (resp. B23 = 0), then for -y  1 (resp. q &#x3E; 1) and all &#x3E; 0

mr’s (0; is a zero-mean, non-identically zero function. 0

2.9. Remarks.

Remark 2.10. - Let us consider several well-known families of in-

tegrable geodesic flows on so(4). Let A : so(4) 2013~ so(4) be a symmetric,
non-degenerate linear map that is diagonal in the standard basis of so(4),
with distinct eigenvalues Aij . If there exist diagonal matrices a, (3 with the
eigenvalues of a pairwise distinct such that b’X E so(4),

then = The Hamiltonian 2ij 
- has an addi-

tional family of independent first integrals ] for arbitrary
~y2 E R [2, 1, 10]. The Mischenko-Manakov [19, 17] case of the rigid body
is of this form with ,C3 = a2.

Let R C CW (so(4) ) denote the set of h = hA described in the previous
paragraph. We will now show that for each H1,J satisfying the hypothesis
of Theorem A, there is an open neighbourhood of in the complement
of R - since 7Z is closed, it suffices to establish that all such H1,J ERe.
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Let X E so (4) be given by

and define the map 0 : X --4 x (D y E 80(3) EB so(3) by

which is a Lie algebra isomorphism. The Hamiltonian 2h(x (D y) --
is transformed to 2

) is non-diagonal. For I = J, a simple
argument shows that if

then ala2a3 = 0, i.e., the coefficients IZ are not all distinct.

Indeed, if there is a solution to these four equations, then the set of
Qi, (3j satisfying the four equations is 3-dimensional, due to the invariance
under the 3-dimensional group of transformations ai ~ ccxi + a, (3j -
c(3j + b. This implies that the rank of the matrix

is less than or equal to 5. The determinant of the 6 x 6 matrix obtained by
striking columns 1 and 5 from A is 2 (I3 - 12) (13 - -11) (12 - 
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This shows that E 7Z implies that I = J and ala2a3 - 0. Thus, if HI, J
satisfies the hypothesis that 0 of Theorem A, then H1,J E R’.

Remark 2.11. - One construction of Mishchenko-Fomenko [20] of
integrable quadratic Hamiltonians on real semi-simple Lie algebras g can
be described quite succinctly. Let t be a maximal abelian subalgebra, and
let g = t + p be an adt-invariant decomposition of g. For t E t in general
position, -~ ~ is a linear isomorphism. We let a, b E t be two elements
in general position and let 0 : t - t be a non-degenerate, symmetric linear
map. Then, we define for 

where (, ~ is the Cartan-Killing form on g. Mischenko-Fomenko [21] show
that these Hamiltonians are integrable on all semi-simple g. Indeed, their
proof shows that HcP,a,b is adt-invariant, which implies that HcP,a,b has rank
g linear first integrals.

Let us consider the case when g = so(3) is a real form

of sl (2; C) s9 sl(2; C). In this case, rank g = 2 and all maximal abelian
subalgebras are conjugate to the standard t = so(2) ~ so(2). HcP,a,b is

so(2) s9 so (2) invariant, and relative to the decomposition g = so(3) 
we have that

where a = cx 1 X1 + j31X1 + 2 ’l 0152 == i , _ 2 and
e It is clear that H1,J is of this form iff 12 = J2, 13 = ~3

and = 0.

The remaining cases are similar.

Remark 2.12. 2013 In [1], Adler and van Moerbeke claim that on

9 = so(4) = so(3), there exist integrable Hamiltonians of the form

for certain choices of the coefficients depending on the Aj. In the
notation of the current paper, z = (~, ~), Az = Ii, A3+1 = Ji, and

Ài,i+3 = Bii for i = 1, 2, 3. Their conditions are that
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and

where Ai - Aj, E := A32 A65 A 13 A46 A21 A54 and F := A46A32 -
A65A13.

If Ai = a + ci, then Aij = c(i - j ) and one readily computes that
F = 0, E ~ 0, and conditions (55, 56) are satisfied for all values of 
such that A14A25A36 # 0.

In the notation of the current paper, aib2 = 4c6, so Theorem A
implies that there does not exist an additional, independent real-analytic
first integral of the Hamiltonian (54) for Ai - a+ci and all sufficiently
small - which contradicts Theorem 3, part 2 of [1]. We assume that part 2
requires the additional hypothesis 0, but we are unable to see

why.

Remark 2.13. - In [4], Bogoyavlenskij constructs a number of exam-
ples of integrable quadratic Hamiltonians on g = gi s9 g2, so(3) or
sl(2). The Hamiltonians he considers, in the notation employed here, are
of the forrm

Bogoyavlenskij shows that for each pair (I, J) with the property that
0, there exists a non-zero choice of the coefficients Bii such

that the Hamiltonian H is integrable with a second quadratic integral.

3. Embeddings of a real form of s](2; C) e sl (2; C)
into semi-simple Lie algebras.

We will prove the following theorem:

THEOREM B. - If!) is a real semi-simple Lie algebra not isomorphic
to a real form of a1 = sl(2; C), a2 = sl(3; C) or to a1 or a2, then there
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exists an injection of Lie algebras g ~ ~, where g is a real form of

sl(2; C), i.e., g is a real Lie algebra ismorphic to one 
so(3) (~ sl(2) or sl (2) ~ sl(2).

Assuming this theorem, we prove:

COROLLARY. - is a real semi-simple Lie algebra not isomorphic
to a real form of al = sl(2 ; C), a2 = sl(3; C) or to a1 or a2, admits a

non-degenerate quadratic Hamiltonian whose flow has positive topological
entropy, and contains a subsystem isomorphic to a subshift of finite type.

Proof. Let # be a real semi-simple Lie algebra not isomorphic
to one of the named Lie algebras. Then there exists a real form 0 of

sl(2; C) (BSj?(2; C) that injects into ~. Let i : g - b denote this injection. Let
(,) denote the Cartan-Killing form on ~, and ((,)) denote the induced ad-
invariant bilinear form on g. Because g is semi-simple, ( (, ) ) is ad-invariant,
and i is injective, ((,)) is non-degenerate. This implies that (,) is non-

degenerate on I(g) C £), too. Let # = i(g) + I(g) be the (, )-orthogonal
decompostion. We write x G !) as the unique sum x = y + z for y E i(g)
and z E I(g) . Then we define

where H,,(y) = in the notation of the previous section
and F(z) = 2 (z, z). Because (, ) is non-degenerate on i (g ) 1, for all Band
all E sufficiently small, H is a non-degenerate quadratic form on ~. The
associated Hamiltonian vector field is

for all x E ~ . In the case that z = 0, we have ~~ y HE , ~~ , which
since i(g) is a subalgebra and y, "ý7 yHE E i(g) for all x = ~ + z we see

that i(g) is invariant under XH and XHli(g) = We now apply
the work of the previous section. D

3.1. Rank &#x3E; 3 case.

Let ~ be a real, semi-simple Lie algebra, f)C = b C be its

complexification. Recall that a real form of a complex Lie algebra c is a real
Lie algebra 0 such that Oc is isomorphic to c as a complex Lie algebra. A
real form of s](2; C) is a real Lie algebra isomorphic to either su(2)~ so(3)
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or sl(2). In the following, g will denote a real form of sl(2; C) ~ sl(2; C), so
9 1 (D g2 where so(3) or sl(2).
Let c be a semi-simple, complex Lie algebra. Let c = t + ca be

the root-space decomposition of c relative to a Cartan subalgebra t. Here
ta is the unique element in t such that for all t E t, a(t) = (ta, t), where
(, ) is the Cartan-Killing form. Since (, ) is non-degenerate on t, it induces

a non-degenerate bilinear form (, ) on t*. The element x’ is a basis of ca

such that = 2ta and adtxa = for each 0152 E A. The set

A C t* is the set of roots of c. A set B C A is a basis of A if it spans t*

and for each a E A, there exist unique integers na,(3, all of the same sign,
such that a = The matrix A = with := 2-~~-
for all a, Q E B is called the Cartan matrix [13]. Finally, the rank of c is

the dimension of t.

Let us introduce the following notion: we will say that a real semi-

simple Lie algebra h has compact rank r if there exists an r-dimensional,
maximal compact abelian subalgebra s C ~. If the compact rank of ~ equals
the rank of QC, then sC is a Cartan subalgebra Conversely, if s C ~
is a compact abelian subalgebra of ~ and is a Cartan subalgebra of QC,
then the compact rank of b equals the rank 

LEMMA 3.1. - Let b be a semi-simple, real Lie algebra of compact
rank -&#x3E; 2; suppose that the compact rank of ~ equals the rank of f)C. If
there exist roots E 0(C~~) such that a ~ ~3 ~ A(~c), then there exists
a real form g of sl ( 2 ; C) 0 sl ( 2 ; C) an d an embedding i : g ~ 0 -

Let us remark that if a, ,Q c A and a ~ 13 ~ A, then (c~, /~) = 0.

Proof. Let s C h be a maximal abelian compact subalgebra such
that .~~ is a Cartan subalgebra of Oc. Let -sc denote the elements
such that a = (ta,.) for a- = c~,,Q. Since s is a compact subalgebra of Q,
it is clear that ita, E s. Since sc is a Cartan subalgebra, there exists
a unique subspace Qa,C (resp. Q(3,c) of 2 complex dimensions in OC that is
ads-invariant for all s EE 5c and ads has eigenvalues :i:::0152(S) on O’,c (resp.

on Q(3,c). Let Qa := n 0 for cr = c~, ~3. For each s E s, ads is a
real transformation that has eigenvalues ±u(s) on hence, ads leaves

Qa invariant for cr = a, 0. In particular, the subspaces oc, and Q(3 are both
invariant under and By hypothesis, 0 = = 0152(t(3) == j3(ta),
so the action of eta on 00 is trivial and vice versa. Since 0152 :i::: 13 rt A,

Q(3,c] = 0 and so [0’, Q(3] = 0. Finally, since C~~e~ _ Cta and 0’
is real, it follows that [oo, oc] n 0 = Rita for (7 = a, 13.
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Therefore, g := Rita + fJa + + fJ¡3 C b is a real form of

sl(2; C) s9 s](2; C). D

COROLLARY 3.2. - Let fi be a real, semi-simple but not simple Lie

algebra. Then there is an embedding of a real form of sl(2; sl(2; C)
into ~.

Proof. Since ~ is not simple, = EB b2 where each bi is semi-

simple and non-trivial. Because the Cartan-Killing form is not positive-
definite on each Z has compact rank &#x3E; 1. In addition, _

EB 0 ( ~ 2 ) is an (, ~ direct sum with the property that if cx E 
(3 E 0(~2 ) then 0: =b ~ ~ D

COROLLARY 3.3. Let u be a compact real form of one of 
3 or b2, g2, f4, e6, e7, eg. Then u admits an embedding of

so(3) e so(3).

Proof. Let u denote a compact real form of one of the listed Lie

algebras - with the exception of b2 and g2. The compact rank of u equals
the rank of u~ . The rank of each of the algebras in question is l which is
&#x3E; 3. An examination of the Cartan matrix of each of these Lie algebras
reveals that there are a, (3 E B such that = 0, which implies that

= 0. Since a - (3 rt. A by the definition of B, their orthogonality
implies that a d= (3 tf- A. Hence, u satisfies the conditions of Lemma 3.1,
and since the real form must be compact, this lemma
follows for the considered algebras.

If u is the compact real form of b2 = so(5; C), then u = so(5) admits
the obvious embedding of so(3) © so(3) = so(4). (One can also employ
Lemma 3.1 here, but this is overkill).

Finally, let u be the compact real form of g2. The root system of 92 is

~(92) == {:f:o:, :f:(3, + ~), + 2a), ± (o + 3cx), ± (20 + 30152)} and the
roots a, 2(3 + 3a are (, )-orthogonal [13]. Hence, we can apply Lemma 3.1
to obtain the injection. D

We note that up to isomorphism the only complex, simple Lie

algebras missing from the list in the previous lemma are al = sl(2; C)
and a2 = sl (3; C). Clearly, a compact real form of a1 (= so (3) ) cannot
admit an embedding of so(3) (D so(3). We will now establish that there is
no embedding of any real form of 0 sl(2; ~) into a compact real
form of a2.
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3.2. Rank 2 case.

LEMMA 3.4. - be a semi-simple, real Lie algebra of rank 2. If
there exists an embedding of a real form of sl(2; C) EB sl(2; C), then there
exist non-zero roots E 0 ( C~ ~ ) that are (, -orthogonal.

Proof. Let g denote the real form of sl(2; C) 0 sl(2; C) that injects
into C~, and let i be the injection. Then z : extends to an

injection of the complexified Lie algebras. Let to denote the standard

Cartan subalgebra of g~ = sl(2; C) and ti = iC(to). Because
the rank of ~ is two, t1 is a Cartan subalgebra 

By the injectiveness of ic, there exists a 6-dimensional subalgebra of
f)C with basis such that ~x~, x-~J - for a = A, p,
and ~h~, h~J - 0, lx-,B, x±tt] - 0. The Cartan subalgebra
t1 = since the rank of f)C is two. In addition, there exist
linear functionals cx, /3 such that [h, x~~‘J = (resp. [h, =

for all h E ti. Thus, E A are roots of f)C and 
(resp. spans f):!:.a,C (resp. f):!:.{3,c). Therefore, = 0 and so

a ~ which implies (a, {3) = 0. 0

COROLLARY 3.5. - be a real, simple Lie algebra with compact
rank 2. Then ~ admits an embedding of a real form of sl(2 ; C) C sl(2; C) iff
0 ( C~~ ) possesses two non-zero (,) orthogonal roots.

In particular, no real form of a2 = sl(3; C) admits an embedding of a
real form of s1 ( 2 ; C) C sl ( 2 ; C).

A real of the exceptional Lie algebra 92 admits an embedding of
a real form of sl(2; C) EB sl(2; C) there is a maximal compact subalgebra
t C~ of rank 2. In particular, the compact real form of g2 admits an

embedding of so(3) ® so(3).

Proof. The necessity of the condition on the compact rank of # and

0 ( C~~ ) follows from Lemma 3.4. Their sufficiency derives from inspection of
the root systems of rank 2 simple Lie algebras, along with Lemma 3.1. Since
the root system A(o2) = {=L~, :f:(3, :f:(0152 + {3)}, the orthogonality condition
on the roots of A (a2) cannot be satisfied for any real form of a2. The
remaining claim follows from Lemma 3.1. D

3.3. Noncompact case.

Let !) be a real, semi-simple Lie algebra such that # does not admit
an embedding of a real form of sl (2; C) 3 sl (2; C). By Corollary 3.2, ~ must
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be simple. It is known that a real simple Lie algebra is either a complex
simple Lie algebra viewed as a real Lie algebra, or it is a real form of a

complex simple Lie algebra. We now examine a these alternatives for ~.

o Case 1. - If b is a complex simple Lie algebra, viewed as a real
Lie algebra, then the compact real form of 0 is a real subalgebra of 0. By
Lemma 3.3, only the compact real forms of al = sl(2; C) and a2 = sl(3; C)
do not admit a real embedding of a real from of sl(2; (C) EB sl(2; C). Hence
~ ~ a1 or a2.

o Case 2-i. - If 0 is a real form of a complex simple Lie algebra, then
either it is compact or not. If 0 is compact, then Corollary 3.3 implies that
b is a compact real form of a1 or a2.

o Case 2-ii. - If 0 is a real non-compact, simple Lie algebra, then
let t be a maximal compact subalgebra of 0 and denote the

(, )-orthogonal Cartan decomposition of 0 with respect to t. Since t admits
an ad-invariant, non-degenerate bilinear form, it is reductive so t = a (D u
where a is abelian and u is semi-simple. It is possible that either a = {0}
or u = {0} but both cannot simultaneously be trivial. Since 0 does not
admit an embedding of a real form of sl(2; C) 0 sl(2; C), neither does u, so
Corollary 3.2 implies that u is simple. Lemma 3.3 therefore implies that u
is a compact real form of a1 or a2 if it is non-trivial. Thus, u ~ ~0~, su(2),
or su(3).

Table V, p. 518 in [13] provides a list of all complex simple Lie

algebras, their real forms, and the maximal compact subalgebras of these
real forms. By inspection, the only non-compact simple real Lie algebras
with maximal compact subalgebra isomorphic to one of a, o (D su(2) or

for some abelian algebra a are: (AI) ~ ~ s](2;R),s](3;R);
su(2, 1), su(3, 1), su(2,2), su(3,2) ; 

so(3,1), so(2,2), so(3,2) ; (DIII) 0 -- so*(4), so*(6) ; (CI) ~ - sp(l;R),
sp(2;R), sp(3;R) where sp(n;R) is the Lie algebra of symplectic linear
transformations of This exhausts the list of real, simple non-compact
Lie algebras that may not admit an embedding of a real form of sl(2; C) (D
sl (2; C).

We will now eliminate several of these candidates. By the special
isomorphism so(2,2) ~ ([13], p. 520) we see that so(2, 2),
so(3,2) ~ sp(2;R), su(2,2), sp(3;R) and su(3,2) all admit an embedding
of a real form of sl(2; C) (~ sl(2; C) (again, Lemma 3.1 can be applied
directly, but this is not needed). In addition, so* (4) ^~ sl(2). For
su(3,1), we have t = u(1)); therefore the compact rank of su(3,1)
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is at least 3. Because su(3, 1) is a real form of a3 = sl(4; C~), we see that
the compact rank of su(3, 1) equals the rank of su(3,1)~. In addition, by
inspection of the Cartan matrix of a3 there exist roots E 0(a3) such
that A (a3). By Lemma 3.1, su(3,1) admits an embedding of a real
form of sl (2; C) s9 sl (2; C). Finally, we have su(3, 1 ) .

To summarize case 2-ii: The non-compact, real forms of complex
simple Lie algebras (up to isomorphism) that may not admit an embedding
of a real form of sl(2; C) EBsl(2; C) are: sl(2; II~) ^_~ so(2,1), sl(3; R),
su(2, 1), so(3,1) ^_~ sl(2; C). Each of the listed Lie algebras has compact rank
 1, so none admit an embedding of a real form of sl(2; C) s9 sl(2; C).

Therefore, combining Cases 1 and 2, the only real semi-simple Lie

algebras (up to isomorphism) that do not admit an embedding of a real
form of sl(2; C) are: sl(2; JR) ~ su(l, 1) ~ so(2, 1), sl(3; R), su(2, 1),
so(3,1) ^J sl(2; C), sl(3; C), su(2), and su(3). That is, we have proven
Theorem B.

4. Collective motion.

Let I~ be a connected Lie group acting on a Poisson manifold M

by Hamiltonian transformations. Let Q : M -~ ~* denote the associated
moment map. Recall that a Hamiltonian H on M is said to be collective

if it is a pullback by the moment map of a smooth function f on t*, i.e.,
H == f o1jJ.

Let us explain what ingredients go into the solution of a collective
Hamiltonian. The discussion below is taken from [8].

Recall that a function f C C(X) (t*) defines a map 

by the formula: Lf (c) (a) = The map L f is sometimes known as

the Legendre transformation associated with f. The following important
relation holds:

It follows from equation (60) that if x(t) denotes the trajectory of the
Hamiltonian system XH with r(0) = x, then x(t) lies entirely on the orbit
of K through x and lies entirely on the orbit 0 through
~ (~) . _ ~ (x (t) ) is a solution of the Hamiltonian system
corresponding to fo := f 10. Set ~(t) := L f(-y(t)), then equation (60) says
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that ~ (t) = ~(~)~(.r(~)). So we can find the solution curve by applying the
following three steps:

(1) Find the orbit 0 through Q(r) .

(2) Find the solution to the Hamiltonian system on C7 corresponding to
fo passing through at t = 0. Call this curve ¡(t).

(3) Compute the curve ç(t) == Lf (-~(t)). This is a curve in t. Solve the
differential equation (i.e. find the curve in I~ satisfying)

Then a(t)x is the desired solution curve.

Remark 4.1. - Suppose for instance that f is invariant. Then, on each
orbit 0, q(t) is constant, but the map L f need not be trivial. Thus ~(t)
will be a constant element of t, and a(t) will be a one-parameter subgroup.
Therefore the motion corresponding to f 0 1/J when f is invariant is given
by the action of a one-parameter subgroup, the one-parameter subgroup
depending on x.

4.1. Entropy formula for collective Hamiltonians.

Let K be a compact Lie group. Let M be a Poisson manifold on which
K acts by Hamiltonian transformations with moment map 1/J : At 2013~*.
Take a collective Hamiltonian H = f 0 1/J and let Ot denote the flow of X H .
In what follows, for a subset A C M, we will denote htop (0, A) also by
htop (H, A).

Recall that Oc denotes the orbit through c under the coadjoint action,
and fo, stands for the restriction of f to Oc.

PROPOSITION 4.2. - If A C M is any compact Ot-invariant subset we
have 

/ -- . , , , _ ,_ / ."

Proof. As we mentioned in the last section, Ot leaves the orbits of
I~ invariant. Hence it follows from Corollary 18 in [6] that

where C7x denotes the orbit of K through x. Let us compute now htoP (H,
A U Ox).
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Consider the map 7r C~,~~x~ . By Theorem 17 in [6] we
deduce that

But now, according to the description of collective motion that we gave
above, the curve a(t) is the same for every x E ~-1 (c). Hence for any
x E 1/J -1 ( c) , Otx - a(t)x and since K is compact this clearly implies

Thus

But note that the reverse inequality also holds since 0 takes orbits of H to
orbits of f. Thus

and also

This equation together with equation (61) implies

COROLLARY 4.3. - Suppose the energy level = 2(~-1 ( f -1 (a))
is compact. Then

Let us discuss some applications.

Example 4.4. - Let X be a compact Hamiltonian SO(3)-space.
In this case the coadjoint orbits are two-spheres. Hence for any smooth
function on so(3)* we have 0. Thus we deduce that for any
collective Hamiltonian H, htop (H) = 0.

Example 4.5. - Let K be a compact Lie group endowed with a
left invariant metric. Then it is known that its associated Hamiltonian

is collective for the right action [8, page 219]. Let f denote the quadratic
form on t* that defines the left invariant metric. Then, the corollary implies
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that the topological entropy of the geodesic flow defined by a left invariant
metric g is given by

.. ,

We deduce for example, that for K = SO(3), htop(g) - 0. However, the
results in Section 3 show that for most compact semi-simple Lie groups
there will be left invariant metrics with positive topological entropy.

Example 4.6. - Let X be a compact Hamiltonian G-space with
moment map 7/J : X ~ g*. Let K C G be a closed subgroup. The inclusion
t - g induces a projection 7r : g* - t*. This projection, restricted to a
coadjoint orbit C7, can be viewed as the moment map corresponding to
Hamiltonian action of K on C~. Now let f : ~* - R be a function invariant
under the coadjoint action of K on t*. Set H = f o 7r o 7/J. Apply now the
proposition twice; once to deduce that htop ( f o 7rOc, = 0 and again to
obtain htop (H) = 0.

Collective functions like H, i.e., Hamiltonians defined by means
of a subalgebra and the corresponding projection, were introduced by
Thimm [24] to prove the complete integrability of certain geodesic flows
on homogeneous spaces.

4.2. Submersions and collective metrics.

Let M be a Riemannian manifold on which the group H acts freely,
properly and by isometries. Consider the quotient B - HBM and let

p : M - B be the canonical projection. Endow B with the submersion
metric. The metrics on M and B induce canonical maps T M ~ T * M and
T B ~ T * B. Suppose now that K is a group acting on M and its action
commutes with the action of H. Then there is a naturally induced action
on B. In this way, by lifting to the corresponding cotangent bundles, we
have two moment maps: 7/Jk : T * M -~ ~* and 7/Jk : 

PROPOSITION 4.7. - The equality 7/J’k o x2 o dp = ~K o X, holds on
the set of horizontal vectors in TM.

Proof. -- Recall that the moment map is given by ~K (m, p) (~) _
p((M(m)), where (M is the vector field on M induced by ( E t. Similarly
~K (b, ~c) (~) - u((B(b)). Hence we need to prove that if v E is

horizontal, then
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But observe that = Hence

But since v is horizontal by the definition of the submersion metric

as desired. 0

We apply the proposition to the following situation. Let K be a
Lie group with a left-invariant metric. Then gives rise to a
left-invariant Hamiltonian on T*K. Then it is known that the latter is

collective for the right action of K on T*K [8, page 219]. In other words
our Hamiltonian can be written as f where f is some positive definite
quadratic form on ~* . Now let H be a subgroup of K acting from the left.
Then we can endow HBK with the submersion metric. Clearly there is also
an induced action of K on T * (H~K) with moment map ~K . Then from
the proposition we deduce that f o 7/Jk is the Hamiltonian associated with

the submersion metric on HBK. We have proved:

COROLLARY 4.8. - The Hamiltonian associated with the submersion

metric on HBK is collective for the canonical action of K on T* (H~K), and
its defining function is the same one that defines the left-invariant metric
on K.

Remark 4.9. - Collective metrics in general are not invariant under
the right action of K on HBK because the quadratic Hamiltonians in t do
not need to be AdK-invariant.

4.3. The Poisson sphere.

In this subsection we will study collective Riemannian metrics on ,S’2.
All these metrics are completely integrable and their geodesic flows have
zero topological entropy.

Let HI be the Hamiltonian on so(3) given by

We will assume in what follows that 13 &#x3E; 12 &#x3E; h &#x3E; 0.
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The above inner product gives rise to a left invariant metric on

SO(3). Let E be the ellipsoid on Jae3 = so(3) given by 2HI = 1. If we

set x = xl + x2 + x3 then formula (21) gives the period T of the periodic
orbits of XHI on E. We have

For x C (h , I2 ) the formula for T is obtained from the above by
permuting the indices 1 and 3.

The derivative of T is easy to compute. One finds that for x E (h , I2 ),
d~ (x) &#x3E; 0 and for x E (12, 13), d~ (x)  0. We also get

One can check that T(Ii ) &#x3E; if and only if 12 x 

Consider now the left invariant metric on ,S’O(3) defined by HI.
Let SO(2) be any one-parameter subgroup. Then ,S’O(2) acts on SO(3)
from the left by isometries. The quotient, MII,I2,I3 is a 2-sphere, and we
endow it with the submersion metric. This corresponds to the classical
"Poisson reduction" and M is called the Poisson sphere [3]. It follows from
a theorem of Lusternik and Schnirelmann [15] and estimates of Klingenberg
and Toponogov that any convex metric on ,S’2 whose Gaussian curvature
satisfies I /A  I~  A, has at least three geometrically different closed
geodesics with length in (2~r/~, That this is optimal is shown by
a result of Morse:

Given any constant N &#x3E; 27r there exists an E &#x3E; 0 such that any prime
closed geodesic on an ellipsoid

and 11 - ai  E, is either a principal ellipse or it has length larger than N.
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Using the observations from the previous section we will prove a
similar result for the Poisson sphere. It should be noted that the Poisson

sphere and the ellipsoid are not isometric. In fact their geodesic flows are
not topologically conjugate even though there is a homeomorphism that
takes orbits into orbits [5], [22].

THEOREM 4.10. - Given N &#x3E; 27r there exists an E &#x3E; 0 such that any

prime closed geodesic on the Poisson sphere MI1,I2,I3 I with 1- Ii has

length &#x3E; N, except for three closed geodesics with length close to 2,x.

Proof. According to Corollary 4.8 the Hamiltonian associated with
the metric on MI1,12,13 is collective for the canonical action of SO(3)

2 2 2

on T* (M) and its defining function is f = I1 12 + I3 . Consider
1, 12 13

the sphere bundle S in T* (M). Then the moment map V) of the SO (3)-
action on T* (M) is a submersion from S to E where E is the ellipsoid
2 2 2

X2 1 + -2- 2 + 2 == 1. Let us apply the description of collective motion from
Section 4. We know that the Hamiltonian flow of f restricted to E has
six critical points, 4 heteroclinic connections and closed orbits with period
T(x) where x2 + x3.T X where x - 1 + 2 + 3*

The six critical points give rise to geodesics which are orbits of one-

parameter subgroups, namely the one-parameter subgroups generated by
h, 0, 0), (0, ~ I2, 0) and (0, 0, ~ I3). Geometrically we only get three
different closed geodesics whose length is clearly close to 2-F if 1 - fi  E.

Note that since Q : : S - E is a submersion, those are the only geodesics
which are orbits of one-parameter subgroups.

Now, suppose x(t) is a closed geodesic with length L, different from
the ones described above. Then §(r(t)) is a closed curve in E. Thus

L &#x3E; for all x C ( h , I2 ) and all x E ( I2 , I3 ) . In other words

But from the equations (63) and (64) we see that given N there exists E &#x3E; 0

so that if ~ 1 - Ii ~ then &#x3E; N. 0

4.4. Criterion 1.

Let g be a real form of sl (2; C) 0 sl (2; C) and let G be a semi-simple
Lie group with Lie algebra g. Let (M, P) be a Hamiltonian G manifold.
Recall that this means there is a Poisson map 0 : (M, P) - (g*, Pcan) such
that 0 is G-equivariant.
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We will say that the G action on M is full if there exists an m E M

such that dim G.m &#x3E;- 4.

CRITERION 1. - Let M be a Hamiltonian G space, and assume that

the G action is full. Then, contains regular coadjoint orbits.

Proof. Because G’s action is Hamiltonian, the actions of G1 and
G2 are also Hamiltonian. The moment maps are 1/Ji : M -~ gi given by
1/Ji = 7ri 0 1/J, where ri : g* ---&#x3E; gi is the transpose of the inclusion map.
Equivalently, 1/J == 01 E) ~2 where g* is canonically identified with the
..subspace of g* that vanishes on g2, and vice versa for g2.

We wish to show that contains a regular element. We will do
this by reductio ad absurdum. Let R := {m E M : dim G.m -&#x3E; 4}. By
hypothesis, R # s~, and since R contains the regular G orbits, it is open and
dense in M. Assume that for all m E R, that dim 2 where p = V) (m) -
Let us remark that if dim 0.  2 for all p E ~(~f), then dim 0,-, = 0
and so 101. This implies that the Hamiltonians induced by G’s
action are all trivial, hence the G action is trivial. Absurd. Thus, there
exists an m E R such that either 1/J1 (m) -=1= 0 or qb2(m) # 0. Without

loss of generality, we may suppose that ~2 (m) ~ 0. Consequently, the set
S 02 (M) :~ Of is open and dense in M.

Let m C S. Then, since 2, and qb2(m) # 0, we have that
= 0. This shows that 0, and hence = 0. Therefore

G1 acts trivially on M, which implies that for all m E M, dim G.m =

3. Absurd. Therefore, contains regular, 4-dimensional

coadjoint orbits. D

4.5. Criterion 2.

Suppose that H is a semi-simple Lie group, =Lie(H), and a real
form g of sl(2; C) E9 sl(2; C) embeds into ~; let G  H be a subgroup with
Lie algebra g. Let T*H be trivialized by the left action of H, so that
T * H = H x ~*. The moment map of the right action of H on T * H in this
trivialization is just projection onto the second factor: p. The

moment map of the left action is given by the coadjoint action of H on ~*:

= Adhp. Let K C H be a closed subgroup, t i its Lie algebra
and ~r : ~ * -~ ~* the transpose of the inclusion map. The moment map of
K’s left action on H is given by Let X = KBH.
Then T*X is symplectomorphic to KBO-" (0) - KB(H x ~1 ) . The right
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action of H commutes with K’s left action on T*H, and so we can define
the moment map of H’s right action on T*X. We have

where p E t 1 is a representative of the coset K (id, p) E T*X and

i1 : : ~1 -~ C~* is the inclusion map. If we let 7rg : ~* - g* denote the
transpose to the inclusion map 2g : g ~ C~, then we have that the moment
map of G’s right action on T * X satisfies

Because H is semi-simple, we identify f)* ~ f) via the Cartan-Killing
form (,). Then, £-.1 is the (, )-orthogonal complement to t, and 7rg is the

orthogonal projection of # = g + g-.1 onto g. Thus, contains a

regular element in iff 7rg contains a regular element iff C ~
contains a regular element. This proves:

CRITERION 2. - The moment map ~ : r*(7~B7f) -~ g* hits a regular
orbit iff g r1 £-.1 contains a regular element.

A subspace V C g contains a regular element if dimV ~ 4. Thus, if

dim g n £-.1 ~ 4, then g n £-.1 contains a regular element and Criterion 2
can be applied.

5. Collective geodesic flows.

We now show using Criterion 1 and 2 that for all the spaces KBH
listed in Theorem C, there exists an embedding of a real form g of

sl(2; (C) into h such that the moment map 0 : T* (KBH) --4 g*
hits a regular orbit. A combination of this fact with a similar argument to
the one we used to prove the corollary after Theorem B and the results in
Subsection 4.1 yields Theorem C. Observe that any collective Hamiltonian
Poisson commutes with the pull back by the moment map of the Cartan-
Killing quadratic form, hence our collective Riemannian metrics Poisson
commute with the bi-invariant metric.

Stiefel manifolds. - Let H = SO(p + q), K = SO(q); the Stiefel
manifold of p-dimensional orthonormal frames in is Vp+q,p (R) =
KBH. For p ~ 1 and q &#x3E; 3 or p, q -&#x3E; 2 we can embed K = SO(q) into
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the lower right corner and G = SO (4) into the upper right corner of H so
that

and it is clear that g n £1- contains a regular element of g. Note that when
p = 1 and q = 3 (the 3-sphere) dim g n £1- = 3, but still g contains a

regular element.

BDI: Oriented Grassmannian manifolds. - Let H = SO (p + q),
l~ = SO(p) x SO(q); the Grassmannian manifold of oriented p-dimensional
planes in Rp+q is Gp+q,p(R) = KBH. For p ~ 1 and q -&#x3E; 3 or p, q j 2, we
can embed K into the diagonal of H and G = SO (4) along the diagonal of
H so that

It is clear that o n ~1 contains a regular element of g.

Complex Stiefel manifolds. - Let H = SU(p + q), K - SU(q);
the Stiefel manifold of p-dimensional orthonormal frames in Cp+q is

Vp+q,p (C) = KBH. For p &#x3E; 1 and q &#x3E; 3, or p, q -&#x3E; 2, we can embed K
and G = SO(4) as in the real case.
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AIII: Complex Grassmannian manifolds. - Let H = SU(p -f- q),
K = S(U(p) x U(q)); the Grassmannian manifold of p-dimensional planes
in is Gp+q,p (C) = KBH. For p &#x3E; 1 and q &#x3E; 3, or p, q &#x3E; 2, we can
embed K and G = SO(4) as in the real case.

AI: SO(m)BSU(m). 2013 For m ~ 4, we can embed G = SU(2) x SU(2)
into the upper left corner of H = SU(m). Then K n G = SO(2) x SO(2),
so it is clear that g n £1- contains a generic element.

AII: Sp(m)BSU(2m). - The group K = Sp(m) is the maximal

compact subgroup of Sp(m ; C). By embedding G = SO(4) in the upper
left corner of SU(2m), m &#x3E; 2, we have G r1 K = SO(2) x SO(2). This
implies that g r1 £1- contains a regular element.

CI: U(m)BSp(m). Embed the group G = SU(2) (D
SU(2) into H = Sp(m) along the diagonal for m &#x3E; 2. Then G n I~ _

U(I)-

CII: Sp(p) ~ Sp(q)BSp(p + q). - The inclusion R - C - IHI induces
the obvious inclusion 0(n; R) --4 O(n; C) ~ O (n; IHI) which allows us to
embed G = 0(4) into Sp(n) = O (n; IHI) for n &#x3E; 4. The condition on g 
is satisfied for p = l, q &#x3E; 3 and p, q &#x3E; 2. For p = 1 and q = 2 we have to
observe that Sp(2)BSp(3) = IHIP2. The group G = Sp(l)
acts on IHIP2 by (g, h) * [x : y : z] - ~g~ : hy : z] where Sp(l) is identified
with the group of unit quaternions. Since the G stabilizer of [1 : 1 : 1] is

trivial, the action of G is full. Hence, we can apply Criterion 1.

DIII: U(m)BSO(2,m). - We embed G = SO(3) (~ SO(3) along the
diagonal of SO (6) in the obvious way. Then 0 (G) _ ~ (g, g) : g E
G~, and so g contains a regular element for m &#x3E; 2.
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