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GAUGE EQUIVALENCE OF DIRAC STRUCTURES
AND SYMPLECTIC GROUPOIDS

by H. BURSZTYN and O. RADKO

1. Introduction.

Dirac structures were introduced in [10], [11] to provide a geometric
framework for the study of constrained mechanical systems. Examples of
Dirac structures on a manifold M include pre-symplectic forms, Poisson
structures and foliations; in general, a Dirac structure determines a singular
foliation on M whose leaves carry a pre-symplectic structure.

The notion of gauge equivalence of Dirac structures was introduced
in [27] motivated by the study of the geometry of Poisson structures
"twisted" by a closed 3-form. (See also [21], [24], where such structures were
introduced in connection with Poisson-sigma models.) There is a natural
way to modify a Dirac structure on M by a closed 2-form B E Q2 (M):
one adds the pull-back of B to the pre-symplectic form on each leaf of the
foliation, and the resulting pre-symplectic foliation determines a new Dirac
structure. This operation is called a gauge transformation, and it defines
an action of the additive group of closed 2-forms on Dirac structures. Two

Dirac structures are called gauge equivalent if they lie in the same orbit of
this action. As discussed in [27], gauge-equivalent Dirac structures share a
lot of important properties; for instance, their corresponding Lie algebroids
are always isomorphic.

Keywords: Dirac structures - Gauge equivalence - Morita equivalence - Symplectic
groupoids.
Math. classification: 53D 17 - 58H05.
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Gauge transformations of Poisson structures also arise in some quan-
tization problems. Let (M, 7r) be a Poisson manifold, and let Def (M, 7r) de-
note its moduli space of equivalence classes of star products [1]. It follows
from Kontsevich’s formality theorem [22] that Def(M, 7r) is in bijection with
equivalence classes of formal Poisson structures on (M, 7r) - As discussed in
[4], the classification of deformation quantizations of (M, 7r) up to Morita
equivalence can be expressed in terms of the orbits of a canonical action
of the Picard group Pic(M) ~ H2 (M, Z) on Def (M, 1T). Following Kontse-
vich’s correspondence, there is a Poisson counterpart of algebraic Morita
equivalence given by an H2 (M, Z)-action on formal Poisson structures, and
the results in [4], [5], [20] indicate that this action is given by gauge trans-
formations. In this context, a natural question is how gauge equivalence
relates to the geometric notion of Morita equivalence of Poisson manifolds

[33]. (See [23] for other aspects of the relationship between algebraic and
geometric Morita equivalence.)

In this paper we discuss the notion of gauge equivalence in the realm of

symplectic dual pairs and symplectic groupoids, and study the relationship
between the notions of gauge and Morita equivalence of Poisson structures.

The paper is organized as follows.

In Section 2 we recall some basic facts about Dirac structures and

their functorial properties, and establish an equivariance property of Dirac

maps with respect to gauge transformations.

In Section 3 we extend the usual notion of a symplectic dual pair
[29] to deal with Dirac manifolds. This more general notion, called a pre-
dual pair, arises naturally when one considers a gauge transformation of a
Poisson manifold which is part of a symplectic dual pair. We show that,
under natural regularity conditions, ordinary symplectic dual pairs are
obtained as quotients of pre-dual pairs.

In Section 4 we study the effect of gauge transformations of an

integrable Poisson manifold on the symplectic structure of its symplectic
groupoid. We show that if (G, Q) is a symplectic groupoid and Go is its
identity section, endowed with its natural Poisson structure 7r, then a gauge
transformation of 7r by B E 02(GO) changes the symplectic form on G by

where a and {3 are the source and target maps, respectively.

Using this result, we show in Section 5 that two integrable gauge-
equivalent Poisson structures are Morita equivalent. The converse is clearly
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not true, as Morita equivalent Poisson structures need not have the

same leaf decomposition. We show that, in fact, the converse is not true
even if we consider the possibility of gauge equivalence up to a Poisson
diffeomorphism.

Finally, in Section 6, we study gauge and Morita equivalence of a
certain generic set of Poisson structures on a compact connected oriented
surface ~. We consider the space 9,,(E) of Poisson structures vanishing
linearly on n smooth disjoint curves on E and show that two Poisson struc-
tures 7r, -F’ E Cn (£) vanishing on the same curves are gauge equivalent up
to Poisson diffeomorphism if and only if they have the same corresponding
modular periods. (A classification of these structures up to isomorphism
was obtained in [25].) This result provides a sufficient condition for Morita
equivalence in Yn (~); for the case E = S’2, we construct a complete Morita-
equivalence invariant for such Poisson structures.

Acknowledgments. - We would like to thank Robert Bryant, Mar-
ius Crainic, J.-P. Dufour, Rui L. Fernandes, Andre Henriques, Nicholas
Proudfoot and Alan Weinstein for valuable discussions and comments. We

also thank the referee for comments and corrections.

2. Dirac structures.

2.1. Linear Dirac structures.

Let V be a finite-dimensional real vector space. Let us equip V 0 V*
with the symmetric pairing

A Dirac structure on V is a subspace L C V (D V* which is maximally
isotropic with respect to ( , ) 1. As we will see later, it is useful to think of

V*, ( , )) as an "odd" symplectic vector space (in the sense of super
geometry), in such a way that its lagrangian subspaces correspond to Dirac
structures on V. We denote the set of Dirac structures on V by Dir(V).

Throughout the text, we will identify bilinear forms Q : V x 

(resp. 7r : V* x V* -~ R) with linear maps (2 : V --~ V* (resp. if : V* - V)
by = Q (u, v) (resp. = 7r (,q, v)). Whenever the context is
clear, we will just write Q for 0 (resp. 1f for -k).
1 This is equivalent to L being isotropic and dim L = dim V.
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Example 2.1. - If Q is a skew-symmetric bilinear form on V (resp.
7r is a skew-symmetric bilinear form on V*, i. e. a bivector on V), then
L - graph(Q) C V EB V* (resp. L - graph(7r)) is a Dirac structure

on V. Conversely, any Dirac structure L satisfying L n V* = 101 (resp.
L n V - ~0~) defines a skew-symmetric bilinear form (resp. bivector) on V.
Hence pre-symplectic structures (i.e. skew-symmetric bilinear forms) and
Poisson structures (i.e. bivectors) on vector spaces are examples of linear
Dirac structures.

Consider the natural projections p : V EB V * -~ V, and p* : V EB V * -~
V*, and let L be a Dirac structure on V. It is easy to check that [10]

where ° denotes the annihilator.

PROPOSITION 2.2. - A Dirac structure L on V is equivalent to
either of the following:

(i) A pair (R, Q), where R C V is a subspace and Q is a skew-

symmetric bilinear form on R.

(ii) A pair (K, ~r), where K C V is a subspace and 7r is a bivector on
the quotient V / K.

Moreover, these correspondences are such that R = p(L) and K =
V U L = ker Q

Proof. Let L be a Dirac structure on V. We set R = p(L) C V
and define the skew-symmetric bilinear form Q, : R - R* by

where q E V* is any element such that (x, q) E L. The map Q, is well-

defined by (2.2), and V n L. Similarly, we can define a skew-
symmetric form 03C0L on p* (L) and notice that (p*(L))* = 
V/V n L. So, for K ’-- V n L, we have a well-defined bivector 03C0L on VIK
with ker 03C0L = L n V*.

Conversely, given a pair (R, Q) as in (i) , we set

A simple dimension count shows that L is a Dirac structure satisfying
p(L) = R and QL = Q. A similar construction holds for a pair (K, 7r) as
in (ii). D
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For L C Dir(V), we denote the corresponding skew-symmetric bilinear
form on p(L) by OL and the corresponding bivector on V/V n L by 1fL’

Example 2.3. - Let L = graph(Q), where Q is a skew-symmetric
bilinear form on V. Then R = p(L) = V, Q, K = ker Q, and 7r~
is the Poisson bivector on the reduced space V/K corresponding to the
symplectic form induced by Q.

Example 2.4. - Let L = graph(7r), where 7r is a bivector on V. Then
R = 7r(V*), and Q, is the natural symplectic form induced by 7r. In this
case, K = ker Q,, = ~0~, and 1f L = 7r.

2.2. F’unctorial properties of linear Dirac structures.

Linear Dirac structures have nice functorial properties: they can be
both pushed forward and pulled back. This is a consequence of the dual
characterizations of Dirac structures (Proposition 2.2) in terms of bilinear
forms and bivectors.

We can also describe the functorial properties of Dirac structures
in terms of Weinstein’s symplectic category [28], where the objects are
symplectic vector spaces and the morphisms are canonical relations. We
recall here the main ideas.

Let E, F and H be symplectic vector spaces. A canonical relation
between E and F is a lagrangian subspace L C E x F, where F is the
vector space F with symplectic form multiplied by -1. If L1 C E x F and
L2 C F x H, the usual composition of relations

defines a lagrangian subspace of E x H. If L 1 = graph( f) , L2 = graph(g)
for symplectomorphisms f : F - E and g : H - F, then 

graph( f o g). In general, the composition of canonical relations defines a
map

where Lag(U) denotes the set of lagrangian subspaces of a vector space
U. We remark that the same ideas work when symplectic vector spaces
are replaced by vector spaces equipped with a nondegenerate symmetric
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bilinear form with zero signature (thought of as "odd" symplectic spaces);
in this case, lagrangian (i.e. maximally isotropic) subspaces still have half
the dimension of the total space.

Let V and W be vector spaces, and : V - W be a linear

map. Let E = (V C V*, ( , )) and F = (W (D W*, ( , )), regarded as "odd"
symplectic vector spaces. We define two canonical relations associated to 0:

(As will become clear below, the letters 0 and ,l3 stand for forward and

backward.)

Since we have the natural identifications Dir(V) ~ Lag(E x ~0~) and
Dir(W) ~ Lag(F x (0)), the composition of relations (2.7) immediately
induces maps

Explicitly, for L, E Dir(V), Lw E Dir(W) we have

Example 2.5. - If Lv = graph(03C0) for a bivector 7r on V, then

0§(Lv) = Analogously, if L ~,~, = graph(Q) for a skew-

symmetric bilinear form Q in W, then = 

We observe that the maps Fo and L30 are not inverse to each other
in general. A simple computation shows that if 0 is 1-1, then L30 o To = Id,
and if 0 is onto, then To o 130 = Id.

PROPOSITION 2.6. - Let 0 : : Y -~ W be a linear map, and let
L, E Dir(V) and Lw E Dir(W).

Proof. Using (2.12), it is easy to check that if Lw = 0§(Lv ) , then
w n Lw = x E V, (x, 0) E Since 

it follows that ker QLW. = 
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As q E implies that 0* Ti E Y n Ly, we can define on

’ 

By definition of 7rLv (see Proposition 2.2), (~*r~)) _ where

x is such that (x, 0* Ti) E Lv. On the other hand, if y = 7rLw (q), then
(y, r~) E Lw = which is the case if and only cjJ( x) and
(x, cjJ*r¡) E L. Therefore 7rLw = and (i) is proven.

The proof of (ii) is analogous and is left for the reader. 0

COROLLARY 2.7. - Let (V,7r1) and be Poisson vector

spaces, and let = graph(7rz), i = 1, 2. A linear map : V --~ W is

Poisson (i.e. CP*1f1 = ~r2) if and only = 

Similarly, if (V, Ql) and (W, Q2) are pre-symplectic vector spaces, then
a linear map 0: V - W satisfies SZ1 if and only if BcjJ( Lo.2) = Lo.1 ,
where = graph(Qi), i = 1, 2.

This motivates the following definition.

DEFINITION 2.8. - Let V and W be vector spaces endowed with

Dirac structures Lv, Lw, respectively. A linear map V --~ W is called
forward Dirac if 0§(Lv ) = Lw.

A map satisfying the analogous definition for Bo is called backward
Dirac. We remark that these definitions are not equivalent. In this paper we
will only deal with forward Dirac maps, and we will refer to them simply
as Dirac maps.

Example 2.9. - Let L C Dir(V). As observed in Proposition 2.2 (ii),
V/kerOL has an induced Poisson structure 1f£. The projection pr : V -
V/ker SZL is a Dirac map.

LEMMA 2.10. - Let Lv E Dir(V) and Lu, E Dir(W). 
W is a Dirac map, then it naturally induces a Poisson map V/ker -

W/ker Q LW.

Proof. Let prv : Y -~ V/ ker QLv and prw : W - W/ ker OLw be
the natural projections. By Proposition 2.2 (i), the map 
W/ ker OLw given by is well-defined. By the
observation in Example 2.9, we get

, , -
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where L7rLV = for the Poisson structures

and on and W/kerOLw, respectively. Therefore, 0 is
a Poisson map. D

2.3. Gauge equivalence of linear Dirac structures.

Let Bil(W) be the additive group of skew-symmetric bilinear forms
on a vector space W. Following Weinstein and Severa [27], we consider the
action T : Bil(W) x Dir(W) - Dir(W) by gauge transformations,

Alternatively, using Proposition 2.2, two Dirac structures L1, L2 on W are
gauge equivalent if

(2.15) p(L1) = p(L2) and OL1 = QL2 + 

for B E Bil(W) and L E Dir(W).
A linear map 0 : V - W of vector spaces induces an action of Bil(W)

on Dir(V), since 0* Bil(W) C Bil(V).

LEMMA 2.11. - The map -To : : Dir(V) --&#x3E; Dir(W) is Bil(W)-
equivariant.

Proof. We must show that for all

L E Dir(V), B C Bil(W).

On the other hand,

Since (~* B) (x) _ 0*(B(O(x))), the result follows. 0

A similar equivariance property holds for the map 130.

Let (V, S2) be a symplectic vector space, and let (W, 7r) be a Poisson
vector space. Let LQ = graph(0) and L, - graph(7) be the corresponding
Dirac structures.
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LEMMA 2.12. - Let (~ : : (Y, SZ) --~ be a linear Poisson

map, and let B E Bil(W). Then the restricted map 0 : ker(Q + 1* B) ---t
ker an isomorphism. In particular, the form 0 -E- B is symplec-
tic if and only corresponds to a Poisson structure.

Proof. By Lemma 2.11, ,
since 0 is Poisson. Hence, by Proposition 2.6 (i),

ker(Q + is onto.

On the other hand, since 0, it follows that

So 0 is injective. 0

In order to study dual pairs, it will be useful to collect a few results

on pre-symplectic orthogonals in the linear case.

LEMMA 2.13. - Let L E Dir(V) V - W be linear. Then

Proof. If x E (ker o n then OL (x) (y) = 0 for all y E
The form q E (~(~(L)))* given by ?7(~(~/)) = is well-

defined, 0* Tj = QL (x), and hence (x, 0* il) E L. On the other hand, suppose
(x, 0* TI) E L for Ti E W*. Then Q L(x) = 0* 711 p (L), and if y E ker o ~l p(L),
we have SZL (x) (y) = TI(O(Y)) = 0. 0

Let L E Dir(V), Li C Dir(Wi), and let V - Wi, i = 1, 2, be Dirac

maps.

LEMMA 2.14. - Suppose that the following orthogonality condition
on the Ji-fibers holds:

Then for is a Dirac map.

Proof. We must show that = L1. Since these

subspaces have the same dimension, it suffices to prove that 0Ji (L) =
L1 C FJ1(TJ;B(L)). Recall that
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and

Suppose (J1 (x), r~) E FJ1(L). By Lemma 2.13, x E (ker J1 n =

ker J2 n p(L). So (J2’ B) (x) - 0, and therefore (J2 B) (x) ) =
(x, E L. This implies that E and the result

follows. D

Consider a symplectic vector space (V, Q), Poisson vector spaces
(Wi,7fi), i - 1, 2, and linear Poisson maps Ji : V --+ Wi. We call the

diagram

a linear dual pair if (ker Ji ) = ker J2. Let us fix such a linear dual pair,
and let L~ = graph(Q) and L~2 - graph(-xi). Before we prove the main
result of this section, we need the following lemma.

LEMMA 2.15. - Let B E Bil(W2), and let Q’ = SZ + Then

(ker J2)~ = ker J1 and (ker J1 )0’ == (ker J1)0 + ker 0’.

Proof. Since B I ker J2 = 0, it follows that (ker J2)O’ == (ker J2 ) ~ ==
ker J1. By taking Q’-orthogonals, we get ker J2 + ker Q’. 0

We can now prove the main result of this section.

THEOREM 2.16. - Let Bi E Bil( Wi ), i - 1,2, and let fi =
o + Ji B1 +J~2. Then

(i) the maps ( , are Dirac;

(ii) the form n is symplectic if and only if TB, (L~Z ), i - 1, 2, are
Poisson;

(iii) (ker Ji )  = ker J2 + ker ~2.

Proof. By Lemma 2.11, J2 : (W2, TB2 (L~2 )) is

Dirac, and, by Lemma 2.15, J1 : is also Dirac.

Again by Lemma 2.11, it follows that J1: 2013~ (W1,TB1(L7rl)) is

Dirac. By Lemma 2.15, (kerJ2)n+J;B2 = (kerJ2)n == ker Jl. So con-
dition (2.17) is satisfied, and Lemma 2.14 implies that J2 : 1 (V, Lfi) -
(W2, TB2 (L7r2)) is a Dirac map. This proves (i).
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In order to prove (ii), let us assume that Ô is symplectic. It fol-

lows from (i) and Proposition 2.2 (i) that TB1 (L1f1) and TB2 (L1f2) are Pois-
son. Conversely, if TB1 (L1f1) is Poisson, then 0 -~ Ji B1 is symplectic, by
Lemma 2.12. It follows, again from Lemma 2.12, that if TB2(L1f2) is also

Poisson, then Q + Ji B1 + J2 B2 is symplectic.

We now prove (iii). Clearly, (ker Ji) = ker J2 +

ker(Q + J2 B2), by Lemma 2.15. Thus ker J2 + ker o C (kerJi)~. On
the other hand, again by Lemma 2.15, ker Ji. So
ker SZ n ker J1 = ker (Q + J2 B2 ) , and therefore ker (Q + ker it.
Hence ker J2 + ker(Q + J2 B2) C ker J2 + ker S2, and the result follows. D

2.4. Dirac structures on manifolds.

Let M be a smooth manifold. A Dirac structure on M [101 is a

subbundle LeT M EB T*M which determines linear Dirac structures

pointwise and whose sections are closed under the Courant bracket [ , ] :

Let (M, LM ) and (N, LN) be Dirac manifolds. A smooth map
M - N is a (forward) Dirac map if (L~v)~(~) for all

x E M.

Example 2.17. - Let Q C (resp. 7r C x2 (M) ) . As discussed
in Section 2.1, L = graph(Q) C (resp. L = graph (7r)) defines a
pointwise linear Dirac structure. In this case, the extra condition involving
the Courant bracket in the definition of a Dirac manifold is equivalent to the

integrability condition dS2 = 0 (resp. [7r, 7r] = 0, where [, ] is the Schouten

bracket). Hence pre-symplectic and Poisson structures on M are particular
cases of Dirac structures.

The Courant bracket (2.18) does not satisfy the Jacobi identity
in general. However, the Jacobi identity does hold when this bracket is

restricted to sections of a Dirac subbundle L C TM ~T * M, and it defines a
Lie algebroid structure on L with anchor map pi L, where p : 
TM is the natural projection. When L = graph(7r), where 7r is a Poisson

structure, the Lie algebroid structure on L is isomorphic to the natural Lie
algebroid structure on T*M via the projection p* : TM 0153 T*M - T*M.
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A Dirac manifold (M, L) carries a (singular) pre-symplectic foliation:
the leaves are the orbits of the corresponding Lie algebroid and the leafwise
pre-symplectic structure is defined as in Proposition 2.2 (i). This foliation
is symplectic if and only if L = graph(7r) for a Poisson structure 7r.

As in the linear case, one can think of a Dirac structure L on M as a

"Poisson structure on the leaf space MIIC", where J’C is the characteristic

foliation of the leafwise pre-symplectic form Q L . More precisely, if (M, L)
is a Dirac manifold, we define its set of admissible functions by

If f E A, there exists X E x(M) such that (X, df ) E L; we call X a
hamiltonian vector field of f and denote it by X f. Note that hamiltonian
vector fields of admissible functions are defined up to vector fields in ker OLe
If A, then the bracket

is well-defined and makes ,~4 into a Poisson algebra. Clearly, if L comes from
a Poisson structure, then ,,4 is just the Poisson algebra (C°°(M), ~ , }). If
the characteristic foliation IC of QL is simple, i.e. if MIK is a smooth

manifold and pr : .M 2013~ M/IC is a submersion, then CCXJ(MjIC) and
there is a naturally defined Poisson structure 7r L on MIIC in such a way
that pr is a Dirac map (Example 2.9).

Gauge transformations of Dirac structures are defined analogously to
the linear case: if L is a Dirac structure on M and B a closed 2-form, we
set

The closedness of B guarantees that TB (L) satisfies the integrability condi-
tion with respect to the Courant bracket. As in the linear case, two Dirac
structures on M in the same T-orbit are called gauge equivalent.

As observed in [27], Sec. 3, for a Poisson structure 7r on M, 
is Poisson if and only if the endomorphism 1 + B7r : T*M - T*M is

invertible. In this case,

Gauge-equivalent Dirac structures share many properties: for instance, they
have the same leaf decomposition (though the pre-symplectic forms on the
leaves differ by the pullbacks of B (see (2.15))) and their corresponding
Lie algebroids are isomorphic [27]. In particular, gauge-equivalent Poisson
structures have isomorphic Poisson cohomology.
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3. Pre-dual pairs and reduction.

A d ual pair [29] consists of a symplectic manifold (,S’, S2 ) , Poisson
manifolds (Mi,, (M2, ~2), and Poisson maps Ji : ,S’ ~ Mi, i = 1, 2 with
symplectically orthogonal fibers, i.e.

A dual pair is called full if the maps J1, J2 are surjective submersions, and
complete if these Poisson maps are complete (see e.g. [6]).

is a full dual pair, then

(3.2)

and

(3.3)
In order to deal with Dirac structures, we generalize the notion of a dual
pair as follows.

DEFINITION 3.1. - A pre-dual pair is a pre-symplectic manifold

(S, Q), Dirac manifolds (M1, L1), (M2, L2) and Dirac maps Ji : ,S’ ~ Mi,
t = 1, 2, such that

As in the case of dual pairs, we represent pre-dual pairs by a diagram

As before, a pre-dual pair will be called full if each ~Ji is a surjective
submersion.

PROPOSITION 3.2. - Consider a pre-dual pair M1 Ä S’ ~ M2.
If S is symplectic, then M1 and M2 are automatically Poisson, and u~e have
a dual pair in the usual sense.

Proof. - If ker(Q) = 0, then = T JZ (ker SZ) = 0, and hence
L, is automatically Poisson. The maps i = 1, 2, are Dirac, and hence

Poisson, and the orthogonality property (3.1 ) reduces to (3.1). 0
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We now fix a full pre-dual pair .

PROPOSITION 3.3. - We have the following generalization of (3.2):

Proof. - Clearly, if
= 0. On the other hand, if -

vanishes along ker TJ2 . Since J2 is a submersion, in a neighborhood of x
we can choose an exact 1-form dg with dxg = r~ and such that dg vanishes
on the distribution ker TJ2 . Hence g is constant along the J2-fibers and can
be written in the form J2*f for f E C° (M2 ) . Around x, u = 0

The next result generalizes property (3.3).

PROPOSITION 3.4. - Let A be the algebra of admissible functions
on S, and let be the algebra of admissible functions on Mi, Then

Proof. By Proposition 2.6, T Ji(X) E So, if X E ker SZ

and f E ,A.i, then = = 0, and (i) is proven.
For (ii), note that if fi E Az, then = 

0 by Proposition 3.4.

Finally, since Ji is a Dirac map, (X, Jtdg) E L implies that

E FTxJi(L) = Li . This means that = Xg. Now,
then

and the result follows. 0

Suppose that the characteristic foliations of Q and K and

Ki, respectively, are simple. Recall that SIK has an induced symplectic
structure while Mi I Ki, i = 1, 2, carry induced Poisson structures ~ri i
so that the projections pr : S - SIK and pri : S --4 MilKi are Dirac maps.

THEOREM 3.5. - Let Mi ~ ,S’ ~ M2 be a full pre-dual pair.
The maps J, : S - M, induce surjective submersions on the quotient,
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is a full dual pair.

Proof. By Proposition 2.6 (i), ker QLi. Hence if x
and y belong to the same leaf of K, then Ji (x) and Ji (y) belong to the same
leaf of ICi. So the map ji : 6"//C - Mi/Ki, ji (pr (x) ) - is well-

defined and is a surjective submersion. It follows from Lemma 2.10 that ji
is a Poisson map. Finally, a simple computation shows that 

pr((kerT Ji)Ü). Hence (3.4) implies that kerTj2’ 0

We obtain examples of pre-dual pairs from gauge transformations of
Poisson structures in dual pairs as follows.

THEOREM 3.6. - Let I

full dual pair, and let Bi be a closed 2-form on MZ, i - 1, 2. Let
SZ + J~2. Then

is a full pre-dual pair. Moreover, h is symplectic if and only if TB, (L1r2 ),
i = 1, 2, are Poisson, in which case they form a dual pair.

Proof. The result is a consequence of Theorem 2.16. 0

4. Gauge equivalence of symplectic groupoids.

In this section we will apply the results of Section 3 to dual pairs
coming from symplectic groupoids.

A symplectic groupoid [30] is a symplectic manifold (G, Q) which is
a Lie groupoid such that the graph 1m (x,y) E G2 ~ of
the multiplication is lagrangian in G x G x G (as usual, G2 denotes the
set of composable pairs). We denote the source (resp. target) map of G by
a (resp. ,Q), the identity embedding by E : Go ~ G, and the inversion by
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z : G ~ G. We recall that there exists a unique Poisson structure 7r on Go
making a (resp. (3) into a Poisson (resp. anti-Poisson) map.

Let (M, 7r) be an integrable Poisson manifold, with symplectic grou-
poid (G, 0, 0152, ,(3) . Since Lie algebroids corresponding to gauge-equivalent
Dirac structures are isomorphic, all the Lie algebroids of Dirac structures in
the T-orbit of 7r can be integrated to a Lie groupoid isomorphic to (G, a, 0) -
We now discuss the effect of a gauge transformation T, on the symplectic
form Q.

Let B be a closed 2-form on M, and consider the 2-form QB +
on G.

THEOREM 4.1. - If7r B is Poisson, then GB = 
is a symplectic groupoid integrating (M, 

Proof. By Theorem 2.16, SZB is symplectic. We must check that
the graph

is lagrangian in GB x GB x GB . Let (x, y) 6 G2, and consider a curve
(x(t), y (t)) in G2 with (x (0), y (0)) = (x, y). Let (u, v) == (x’(0), y’(0)). Then

and any element in Tpfm is
of this form.

Differentiating the identities y)) = a(x), (3(m(x, y)) = (3(y)
and (3(x) = a(y), we get

Therefore, if i , we have

Hence rym is lagrangian in GB x GB x GB and GB is a symplectic groupoid.

By Theorem 3.6, a : (G, SZB ) ---~ is a Poisson map. Since

there is a unique Poisson structure on the identity section of a symplectic
groupoid with this property, the Poisson structure induced by QB on M
is 7T B . 0
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Thus, the effect of applying a gauge transformation TB to the Poisson
structure of the identity section of a symplectic groupoid is the following
change of the symplectic form on the groupoid:

Note that, in general, is not Poisson, and the form SZB on G is

degenerate. So

is generally just a pre-dual pair. In this context, one is naturally led to
consider groupoids equipped with pre-symplectic forms; the associated
integration problem is whether a Dirac structure with an integrable Lie
algebroid can be integrated to such a "pre-symplectic groupoid" (we believe
an analog of the constructions in [7], [13] should clarify this question).
Similarly, considering gauge transformations on Poisson groupoids [31], we
are led to the more general notion of "Dirac groupoids". The development
of these ideas is the subject of work in progress.

5. Morita equivalence of gauge-equivalent
Poisson structures.

In this section, we compare the notions of gauge and Morita equiva-
lence for integrable Poisson manifolds.

Two Poisson manifolds (Mi, 7ri ) , (M2, ~2) are called Morita equivalent
[33] if there exist a symplectic manifold (5’, f,) and Poisson maps S -

Mi, i = 1, 2, so that

is a complete full dual pair with Ji-connected and Ji -simply- connected
fibers. In this case we call this diagram a Morita equivalence bimodule.

Let (M, 7r) be an integrable Poisson manifold with a-connected and
a-simply-connected symplectic groupoid Let B be a closed

2-form on M such that 7r B == TB (7r) is Poisson.
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THEOREM 5.1. - The Poisson manifolds (M, 7r), (M, 7r~) are Morita
equivalent, with Morita equivalence bimodule (G, ~l ol 0), where n ==

Q - ~3-B.

Proof. By Theorem 3.6,
is a full dual pair with connected and simply connected fibers. Since

) is anti-Poisson, and it only
remains to show that this dual pair is complete.

Let Xh denote the hamiltonian vector field of h with respect to SZ.
Let Xh and X B denote the hamiltonian vector fields with respect to it and

Claim. - We have the following relations between the hamiltonian
vector fields:

Proof. Since E 3*B(Xa* f) - 0. Hence 
= d(cx* f ). Therefore, Xo:* f’ The other relation can be

derived analogously. 0

Let now f E C~(M) be a complete function with respect to 7r (resp.
7r~) . We must check that (resp. is complete.

By our claim, X, - f = X, - f , which is complete, since a : (G, SZ) -~
(M, 7r) is the target map of a symplectic groupoid [9], Chp. III. Analogously,
since (G, !1B, a, ,~) is a symplectic groupoid for (M, 7rB), it follows that

,C3 : (G, QB) - (M, is complete, and hence X,~* f = xt f is complete as
well. 0

It is clear that Morita equivalent Poisson structures on a manifold
M need not be gauge equivalent, as their leaf decompositions are not
necessarily the same. More generally, we say that two Poisson structures
7r and 7r’ on M are gauge equivalent up to Poisson diffeomorphism if

there exists a diffeomorphism f : M - M such that f* 7r and 7r’ are

gauge equivalent. It is clear that integrable Poisson structures which are
gauge equivalent up to Poisson diffeomorphism are still Morita equivalent.
However, as the next example shows, one can have Morita equivalent
Poisson structures on a manifold M which are not gauge equivalent up
to Poisson diffeomorphism.

Example 5.2. - The example is based on non-cancellation properties
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of product manifolds (see [19] and references therein). Let Fl , F2 and B be
closed smooth manifolds so that Fl and F2 have different homotopy types
and F1 x B is diffeomorphic to F2 x B (see [8] for original examples). As
discussed in [19], one can take and Fi to be ,S’q-bundles over 

for q and n suitably chosen (and large). Hence we can assume that B and
Fi are simply connected.

Let E be the total space of these trivial fibrations, with diffeomor-
phisms E ~ B x Fi, i = 1, 2. Let M = T* E. If denotes the natural

cotangent lift of we obtain the diffeomorphisms

Since the transformations in the structure group of the fiber bundle

are cotangent lifts of diffeomorphisms of Fi, they preserve the canonical
symplectic forms on T* Fi, i = 1, 2. Thus yJfl makes M into a bundle of
symplectic manifolds in the sense of [18], defining a Poisson structure 7rz on
M. As Fl and F2 have different homotopy types, so do T* F1 and T * F2, and
hence 7r1 and 7r2 cannot be gauge equivalent up to Poisson diffeomorphism.

Finally note that since and B are simply connected, so are
T*Fi , T*F2 and T*B, and [18], Thm. 3 implies that the symplectic struc-
ture along the fibers of T * Fi 2013~ M - T*B admits a closed extension.

Hence the fundamental class [14] of vanishes, and [33], Thm. 4.3
implies that is Morita equivalent to the base T* B equipped with
the zero Poisson structure. By transitivity, (M, 7r,) and (M, 7r2) are Morita
equivalent.

6. Gauge and Morita equivalence of topologically
stable Poisson structures on surfaces.

Let 1: be a compact connected oriented surface. Since for dimensional
reasons any bivector field on 1: is Poisson, Poisson structures on 1: form a
vector space.

For n &#x3E; 0, let be the set of Poisson structures 7r on 1: such that

9 the zero set {p = 0 1 consists of n smooth disjoint curves
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. 7r vanishes linearly on each of the curves -y1 (~r), ~ ~ ~ , -yn (7r).

For n &#x3E; 1 the symplectic leaves of 7r c 9(E)
are the points in the zero set i and the connected components of

E B for n = 0 the structure is symplectic. We call the Poisson
structures in g(E) topologically stable, since the topology of their zero sets
is preserved under small perturbations.

Choosing a non-degenerate Poisson structure 7ro on E, we can identify
the space of Poisson structures on E with any 7r is represented
in the form 7r = f . 7ro for f E Under this identification, g(E)
corresponds to the space of smooth functions for which 0 is a regular value.
This implies that the set of topologically stable Poisson structures ~(~)
is generic, i.e. !9(E) is an open dense subset of the space of all Poisson

structures on E endowed with the Whitney C~ topology.

As shown in [25], the classification of Poisson structures in up

to Poisson isomorphisms depends on a finite number of invariants. In order
to recall what these invariants are, we need a few definitions.

For a Poisson manifold (M, 7r), let v be a volume form on M. The
modular vector field X’ of 7r with respect to v [32] is defined by the formula

This vector field measures the degree of invariance of v under the flows of
hamiltonian vector fields; in particular, X v = 0 if and only if LXh v == 0
for all h E C°° (M) . The modular vector field X v is Poisson (i.e. its flow

preserves 7r), and, if v’ is a different volume form, one has

.I.’-’b I

where k is the nowhere zero ratio k == v. Thus the class of X’ in the first
Poisson cohomology H~ (M) (i.e. its equivalence class modulo hamiltonian
vector fields) is independent of v. This defines an element in H,~ (M) called
the modular class and denoted by 

Suppose that the Poisson tensor 7r on M vanishes on a closed curve
-y C M, and is nonzero away from y in a neighborhood of q. Since the
modular vector field X v preserves the Poisson structure, its flow must take
the zero set of 7r to the zero set of 7r. Thus the flow of X’ takes y to rand
so X" must be tangent to q. Moreover, for another choice of volume form

v’, we have
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since all hamiltonian vector fields are zero when restricted to the zero

curve -y. It follows that the restriction of the modular vector field X’ to 7 is

independent of v, and hence induces an orientation on 1. As was observed
in [26], the period of the flow of this vector field around 1 is an invariant of
the Poisson structure 7r. We denote this number by 1f) (or, for short,
T,(1f) when it is clear what M is).

For 7r E 9,(E), let Z(1f) denote its zero set, consisting on n disjoint
curves, taken with the induced orientations. The main result of [25]
states that Poisson structures in 9,,(E) are completely classified up to

(orientation-preserving) Poisson isomorphisms by the class of Z(7r) modulo
orientation-preserving diffeomorphisms of E, the n modular periods of 1f
around each connected component of Z(7r) and the regularized Liouville
volume V(7r) (which is a certain regularized sum of symplectic volumes of
two-dimensional leaves, taken with appropriate signs).

We shall now consider the questions of gauge and Morita equivalence
of Poisson structures in ç (E).

6.1. Gauge equivalence in ~(~).

The obvious necessary condition for two Poisson structures 7r, 7r’ E

!9(E) to be gauge equivalent is Z(7r) = Z(7r’), i.e. the zero sets of both

structures, with the induced orientations, should be the same.

PROPOSITION 6.1. - Let 7r, 7r’ C !gn (~) be Poisson structures with
Z(1f) = Z(7r’) = If they are gauge equivalent, then their modular

periods are the same around all the zero curves, i.e. (7r) - T,y2 (7r’), for
i = 1, ... , n.

Proof. Let 7r = f . -Fo, 7r’ = f’ 7ro, where f, f’ E C’ (E) are
functions vanishing linearly on -yl , ~ ~ ~ , 1n and non-zero elsewhere, and 7TO
is a fixed nondegenerate Poisson structure on E.

For each i = 1, ... , n, let Ui I  Rz, 9z E [0,27r]}
be a small annular neighborhood of the zero curve 1i E Z(7r) such that

and 7r ~ = 0Sz , Oo,. A
simple computation shows that the modular vector fields along 1i are
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Suppose that 7r’ - for a closed 2-form BE SZ2 (~) . Writing B =
Oi)dzi A d9i , it follows that

which implies that

So ~r and 7r’ have equal modular vector fields along and hence equal
modular periods. 0

We remark that if 7r E Cn (£) and B is a closed 2-form on E such that
TB (7r) is Poisson, then the regularized Liouville volumes of 7r and TB (7r) are
related by V(TB(7r)) = V(7r) + Vol (B), where Vol(B) = fE B is the Liouville
volume of B.

We now discuss the converse of Proposition 6.1.

THEOREM 6.2. - Let 7r, 7r’ E ~n (~) be two Poisson structures
with Z(7r) = Z ( ~r’ ) = If T-~, (-7r) = T,y2 ( ~r’ ) , for t = 1,..., n, then 7r
and 7r’ are gauge equivalent up to Poisson diffeomorphism.

Proof. Let 7r == f . 7ro , 7r’ = f ’ - 7ro, with f and f’ as in the proof of
Proposition 6.1. By replacing, if necessary, 7r’ by a Poisson diffeomorphic
structure (with same zero set), we can assume that, for each i = 1,..., n,
there is a small annular neighborhood l
of qz E Z(7r) such that Z(7r) n Ui and = A 

and oJ
A simple computation (see (6.1)) shows that ci = T) and c’ = Tyi (7r) i 

- 

(-,)I
so ci = c’i. *

Let c,v - (resp. - be the symplectic form corre-
sponding to 7r (resp. 7r’) on E B Z(7r), and define the 2-form B on E B Z(7r)
by 

/ -4 -4 ’B., , - I

It is simple to check that, since ci = ci, the function -p - 1- = f f 
i

extends to a smooth function on E. Hence the 2-form B can be extended

to a (closed) 2-form on E, also denoted by B, with the property that

7T / = TB (7r) - D

For 7r E 9, (E), the anchor 7r : T * ~ ~ TE of the corresponding Lie
algebroid is injective on the open dense set E B Z(~r). According to [15],



331

Thm. 1, a Lie algebroid whose anchor is injective on an open dense set is

integrable, so (E, 7r) is an integrable Poisson manifold.

The following result follows from Theorem 5.1.

THEOREM 6.3. - Two Poisson structures 7r, 7r’ E 9,,(E) with

the same zero sets Z(7r) = ~(7r~) = and equal mod ular periods,
, for i = 1,..., n, are Morita equivalent.

We now turn our attention to the study of Morita equivalence in

~ (,S’2 ) . First, we need to collect a few general results on invariants of Morita
equivalence.

6.2. Invariants of Morita equivalence: topology of
the leaf space and modular periods.

Let (M,7r) be a Poisson manifold. Let L(M) be the leaf space of
the symplectic foliation of 7r, endowed with its quotient topology: for a
topological space X, a function f : L(M) -~ X is continuous if and only if
f o pr : M - X is continuous, where pr : M ---t L (M) is the quotient map.

Let (Mi, 7ri ) and (M2, 7r2) be Poisson manifolds, and let (M1, E-

(S’, Q) J2 (M2, r2 ) be a Morita equivalence bimodule. It is well-known (see
e.g. [2], [6]) that S induces a bijection of sets Os : L(Mi) - L(M2) given
by

The following observation is based on ideas from [12].

PROPOSITION 6.4. - The map Os : L(M2) is a homeo-
morphism of topological spaces.

Proof. Let Fi be the subset of T Mi consisting of vectors tangent
to the symplectic leaves. Let C TS, i = 1, 2 be the subbundles tangent
to the Ji-fibers. Then

where denotes the pull-back of Fi. Let

Since the fibers of Ji are connected, i = 1, 2, the natural maps
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of leaf spaces are bijections. Moreover, it is not hard to see that Os =

~2 0 ’Ø11. So, if we endow ,S’/F with its quotient topology, it is sufficient to
prove that i = l, 2, are homeomorphisms.

By the definition of the quotient topology, the map 1/Ji : S/F - Mi /Fi
is continuous if and only if the map V)i o pr : S - MlFi is continuous

(here pr : S - is the quotient map). But 1/Ji = pri where

pri : Mi /Fi is the quotient map. Hence V), is continuous.

Similarly, ~i 1 : Mi /Fi - 51 F is continuous if and only if o pri :
Mi ---t S/F is continuous. Since Ji is a submersion, this is true if and

only if o 5 ---t 51F is continuous. But o pri oJi - pr.
Therefore, Qz is a homeomorphism for i = 1, 2, which implies that Os is a
homeomorphism. 0

The modular vector field and the modular class are well-behaved un-

der Morita equivalence: the bijection of leaf spaces Øs induced by a Morita
equivalence bimodule produces an isomorphism of Poisson cohomologies
[17], Thm. 3.1,

which preserves the modular class [12], [16],

We will need the following remark from the construction of the isomorphism
(6.2) in [17].

Remark 6.5. - Given volume forms v, and v2 on M1 and M2,
respectively, there exists a vector field X on ,S’ with the property that

(J~)~J~ == X v2 , i = 1, 2. The vector field X is actually hamiltonian, and its
Hamiltonian H is determined by the equation

where D : Ok (M) ---t 02m-k (M) is the symplectic *-operator (cf. ~3~ ) .
We now observe that the modular periods also behave well under

Morita equivalence.

THEOREM 6.6. - Let (Mi, 7ri), i = 1, 2 be Poisson manifolds, and

let (M1,7r1) ii (S, 0) J2 ) (M2,7r2) be a Morita equivalence bimodule.
Assume that Zi C Mi are such that 0 and the isomorphism of leaf

spaces satisfies
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Let ~t be the flow of the modular vector field X v2 for some volume form
v2 on Mi, i = 1, 2. Assume that (1)’ t takes Zi to Zi for all t. Then

Proof. Let X be a vector field on ,S’ such that = 

t = 1, 2 (see Remark 6.5). By the definition of Os, for each pi E Zl (which
forms by itself a symplectic leaf),

which by our assumption on Os is a single point p2 E Z2. It follows

that C ~~({p2})- Reversing the roles of pi and p2 , we get
. In particular, it follows that

Thus for any fixed ) we obtain

where (Dt is the flow of X. Therefore, OS o 4$) = ~t o OS in Zl . 1-1

COROLLARY 6.7. - Assume C are simple closed curves,
are open sets, and that 7ri = 0 and 7r I U,, B-~, )4 0, i = 1, 2. Assume

further that and (M2, 7r2) are Morita-equivalent via a bimodule S.
Assume finally that = ~2. If the modular vector fields are nonzero

in -y2, i = 1, 2, then

Proof. Applying the previous theorem with 22 = i = 1, 2, we
obtain that the restriction to qz of the flows of modular vector fields

Xi 2 are intertwined by Thus, for any pi E 
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6.3. Morita equivalence of topologically stable
Poisson structures on ,S’2.

We will now show that two Poisson structures in are Morita

equivalent if and only if they are gauge equivalent up to diffeomorphism. As
a result, we find a complete Morita-equivalence invariant for topologically
stable Poisson structures on ,5’2.

Let £ = ,S’2, the 2-sphere. Let 7r E g(E) and write, as before, 7r = 
where 7ro is a non-degenerate Poisson structure on E and f E Coo (~). We
fix on E the orientation induced by (the symplectic form corresponding to)
7ro. The class of Z(~r) modulo (orientation-preserving) diffeomorphisms of E
can be described combinatorially by a signed tree in the following way [25],
Sec. 2.8. The vertices of the tree correspond to the connected components
of E B Z(7r) (i.e. the regions bounded by the curves comprising Z(7r)). The
vertex is assigned a positive sign if f is positive on the corresponding region;
otherwise the vertex is assigned a negative sign. Two vertices are connected
by an edge if and only if the corresponding regions share a boundary. We
denote this signed tree by 

LEMMA 6.8. - If two Poisson structures 7r,7/ E are Morita

equivalent, then there exists an isomorphism of trees Tree(7r) --4

Tree(7r’), not necessarily preserving signs, so that = Tø(’Y)(7r’) for
every edge -y of Tree(7r).

Proof. Assume that (~S’2, 7r) and (,S’2, 7r’) are Morita equivalent.
Let § be the induced homeomorphism of the leaf spaces of (,S’2, 7r) and
(5~,7T~) (see Proposition 6.4).

As a set, the leaf space L of (,S’2, 7r) can be identified with the

union Z(~r) U ~.~1, ~ ~ ~ , where .~1, ... , ~ are the points corresponding to
the 2-dimensional leaves ,C 1, ... , £n. The quotient topology of L is easily
described: the only open subsets of L have the form U U U ~ ~ ~ U 

where i1,...’ i~ E f 1, - - ., n~, 1~ &#x3E; 0 and U C Z(7r) is an open subset with

the property that if U intersects non-trivially a curve 7 C Z(~r), then for
both leaves bounding y the corresponding points of the leaf space occur
among ... , 

Given L with its topology, consider the collection y of all subsets
Y C L with the property that L B Y is Hausdorff. Order y by inclusion.
We claim that X = ~.~1, ... , is a minimal element of y of smallest

cardinality. First, note that X E Y, since the relative topology on L B X =
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C L is Hausdorff. Next, assume that Y E Y, and Y ;6 X. Then
fi E L B Y for some i E ~ 1, ~ ~ ~ , n~ . Now all of the points of the boundary
of ,Ci in ,5’2 lie in Z(7r) and cannot be separated from li by open sets; thus
all of these points must necessarily be in Y. Thus Y must have infinite
cardinality.

It follows that 0 must map X to a subset of L’ with the same
minimality property; and hence 0 must take the complement of X, Z(Jr),
to Z(7r’). Thus 0 induces a map between the set of vertices of Tree(7r) and
Tree(7r’).

Now, two vertices E Tree(7r) are connected by an edge if and only
if the corresponding regions share a boundary in ,S’2. A point x E Z(7r) C L
cannot be separated from lk by an open set if and only if x belongs to
the boundary of ,C~ in ,S’2. It follows that are connected by an edge
if and only if there exists a point x E L, such fi, x =1= but

which cannot be separated from either of them by an open set. Since 0 is a
homeomorphism, it must preserve this property, and thus 0 induces a map
of trees from Tree(7r) to Tree(7r’). The statement about modular periods
now follows from Corollary 6.7. 0

THEOREM 6.9. - Two Poisson structures 7r, 7r’ E are Morita

equivalent if and only if there exists an isomorphism of trees 0 : -

Tree(7r’), not necessarily preserving signs, so that = T,5(,) (7r’) for
every edge ’"Y of Tree (7r) .

Proof. The necessity follows from Lemma 6.8.

Assume now that there exists an isomorphism 0 : Tree (7r) - Tree (7r’)
satisfying the conditions. Let 1/; : ,S’2 -~ 6~ be an orientation-reversing
diffeomorphism. By replacing 7r’ with 1/;* n’ (which is obviously Poisson
isomorphic, and hence Morita equivalent to, 7r’) if necessary, we may assume
that 0 : Tree(7r) - Tree(7r’) is an isomorphism of signed trees.

Choose a function g E supported on the interior of one of the
two-dimensional leaves. Let 7r" = 7r’ + g7r. Since 7r" = 7r’ in a neighborhood
of each of the zero curves -y C Z(7r), the modular periods of 7r’ and 7r"
are equal. Therefore, by Theorem 6.2, 7r’ and -r" are gauge equivalent up
to Poisson diffeomorphism, and hence Morita equivalent (Theorem 5.1) for
any such choice of g. Also, the isomorphism 0 induces an isomorphism of

trees 0’ : Tree(7r) ---&#x3E; Tree(7r").
With a suitable choice of g, the regularized Liouville volume of 7r"
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can be made equal to that of 7r (see [25] for details). Thus by [25], Thm. 3,
7r and 7r" are Poisson isomorphic. We conclude that 7f and 7r" are Morita

equivalent, and so are 7r and 7r’, by transitivity of Morita equivalence. 0
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