
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Jürgen HAUSEN

A general Hilbert-Mumford criterion
Tome 53, no 3 (2003), p. 701-712.

<http://aif.cedram.org/item?id=AIF_2003__53_3_701_0>

© Association des Annales de l’institut Fourier, 2003, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2003__53_3_701_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


701-

A GENERAL HILBERT-MUMFORD CRITERION

by Jürgen HAUSEN

1. Statement of the results.

Let a reductive group G act on a normal complex algebraic variety
X. It is a central problem in Geometric Invariant Theory to construct all
G-invariant open subsets V C X admitting a good quotient, i.e. an affine

G-invariant morphism V - VIIG onto a complex algebraic space such that
locally VIIG is the spectrum of the invariant functions. Let us call these
V C X for the moment the good G-sets.

In principle, it suffices to know all good T-sets U C X for some
fixed maximal torus T C G, because the good G-sets are precisely the G-
invariant good T-sets, see [3]. The construction of "maximal" good T-sets
is less hard, and in order to gain good G-sets one studies the following
question: Let U C X be a good T-set. When is the intersection W(U) of
all translates g.U, g E G, a good G-set?

The classical Hilbert-Mumford Criterion answers this question in

the affirmative for sets of T-semistable points of G-linearized ample line
bundles. Moreover, A. Bialynicki-Birula and J. Swi§cicka settled in [2] the
case of good T-sets defined by generalized moment functions, and in [3]
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the case U = X, as mentioned before. For G = SL2, several results can be
found in [4], [5], and [12].

As indicated, one imposes maximality conditions on the good T-set
U, e.g. projectivity or completeness of UIIT. The most general concept is
T-maximality: U is not T-saturated in some properly larger good T-set
U’, where T-saturated means saturated with respect to the quotient map.
For complete X and T-maximal U C X which are invariant under the
normalizer N(T), A. Bialynicki-Birula conjectures that W(U) is a good
G-set [1, Conj. 12.1].

We shall settle the case of (T, 2)-maximal subsets. These are good
T-sets U C X such that UIIT is embeddable into a toric variety, and U
is not a T-saturated subset of some properly larger U’ having the same
properties, compare [14]. We shall assume that X is Q-factorial, i.e. for

every Weil divisor on X some multiple is Cartier. In Section 4, we prove:

THEOREM 1.1.2013 Let a connected reductive group G act on a Q-
factorial complex variety X. Let T C G be a maximal torus and U C X a

(T, 2)-maximal open subset. Then the intersection W(U) of all translates
g.U, g E G, is open in X, there is a good quotient W (U) -~ W(U)/lG, and
W(U) is T-saturated in U.

This generalizes results by A. Bialynicki-Birula and J. Swi§cicka for
X = P’, see [6, Thm. C], and by J. Swi§cicka for smooth complete varieties
X with Pic(X) = Z, see [14, Cor. 6.3]. As an application of Theorem 1.1,
we obtain:

COROLLARY 1.2. - Let a connected reductive group G act on a

complete Q-factorial toric variety X, and let T c G be a maximal torus.
Then we have

(i) For every T-maximal open subset U C X the set W(U) is open and
admits a good quotient W (U) -~ 

(ii) Every G-invariant open subset V C X admitting a good quotient
~V ~ VIIG is a G-saturated subset of some set W(U) as in (i).

Together with well-known fan-theoretical descriptions of the T-

maximal open subsets, see e.g. [13], this corollary explicitly solves the quo-
tient problem for actions of connected reductive groups G on Q-factorial
toric varieties. In [1, Problem 12.9] our corollary was conjectured (in fact
for arbitrary toric varieties).
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2. Background on good quotients.

We recall basic definitions and facts on good quotients, see also [1,
Chap. 7], [3, Sec. 1] and [6, Sec. 2]. Let a reductive group G act morphically
on a complex algebraic variety X. The concept of a good quotient is locally,
with respect to the 6tale topology, modelled on the classical invariant theory
quotient:

DEFINITION 2.1. A G-invariant morphism p: X - Y onto a sepa-
rated complex algebraic space Y is called a good quotient for the G-action
on X if Y is covered by 6tale neighbourhoods V --+ Y such that

(i) V and its inverse image U := p- 1 (V) - X x y V are affine varieties,

(ii) p*:(9(V) -&#x3E; O(U) defines an isomorphism onto the algebra of G-
invariants.

A good quotient p: X -~ Y for the G-action on X is called geometric,
if its fi bres are precisely the G-orbits.

A good quotient X - Y for the G-action on X is categorical, i.e. any
G-invariant morphism X - Z of algebraic spaces factors uniquely through
X - Y. In particular, good quotient spaces are unique up to isomorphism.
This justifies the notation X ~ X//G for good and X - X/G for geometric
quotients.

In the sequel we say that an open subset U C X of a G-variety X with
good quotient is G-saturated, if U is saturated with respect to the quotient
map X --+ The following well-known properties of good quotients
are direct consequences of the corresponding statements in the affine case:

Remark 2.2. - Assume that the G-action on X has a good quotient
p: X - XIIG.

(i) If A C X is G-invariant and closed, then p(A) is closed in and

the restriction p: A 2013~ p(A) is a good quotient for the action of G on A.

(ii) If A and A’ are disjoint G-invariant closed subsets of X, then p(A)
and p(A’) are disjoint.

(iii) If U C X is G-saturated and open, then p(U) is open in XIIG, and
the restriction p: U ~ p(U) is a good quotient for the action of G on U.

(iv) If A c X and U c X are as in (i) and (iii), then An U is G-saturated
in A.
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Let X be normal (in particular irreducible) with a good quotient
X ~ X//G. Then any reductive subgroup H c G admits a good quotient
X - X//H, see [7, Cor. 10]. If H is normal in G, then universality of
good quotients [1, Thm. 7.1.4] allows to push down the G-action to 
Moreover, we have

PROPOSITION 2.3. - Let H c G be a reductive normal subgroup such
that is an algebraic variety. Then the canonical map X/I H -7 X//G
is a good quotient for the induced action of G/H on XIIH.

We turn to the special case of an action of an algebraic torus T on a
normal variety X. Good quotients for such torus actions are always affine

morphisms of normal algebraic varieties, see [3, Cor. 1.3]. We work with the
following maximality concepts for good quotients, compare [14, Def. 4.3]:

DEFINITION 2.4. - A T-invariant open subset U C X with a good
quotient U - U§T is called a (T, subset of X if

(i) the quotient space U§T is an Ak-variety, i.e. any collection ~1, ... , ~~
C UllT admits a common affine neighbourhood in U§T,

(ii) U does not occur as proper T-saturated subset of some T-invariant
open U’ C X admitting a good quotient U’ --&#x3E; U’§T with an Ak-variety
U’ //T .

As usual, T-maximal stands for The collection of all

(T, k)-maximal subsets is always finite, see [14, Thm. 4.4]. The case k = 2
can also be characterized via embeddability of the quotient spaces: By [15,
Thm. A], a normal variety has the A2-property if and only if it embeds into
a toric variety.

PROPOSITION 2.5. - Let X be a toric variety, and let the algebraic
torus T act on X via a homomorphism T - Tx to the big torus Tx C X.
Then the T-maximal subsets of X are precisely the (T, 2)-maximal subsets
of X.

Proof. First observe that every (T, 2)-maximal subset is T-satura-
ted in some T-maximal subset. Hence we only have to show that for any
T-maximal U c X the quotient space U§T is an A2-variety. But this is
known: By [13, Cor. 2.4 and 2.5], the set U is Tx-invariant, and 
inherits the structure of a toric variety from U. In particular, U§T is an
A2-variety, see [15, p. 709]. D
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3. Globally defined (T, 2)-maximal subsets.

Let G be a connected reductive group, T c G a maximal torus, and

X a normal G-variety. In this section, we reduce the construction of (T, 2)-
maximal subsets to a purely toric problem in cn. The following notion is
central:

DEFINITION 3.1. We say that a (T, 2)-maximal subset U C X is
globally defined in X, if there are T-homogeneous f l , ... , fr E O(X) such
that each X f2 is an afhne open subset of U and any pair x, x’ E U is
contained in some 

Here, as usual, f C is called T-homogeneous, if f(t. x) =
x(t)f(x) holds with a character X:T -7 C*, and X f denotes the set of
all x E X with f (x) :~ 0. Our reduction is split into two lemmas. The

proofs are based on ideas of [11].

LEMMA 3.2. - Let X be Q-factorial, and let U C X be (T, 2)-
maximal. Then there are an algebraic torus H and a Q- factorial quasi-affine
(G x H)-variety X such that

-" 
(i) H acts freely on X with a G-equivariant geometric quotient q:

X - X,

(ii) U := is a globally defined (T x H, 2)-maximal subset of X.

Proof. Let p: U - U§T be the quotient. By assumption, we can
cover U§T by affine open subsets Yi , ... , Yr such that any pair y, y’ E U /IT
is contained in a common Y,. Since p is affine, each (Yi) is affine. Hence
each X B p-1 (Yi ) is of pure codimension one and, by Q-factoriality, equals
the support Supp(Di) of an effective Cartier divisor Di on X.

The Cartier divisors D1, ... , Dr generate a free abelian subgroup A of
the group of all Cartier divisors of X. Enlarging A by adding finitely many
generators, we achieve that every x E X admits an affine neighbourhood
X B Supp(D) for some effective member D E A. The group A gives rise to
a graded O x-algebra

After eventually replacing A with a subgroup of finite index, we can
endow ,,4 with a G-sheaf structure, see [11, Prop. 3.5]: for any g E G
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and any open V C X, we then have a A-graded homomorphism ,,4( V ) -~
these homomorphisms are compatible with restriction of ,A and

multiplication of G, and the resulting G-representation on is rational.

We define the desired data; for details see [10, Sec. 2]. Let X :=
Spec(A). The inclusion defines an affine morphism q:,4~ , X
with q,, (0~~) = A. For the canonical section of an effective D E A, its zero
set in X is just q-l(Supp(D)). In particular, X is covered by affine sets X¡
and hence is quasi-affine.

The A-grading of A corresponds to a free action of the torus H :=
Spec(C[A]) on X. This makes q: X ~ X to an H-principal bundle. In
particular, q is a geometric quotient for the H-action, and X is Q-factorial.
The G-sheaf structure of A induces a G-action on X commuting with the
H-action and making q equivariant.

We show that U - is (T, 2)-maximal, where we set T :=
T x H. First note that the restriction p o q: is a good quotient for
the T-action. For (T, 2)-maximality, let U be T-saturated in some (T, 2)-
maximal Ul C X. Then Lemma 2.3 gives a commutative diagram

where U1 := q(Û1) is open in X. Since U is T-saturated in U1 and U1
is surjective, this diagram shows that U is a T-saturated subset of Ul. By
(T, 2)-maximality of U in X, this implies U = Ul and hence U = Û1.

Finally, let f e be the canonical sections of some large positive
multiples of the Di. The zero set of f Z in X is just 
In particular, these zero sets are T-invariant, and hence the f i are T-
homogeneous. By construction, the sets X f2 equal and thus

form an affine cover of U as required in 3.1. D

LEMMA 3.3. - Let X be quasi-affine, and let U C X be a globally
defined (T, 2)-maximal subset of X. Then there exist a linear G-action on
some C’ and a G-equivariant locally closed embedding X --+ C’ such that

(i) the maximal torus T c G acts on C’ by means of a homomorphism
T -~ Tn to the big torus Tn :- (C*)",
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(ii) there is a Tn-invariant open V C C" containing U as a closed subset
and admitting a good quotient V -~ 

Proof. Let fl, ... , fr E O(X) be as in 3.1, and set Xi . := 
By [10, Lemma 2.4], we can realize X as a G-invariant open subset of
an affine G-variety X such that the f i extend regularly to X and satisfy
X f2 = Xi. Complete the f i to a system /i,...,/s of T-homogeneous
generators of the algebra O(X).

To proceed, we use the standard representation 
of G on O(X). Let Mi C O(X) be the G-module generated by Fix

a basis f i 1, ... , of Mi such that all fij are T-homogeneous and for the
first one we have f il - f i . Denoting by Ni the dual G-module of Mi, we
obtain G-equivariant maps

We identify Ni with cnt by associating to a functional of Ni its

coordinates zil, ... , Zint with respect to the dual basis f 1, ..., f2n2. Then
the pullback is just the function fij. Now, consider the direct
sum of the G-modules C’,,; we write this direct sum as cn but still use
the coordinates zgj. The maps 4lg fit together to a G-equivariant closed
embedding:

In the sequel, we shall regard X as a G-invariant closed subset of cn.
Thus the functions fij are just the restrictions of the coordinate functions
zij. By construction, the maximal torus T of G acts diagonally on C’,
that means that T acts by a homomorphism T ~ Tn to the big torus
Tn = (~.*)n. .

We come to the construction of the desired set V C (Cn . Let Vi C C"
be the complement of the coordinate hyperplane defined by z21. Note that
X equals Xi . In particular, Xi is closed in Consider the union

Yo : = VI U ... U vr . Then Vo is invariant under the big torus Tn. Moreover,
we have

Let V C Yo be the minimal TI-invariant open subset with U = xnv.
Then every closed 1rn-orbit of V has nontrivial intersection with U. We
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show that V admits a good quotient by the action of T. By [11, Prop. 1.2],
it suffices to verify that any two points with closed T n-orbits in V have a
common T-invariant affine open neighbourhood in V.

Let z, z’ E V have closed T’-orbits in V. Since these T n -orbits meet
U, there are t, t’ E such that t - z and t’. z’ lie in U. By the choice of
f 1, ... , f,r., the points t - z and t’. z’ even lie in some common Xg . Consider
the corresponding V, and the good quotient p: Y2 -7 The latter is a

toric morphism of affine toric varieties.

Let Zi == Vi B V. Then Zi is T-invariant and closed in Vi. Moreover,
Zi does not meet the T-invariant closed subset XZ C YZ. Thus p(Z,) and
p(Xi ) are closed in and disjoint from each other. In particular, neither
p(t.z) nor p(t’-z’) lie in p(Zi ) . Since Z, is even T’-invariant, also p(z) and
p(z’) do not lie in p(Zi).

Consequently, there exists a T-invariant regular function on Y2 that
vanishes along Zi but not in the points z and z’. Removing the zero set
of this function from Y yields the desired common T-invariant affine open
neighbourhood of the points z and z’ in V. This proves existence of a good
quotient V - VIIT. D

4. Proof of the results.

Proof of Theorem l.l. First we reduce to the case of globally
defined subsets of quasi-affine varieties. So, assume for the moment that
Theorem 1.1 holds in this setting. Consider the quasi-affine variety X, the
torus H and the geometric quotient q: X provided by Lemma 3.2.

Then G := G x H is reductive with maximal torus T := T x H,
and U = q-’(U) is a globally defined (T, 2)-maximal subset of X. By
assumption, the intersection W(Û) of all translates ~-~7 is open, admits a
good quotient by G, and is T-saturated in U. Since each g-U is H-invariant
and q: X - X is G-equivariant, we obtain

In particular, W (U) is open in X. Moreover, restricting q gives a

geometric quotient W(U) - W (U) for the H-action. Lemma 2.3 tells us
that the induced map from W (U) onto W(CJ)116 is a good quotient for the
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G-action on W(U). Similarly, we infer T-saturatedness of W(U) in U from
the commutative diagram

We are left with pro ling 1.1 for quasi-affine X and globally defined
(T,2)-maximal U c X. By Lemma 3.3, we may view X as a G-invariant
locally closed subset of a G-module C’, where T acts via a homomorphism
T ~ T’ and U is closed in some T’-invariant open V C cn with good
quotient We regard en as the G-invariant open subset of P’
obtained by removing the zero set of the homogeneous coordinate zo.

Let V’ C P" be a T-maximal open subset containing V as a T-
saturated subset. Let X be the closure of X in P’, and set X’ := X n V’.
Then X’ is closed in Y’, and we have U = X’ n V. Using 2.2 (i), (iii)
and (iv), we subsume the situation in a commutative cube

where the downwards arrows are good quotients by the respective actions
of T, the right arrows are closed inclusions, the upper diagonal arrows are
T-saturated inclusions and the lower diagonal arrows are open inclusions.

According to [6, Thm. C], the intersection W(V’) of all translates
g ~ Y’ is open in P’ and admits a good quotient by the action of G. Recall
from [6, Lemma 8.4] that W(V’) is T-saturated in V’. We transfer the

desired properties step by step from W(V’) to W(U). First note that by
G-invariance of X we have

Thus W(X’) is open in X’, and by 2.2 (iv) it is T-saturated in X’. In
particular, the T-action on W (X’) has a good quotient. Moreover, W(X~)
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is G-invariant and closed in W(V’). Thus 2.2 (i) ensures the existence of a
good quotient

Consider B := X’BX. Since X is open in X and B equals (XBX)nX’,
the set B is closed in X’. The intersection W (B) of the translates g ~ B,
where g E G, is G-invariant and closed in W(X’). We claim that it suffices
to verify

Indeed, suppose we have (1). Then W(U) is open in X’, hence in U,
and thus in X. Property 2.2 (iii) provides a good quotient W (U)

Moreover, W(U) is T-saturated in W(X’), because it is G-

saturated and we have the induced map from onto 

Since W (X’) and U are T-saturated in X’, we obtain that W(U) is T-
saturated in U.

We verify (1). Let v: X’ --4 X’§T be the quotient map. As a
subvariety, inherits the A2-property from V’llT, which in turn
satisfies it by 2.5. Thus, since U is (T, 2)-maximal in X, it is necessarily the
maximal T-saturated subset of X’ which is contained in X n X’. In terms

of B = X’ B X this means

We check the inclusion "C" of (1). Let I. Then,
by 2.2 (ii), the closure of G.x meets W(B). The classical Hilbert-Mumford
Lemma [8, Thm. 4.2] says that for some maximal torus T’ C G the closure
of meets W (B) . Let g E G with T = gT’g-1. Then the closure of
T-g-x meets W(B). Hence g-x lies in By (2), the point x cannot
belong to W(U).

We turn to the inclusion "D" of (1). For this, consider the set

A .- (X n X’) B U. Then X’ is the disjoint union of U, A and B.

Consequently, we have

So we have to show that u maps a given x E W (X’) n g ~ (A U B)
to u(W(B)). Since U holds, we infer from (2) that lies in
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According to 2.2 (ii), the closure of in X’ meets B.
Since W (X’) is T-saturated in X’, this implies that the closure of 
meets W (X’) n B. But we have

Hence we obtained that the closure of the orbit G.x intersects W(B).
This in turn shows that the image u(x) lies in u(W(B)). D

Proof of Corollary 1.2. - Recall from [9, Sec. 4] that the automor-
phism group of X is a linear algebraic group having the big torus Tx C X
as a maximal torus. Thus, by conjugating Tx we achieve that T C G acts
on X via a homomorphism T ~ Tx. Proposition 2.5 then ensures that
each T-maximal subset of X is as well (T, 2)-maximal, and statement (i)
follows from Theorem 1.1.

For statement (ii), let V C X be open and G-invariant with good
quotient V - Then [7, Cor. 10] provides a good quotient V -~ 
Let U C X be a T-maximal subset containing V as T-saturated subset.
Then we have V C W(U). Again by 2.5, the set U is (T, 2)-maximal. Thus
Theorem 1.1 says that W(U) is open, has a good quotient u: W(U) -

and is T-saturated in U.

For G-saturatedness of V in W(U) we have to show that any x E
with closed G-orbit in W(U) belongs to V. For this note that

V is T-saturated in W(U), because both sets are so in U. Now, let y E V
with u(y) - u(x). Then x lies in the closure of G ~ y. Thus [8, Thm. 4.2]
provides a g E G such that the closure of T.g.y meets G.x. Since g.y lies in
V and V is T-saturated in W(U), we obtain G.x c V, and hence x E V. D
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