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PROPERTIES OF NON-HERMITIAN

QUANTUM FIELD THEORIES

by Carl M. BENDER

1. Introduction.

The Hamiltonian of a physical system must embody the continuous
symmetries and discrete symmetries of that system. There is little doubt
that the continuous symmetry group of the universe is the proper Lorentz

group. (The proper Lorentz group contains all those elements of the Lorentz
group that are continuously connected to the identity.) This talk addresses
the question of what the discrete symmetry of the universe is.

It is clear that the universe is not invariant under the full Lorentz

group. Recall that the full Lorentz group is in four distinct parts: (1)
the proper Lorentz group; (2) the elements of the proper Lorentz group
multiplied by the parity reflection operator P; (3) the elements of the
proper Lorentz group multiplied by the time reflection operator ~; (4) the
elements of the proper Lorentz group multiplied by the parity reflection and
time reflection operators PT. It has been experimentally verified that the
universe does not exhibit parity reflection symmetry and it also does not
exhibit time reversal symmetry. However, a famous theorem in the subject
of quantum field theory (one of the few rigorous theorems in quantum
field theory!) known as the PCT theorem, states that the universe is

invariant under combined space-time reflection and particle-antiparticle
interchange [1].
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The proof of the PCT theorem rests on several crucial assumptions,
namely, that the Hamiltonian is Hermitian (so that the spectrum is

real) and that the spectrum is bounded below. The existence of a real

positive spectrum allows one to extend the Lorentz group to the complex
Lorentz group. The complex Lorentz group consists of two, and not

four, disconnected parts because in the complex Lorentz group there is

a continuous path from the identity to the element PT that reflects

space-time. Note that PCT symmetry is a much weaker condition than

Hermiticity; one must assume that H = Ht in order to prove the PCT
theorem, but we cannot conclude that H = Ht from PCT symmetry.

The hypothesis made in this talk is that the discrete symmetry of the
universe is PCT symmetry. In this talk we only consider quantum theories
in which particles are their own antiparticles; thus, we will assume that
the symmetry of the universe is space-time reflection, or PT symmetry.
We argue that space-time reflection symmetry (PT symmetry) is a simple
and natural physical constraint on the Hamiltonian. Hermiticity symmetry
H = Ht is a convenient mathematical condition, but one whose physical
justification is remote and obscure. We will see that in many (but not all)
cases the assumption of 7~T symmetry leads to a spectrum that is real and

positive.

2. Origin of the idea.

In the late 1980s I coauthored a series of papers in which a technique
was developed for solving nonlinear problems in classical and quantum
mechanics and quantum field theory by expanding perturbatively in powers
of a parameter that measures the nonlinearity of the problem. To illustrate,
let us consider the Thomas-Fermi differential-equation boundary-value
problem [2]

This is a difficult problem to solve numerically because there are instabili-
ties and there is no analytical solution. Our approach to this problem is to
introduce a small parameter c in the exponent:
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and to solve for y(x) as a series in powers of 6:

The advantage of this procedure is that, unlike many perturbation expan-
sions, the perturbation expansion (3) has a nonzero radius of convergence.
The solution to the original Thomas-Fermi boundary-value problem is ob-
tained by setting c = 1/2 in (1) [2].

While I was visiting Saclay, Bessis told to me that he and Zinn-Justin
had come across the complex non-Hermitian Hamiltonian

whose spectrum appeared to be real and positive. To examine this sur-
prising conjecture we used the perturbation method described above to
calculate the eigenvalues of the class of quantum mechanical Hamiltonians

where E is a real parameter. Using a variety of analytical and numerical
methods we were able to establish with confidence [3], [4] that for the

infinite class of Hamiltonians for which 0 ~ E the entire spectrum of H
in (5) is real and positive (see Fig. 1). The Hamiltonian (4) considered
by Bessis and Zinn-Justin is a special case corresponding to E = 1. This
class of Hamiltonians includes the interesting special case 6=2 for which
H = p2 - x4. It is most surprising that the spectrum of this Hamiltonian
is real and positive even though it contains a wrong-sign potential.

These quantum mechanical models can be immediately extended to
quantum field theory. For example, in a -x4 theory the expectation value
~x~ is not zero. The corresponding result for a quantum field theory
in D-dimensional Euclidean space is that the one-point Green’s function
G, = (0) is also nonzero. This finding may allow us to construct new models
for the Higgs boson. We also examine bound states in quantum field

theory.
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Figure 1. Energy levels of the Hamiltonian H = p2 + x2 ( ix ) as a function of the
parameter E. There are three regions: When E &#x3E; 0, the spectrum is real and positive
and the energy levels rise with increasing E. The lower bound of this region, E = 0,
corresponds to the harmonic oscillator, whose energy levels are En = 2n + 1. When
-1  E  0, there are a finite number of real positive eigenvalues and an infinite number
of complex conjugate pairs of eigenvalues. As E decreases from 0 to -1, the number of
real eigenvalues decreases; when E _ -0.57793, the only real eigenvalue is the ground-
state energy. As E approaches -1+, the ground-state energy diverges. For there

are no real eigenvalues.

3. Positive spectrum for wrong sign potentials.

The spectrum shown in Figure 1 depends crucially on the boundary
conditions for the Hamiltonian in (5). For example, let us consider the case
6=2 for which the Hamiltonian is

where we have inserted a coupling constant g &#x3E; 0. There are several ways
to obtain the Hamiltonian H in (6). One way is to substitute g into

the Hamiltonian H = p2 + gx4 and to rotate from 0 = 0 to 9 = 7r. Under
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this rotation, the ground-state energy Eo (g) becomes complex. Evidently,
Eo(g) is real and positive when g &#x3E; 0 and complex when g  0. (1) One
can also obtain (6) as the limit of the Hamiltonian H = p2 + as

c : 0 -* 2. Having studied Hamiltonians like that in (6) in great detail, we
and others have shown that for e &#x3E; 0 the spectra of such Hamiltonians are

real, positive, and discrete. The spectrum of the limiting Hamiltonian (6)
obtained in this manner is similar to that of the Hamiltonian H = p2 + gx4
(g &#x3E; 0); it is entirely real, positive, and discrete. Very recently, the reality
and positivity of the spectra have been established rigorously [5].

How can one Hamiltonian (6) possess two different spectra? The
answer lies in the boundary conditions satisfied by the eigenfunctions

In the first case, in which 0 = arg g is rotated from 0 to 7r,

vanishes in the complex-x plane as Ix I --~ oo inside the wedges
-~r/3  arg x  0 and -4~r/3  arg x  In the second case, in which a

runs from 0 to 2, 7/Jn (x) vanishes in the complex-x plane as Ix 2013~ oo inside

the wedges -~r/3  arg x  0 and -7r  arg x  -2~r/3. In this case the
boundary conditions hold in wedges that are symmetric with respect to the

imaginary axis; these boundary conditions enforce the PT symmetry of H
and account for the reality of the spectrum.

4. One-point Green’s function G1.

There is another striking difference between the two theories corres-

ponding to H in (6). The one-point Green’s function is given by

where C is a contour that lies in the asymptotic wedges described above.
The value of G1 (g) for H in (6) depends on the limiting process by which we
obtain H. If we substitute g = goe2e into the Hamiltonian H = p2 + gx4 and
rotate from 9 = 0 to 9 = 7r, we get Gi (g) = 0 for all g on the semicircle in
the complex-g plane. Thus, this rotation in the complex-g plane preserves
parity symmetry (x -4 -x). However, if we define H in (6) by using the

(1) Rotating from 0 = 0 to 0 = 20137r, we obtain the same Hamiltonian as in (6) but
the spectrum is the complex conjugate of the spectrum obtained when we rotate from
() = 0 to () = 7r.
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Hamiltonian and allowing E run from 0 to 2, we find that
0. Indeed, 0 for all values of E &#x3E; 0. Thus, in this theory

PT symmetry (reflection about the imaginary axis, z - -x*) is preserved,
but parity symmetry is permanently broken.

These two different results for emphasize the importance of
the boundary conditions in the integrals in (7) for determining the one-
point Green’s function. We are concerned in this talk with the theory that
preserves ~T symmetry. In this theory the energy spectrum is real and
positive and is nonzero.

We have extended these quantum-mechanical arguments to the quan-
tum field theory whose D-dimensional Euclidean space Lagrangian is

What is remarkable about this "wrong-sign" field theory is that, when it
is obtained using the PT-symmetric limit, the energy spectrum is real and
positive, and the one-point Green’s function is nonzero. Furthermore, the
field theory is renormalizable, and in four dimensions is asymptotically free

(and thus nontrivial). Based on these features of the theory, we believe that
the theory may provide a useful setting to describe the Higgs particle.

The one-point Green’s function G1 is a complex functional integral
in Euclidean space: Here,

C is a contour in the complex-§ plane defined as follows:
Functional integrals are infinite products of ordinary integrals, one integral
for each lattice point in Euclidean space. For these ordinary integrals the
contour of integration must lie within 45° wedges that lie in the lower-half
plane and are centered about -45° and -135°. In D-dimensional space
we use E = gm D-4 /4 to represent the dimensionless coupling constant.
The small-E asymptotic behavior of G1 is determined by a soliton (not an
instanton). In general, G1 has a negative imaginary value:

In dimension D, G1 rv e-4A[D]/E as E -4 0+, where A[D] is determined by a
spherically symmetric soliton. Numerical values of A[D] for 0  D  4 are
given in Ref. [6].
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5. Bound states.

A significant difference between the conventional Lagrangian

and the PT-symmetric Lagrangian (8) is that when g is sufficiently small,
the PT-symmetric theory possesses bound states while the conventional
theory does not. These bound states persist in the non-Hermitian PT-
symmetric quantum field theory for all dimensions 0  D  3 but

are not present in the conventional Hermitian go4 field theory.
We calculate the bound-state energies perturbatively. For the con-

ventional Lagrangian (10) in one dimension (the anharmonic oscillator)
the perturbation series for the kth energy level Ek begins

where 6 = g/(4m 3). The renormalized mass M is the first excitation above
the ground state:

To determine if the two-particle state is bound, we examine the
second excitation above the ground state. We define B2 - E2 - Eo N m

[2 + 9E + 0(,E2 )] as E ~ 0+. If B2  2M, then a two-particle bound state
exists and the (negative) binding energy is B2 - 2M. If B2 &#x3E; 2M, then
the second excitation above the vacuum is interpreted as an unbound two-

particle state. In the small-coupling regime, where perturbation theory is
valid, the conventional anharmonic oscillator does not possess a bound
state. Indeed, using WKB, variational methods, or numerical calculations
one can show that there is no two-particle bound state for any g &#x3E; 0. Thus,
the gx4 interaction represents a repulsive force. ~2&#x3E;

~ In general, a repulsive force in a quantum field theory is represented by an energy
dependence in which the energy of a two-particle state decreases with separation. The
conventional anharmonic oscillator Hamiltonian corresponds to a field theory in one
space-time dimension where there cannot be any spatial dependence. The repulsive
nature of the force is understood to mean that the energy B2 needed to create two
particles at a given time is more than twice the energy M needed to create one particle.
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We obtain the perturbation series for L in (8) from the perturbation
series for the conventional theory by replacing E with -E. Thus, while the
conventional anharmonic oscillator does not possess a two-particle bound
state, the PT-symmetric oscillator does indeed possess such a state. We
give the binding energy of this state in units of the renormalized mass M
and we define the dimensionless binding energy A2 by

This bound state evaporates when c increases beyond E = 0.0465 .... As E
continues to grow, A 2 reaches a maximum of 0.427 at E = 0.13 and then
approaches 0.28 as E -7 oo.

In the PT-symmetric anharmonic oscillator, there are not only two-
particle bound states for small coupling constant but also k-particle bound
states for all k &#x3E; 2. The dimensionless binding energies are Ak m (Bk -

-3k(k - 1)6/2 + O (E2 ) as E --&#x3E; 0+. Since the coefficient of E is

negative, the dimensionless binding energy becomes negative as E increases
from 0, and there is a k-particle bound state. The higher k-particle bound
states cease to be bound for smaller values of E; the binding energies A3,
A4, A5, and A6 become positive as E increases past 0.039, 0.034, 0.030,
and 0.027 [7].

Figure 2 shows that for any value of c there are always a finite
number of bound states and an infinite number of unbound states. The

number of bound states decreases with increasing E until there are no bound
states at all. Observe that there is a range of E for which there are only
two- and three-particle bound states. This situation is analogous to the
physical world in which one observes only states of two and three bound
quarks. In this range of E if one has an initial state containing a number
of particles (renormalized masses), these particles will clump together into
bound states, releasing energy in the process. Depending on the value of E,
the final state will consist either of two- or of three-particle bound states,
whichever is energetically favored. Note also that there is a special value of E
for which two- and three-particle bound states can exist in thermodynamic
equilibrium.

These results generalize from quantum mechanics to the D-dimensio-
nal PT-symmetric quantum field theory. There exists a bound state
because to leading order in the dimensionless coupling constant E the

binding energy becomes negative as c increases from 0. We calculate the
bound-state energy by summing all "sausage-link" graphs and identifying
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Figure 2. Dimensionless binding energies A2, A3, A4, A5, and A6 for the two-
particle, three-particle, four-particle, five-particle, and six-particle bound states plotted
as functions of the dimensionless coupling constant E. Note that the multiparticle bound
states cease to be bound as E increases past 0.0465, 0.039, 0.034, 0.030, and 0.027.

the bound-state pole. The dimensionless binding energy to leading order in
E is

which reduces to (13) at D - 1. Equation (14) holds for 0  D  3

because we have performed mass renormalization (but not wave function
or coupling-constant renormalization).

Let us compare a theory with a theory: A go3 theory
represents an attractive force. The bound states that arise as a consequence
of this force can be found by using the Bethe-Salpeter equation. However,
the field theory is unacceptable because the spectrum is not bounded
below. If we replace g by ig, the spectrum becomes real and positive, but
the force becomes repulsive and there are no bound states. The same is
true for a two-scalar theory with interaction of the form [8]. This
latter theory is an acceptable model of scalar electrodynamics, but has no
analog of positronium.
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6. Two-point Green’s function.

There are many other quantum field-theoretic results. For example,
we have just completed a study of the two-point Green’s function in

quantum field theory [9]. A byproduct of this research shows that in a
PT-symmetric quantum theory the eigenstates of the Hamiltonian are
complete.

7. New results.

I conclude by reporting a major breakthrough in PT-symmetric
quantum theory [10]. Subsequent to the presentation of this talk we have
now been able to establish that PT-symmetric quantum mechanics has
an inner product that is associated with a positive-definite norm. Thus, a

PT-symmetric quantum theory is a fully consistent, unitary, probabilistic,
physical quantum mechanical theory. We have found that every PT-

symmetric Hamiltonian has a symmetry C that has until now not been
discovered. The linear operator C commutes with the PT operator and
also with the Hamiltonian H. Also, C2 - 1, so the eigenvalues of C are
~ 1. The positive-definite inner product is taken with respect to the CPT
operator.

In summary, we have generalized the condition of Hermiticity in
quantum mechanics to the statement of CPT invariance. In effect we

have established the converse of the CPT theorem. If we assume that the

Hamiltonian is symmetric and possesses space-time reflection symmetry,
and that this symmetry is not spontaneously broken, then the Hamiltonian
is Hermitian with respect to CPT conjugation. In effect, we are replacing
the usual mathematical condition of Hermiticity, whose physical content
is questionable, by the physical condition of space-time symmetry. This
symmetry ensures the reality of the spectrum of the Hamiltonian in complex
quantum theories.

Conventional Hermitian Hamiltonians and PT-symmetric Hamiltoni-
ans have two important features in common, namely, symmetry and even-
dimensionality. When a conventional Hermitian theory is formulated in real
Hilbert space, Hamiltonians are required to be symmetric because they
represent physical observables. In PT-symmetric quantum theory we are
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extending this real formulation of quantum mechanics into the complex do-
main. However, we must retain the symmetry of Hamiltonians for the same
reason as in conventional theory. Also, in the real formulation of quantum
theory the dimensionality of the Hilbert space must be even. This is neces-
sary in order to introduce a complex structure in the real Hilbert space. In
the present theory we require the introduction of the CPT structure. From
a physical point of view this is because half of the eigenstates - those
having negative ~T norm - might be interpreted as states representing
antiparticles. Therefore, for each particle state there is a corresponding an-
tiparticle state. These two states are always formed pairwise, in the sense
that when PT symmetry is spontaneously broken, corresponding pairs of
eigenstates and eigenvalues become complex conjugates of one another.
This is because the secular equation for a PT symmetric Hamiltonian is

always real [11].
In a conventional Hermitian quantum field theory the operators C

and P commute, but in a PT-symmetric quantum field theory these
operators do not commute. As a consequence, it is not necessarily true
that particles and antiparticles have the same energy eigenvalues. Recall
that the condition of space-time reflection symmetry is weaker than the
condition of Hermiticity, and therefore it is possible to consider new kinds
of quantum field theories, whose self-interaction potential are, for example,
zgo3 or that have previously been thought to be unacceptable. A
plausible signal of one of these new theories would be the observation of a
particle and its corresponding antiparticle having different masses.
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