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THE LEVEL CROSSING PROBLEM IN

SEMI-CLASSICAL ANALYSIS

I. The symmetric case

by Yves COLIN DE VERDIÈRE

Introduction.

Let us consider a d x d self-adjoint system of semi-classical pseudo-
differential operators HU = 0 in R~. Many examples occur in physics: let
us mention the Born-Oppenheimer approximation in molecular physics (see
[5], [14], [15], [40] and [31]), the Maxwell equations for electromagnetic waves
in a non homogeneous and anisotropic medium (see [41]), the propagation
of elastic waves in anisotropic media (see [36]), the propagation of waves in
oceans (see [35] and [49]), the spin-orbit interaction (see [25] and, for a global
and geometrical point of view, [19] and [20]). The principal symbol Hclass
of H is a matrix valued function on the phase space T~R~, often called the
dispersion matrix by physicists. The ideal generated by det(Hclass) is called
the dispersion relation.

Near a generic point of the phase space where the principal
symbol Hclass is not invertible, the associated eigenspace (the
polarization bundle) is one dimensional and the system reduces mod O(h°°)
to a scalar one. The principal part of the solution is polarized meaning that
it takes values into the polarization bundle. For a precise description of the
WKB states in this case, see the nice paper [18].

Keywords : Mode conversion - Polarization - Born-Oppenheimer approximation -
Maxwell equations - Eigenvalue crossing - Pseudo-differential systems - Semi-classical
analysis - Lagrangian manifold - Propagation of singularities - Coherent states -

Symplectic spinors.
Math. classification : 35C20 - 35Q40 - 35S30.
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An interesting problem, often called the Mode Conversion problem
(see [24]), is to describe what happens at points where the dimension of

ker Hclass jumps due to eigenvalues crossings of the dispersion matrix. For
the Maxwell equations, the fibers of the zero set of the dispersion relation

f~ E JR3 1 det(Hclass) (xo, ç) = 0 1 are called the Fresnel surfaces which in the
generic case turn out to have 4 singular points where the kernel of

Hclass(XO, çj) is of dimension 2 (see ~41~ ) and hence the polarization bundle
is no more a bundle there. For the elastic waves, the singular set is called
acoustic axis in [36].

Of course the general situation is very complicated to describe, so
that people try to understand the generic case. One expect that two zero

eigenvalues cross along a submanifold E of the phase space of codimension 3

(resp. 4) in the real symmetric (resp. complex Hermitian) case after [50] (see
also [9]). But not all submanifolds of a given codimension are equivalent
in a symplectic manifold, even locally: restricted to a generic manifold of
codimension 3 a symplectic form admits a kernel of dimension 1, while
a generic manifold of codimension 4 is symplectic. Near a point where

2, the system splits into a direct sum of a 2 x 2 system
and a (d - 2) x (d - 2) elliptic system. So we need only to study 2 x 2 systems
near points where the dispersion matrix Hclass vanishes in a generic way.

G. Hagedorn studied this problem for the Born-Oppenheimer approxi-
mation in several papers starting with [30] (see also [33] and [34]) by
the so-called matching method which consists in giving an Ansatz for the
states near E and to match this Ansatz with the WKB Ansatz in some

h-dependent small domain aground £ . The matching method is very difficult
to implement and for that reason it is tempting to find another method
based on normal forms where we allow both canonical diffeomorphisms in
the phase space and gauge transforms in C~d .

In the paper [7], Peter Braam and Hans Duistermaat found a formal
normal form for the principal symbol of a 2 x 2 symmetric system near
a generic crossing of the eigenvalues. In this normal form, the dispersion
matrix is linear w.r. to phase space coordinates and is in fact closely
related to the model introduced first by Landau [42], [43], p. 381-390 and
Zener [52].

In the present paper, we will derive, in the hyperbolic case, a local
normal f orm for the principal symbol. Our method, which is quite different
from that of [7], is to derive first a normal form for the determinant of

the system (the dispersion relation), which gives the classical dynamics,
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up to time reparametrization, using the tool of wave operators introduced
by E. Nelson [47] in his proof of Sternberg’s linearization theorem. This is
closely related to Arnold’s result [3]. We can then proceed by choosing the
gauge transform. After that, the semi-classical microlocal normal form is
easy to derive.

From this normal form, we can easily study the microlocal solutions
of our system following the same kind of argument as in [11]: the solutions
of the normal form are explicit functions. Performing a gauge transform
and a Fourier integral operator gives the Mode Conversion rules. This
way we derive geometric constructions of the principal symbols of generic
Lagrangian solutions and Hagedorn’s results [30] for the propagation of
coherent states. We give an explicit description of the transmission rules
for the principal symbols. These rules give the "Mode Conversion". We
describe in particular the following solutions:

. If the incoming state is a WKB-Lagrangian state associated to
one eigenvalue and a generic Lagrangian manifold, the outgoing state
corresponding to the other eigenvalue is a Gaussian coherent state.

. If the incoming state is a Gaussian coherent state associated to one

eigenvalue, the outgoing state splits into 2 parts: the part corresponding
to the same eigenvalue is a non Gaussian coherent state, while the part
corresponding to the other eigenvalue is a Gaussian coherent state. This
case allows to recover Hagedorn’s results [30].

We give precise geometrical rules for the computation of the principal
symbols.

An Appendix on semi-classical coherent states has been written,
because there are several definitions in the literature and we have here an

example of coexistence of Gaussian and non Gaussian coherent states.

Moreover, we wanted to clarify the behaviour of Gaussian coherent

states w.r. to Fourier Integral Operators. The starting point will be the
paper [29] by V. Guillemin (see also [6]): we give a short description of
the construction of the "semi-classical" symplectic spinors which are easily
guessed from Guillemin’s "homogeneous" symplectic spinors or Boutet’s
"Hermite operators" (see [6]).

It seems also to be possible to extend to this case the results of

P. Gerard, C. Fermanian-Kammerer and C. Lasser (see [27], [21], [22] and
[23]) on the propagation of the associated semi-classical measures: their
results mainly depend on a normal form, for more particular Hamiltonians,
which is very close to ours.
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More general type of crossings could be studied using the same tools:
the main hypothesis is the hyperbolicity of the transversal dynamics. We
describe also the elliptic case where only a formal normal form is found
which allows to describe the coherent states remaining close to the singular
part of the characteristic manifold.

Finally, we describe briefly the case of a complex Hermitian principal
symbol. This case will be the subject of another publication [10]. Many
authors have recently studied this problem: a (non complete) list is [4], [18],
[24], [27], [28], [23], [37], [30], [33], [34], [17], [38] and [48].

1. The general setting.

Let HU = be a d x d self-adjoint system of (semi-classical)
pseudo-differential equations of order 0 on Our study will be microlocal
in T~R~, so we will always reduce to some neighbourhood of zo E T~R~.
Hclass, the principal symbol of H, is assumed to be real valued and hence
symmetric. We will reformulate Braam-Duistermaat’s analysis in [7] in the
semi-classical context.

Our basic assumptions are:

(Hl) JfEo == ker Hclass(ZO), we have dim Eo = 2.

(H2) Topological hypothesis: the mapping z Hcla,s (z) is transversal
at the point zo to the codimension 3 submanifold

This condition is equivalent to 6z - surjective mapping.

(H3) Dynamical hypothesis: ifp = det(Hclass), the Hamiltonian vector
field Xp of p vanishes at zo and its linearization admits a pair of non zero
real eigenvalues ± .

It implies that E-IzldimkerH,,,,,s-21 is a submanifold of

codimension 3 of T*R’ on which the symplectic form w admits a kernel

(the characterictic foliation) of dimension 1.

If d = 2, we can write H class as

Our assumptions can be rewritten as follows:
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(ii) the differentials dq, dr, ds are linearly independent at the origin;

(iii) the Poisson brackets satisfy

LEMMA 1. - The previous assumptions are structurally stable. More
precisely, if Hclass satisfies (HI), (H2) and (H3) at the point zo, and

K : T~jR~ 2013~ is a smooth map, Hclass + eK satisfies the same

hypothesis at some point z(s) close to zo for e small enough.

The generic case includes also the elliptic case where the pair of non
zero eigenvalues is purely imaginary, see [7].

Property (H2) says that E is a smooth submanifold of codimension 3.
Let us denote by M the linearization of Xp at the point zo.

Because M is of rank 3, M admits an hyperbolic block and a 2-dimen-
sional non trivial Jordan block with 0 as eigenvalue and hence the following
linear symplectic normal form at each point of £:

with A &#x3E; 0. The linear vector field defined by M is the Hamiltonian vector
field of the quadratic x2 ) . In general, the Jordan block
could have ±1 as entries, but here the + sign is forced by the signature
(~, -, -, 0, ... , 0) of p" at the points of.

2. Examples.

2.1. Born-Oppenheimer approximation (stationary case).
If

where § = E is the free stationary Schr6dinger equation in R’
and V is a symmetric d x d matrix potential which admits a generic crossing
of two eigenvalues along a codimension 2 submanifold ,S’ in R’, the previous
assumptions are satisfied at the point (xo , ~o ) , where 
is the degenerate eigenvalue of V(ro), if and only if the velocity is

transversal to S at the point xo .
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2.2. Born-Oppenheimer approximation (time dependent case).
We can also apply our results to the time dependent Schr6dinger

equation

where S = ihat - h209 and V is a symmetric d x d matrix potential which
admits a generic crossing of two eigenvalues along a codimension 2 manifold
~S’ C I1~ x R" . The previous hypothesis are satisfied at the point (to, To, Xo, ço)
if (to, xo ) E S, the degenerate eigenvalue of to)) = 0 and
the vector field -8t + is transversal to ,5’ at the point (to, xo).

2.3. Adiabatic limit with extra parameters.

This example is very close to the case studied in our paper [11]. Let
us consider the following adiabatic evolution problem:

where A(x, t) is a d x d real symmetric matrix.

Here x is a real extra parameter close to 0. The goal is to get uniform
estimates w.r. to the small parameters - and x We can transform this

equation into a semi-classical problem: by putting t = ~8, we get

where E is the semi-classical parameter. The principal symbol is A(x, t) -TId.
The hypothesis are fulfilled at the point (0,to,go,To) if and only if

dim ker(A(o, to) - To ld) - 2 and (x, t, T) H A(x, t) - T Id is transversal

to W2 at that point.

2.4. Maxwell equations.

We consider the stationary Maxwell equations for an electromagnetic
field inside a non homogeneous and non isotropic medium (see [41]). In
this case the semi-classical regime is the high frequency regime and the
corresponding geometry is the geometrical optic. Let us give a dielectric
tensor E(x) (a Riemannian metric on ]R3), the magnetic permeability
tensor and c = 1 the light velocity, we get the following dispersion matrix
(see [41]):
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"...,- ...,- ,

Generically E consists of 4 branches (t, X; T, ±Tj (X)), j = 1, 2. The

algebraic surfaces p(0,~o~~) = 0 are called the Fresnel surfaces. It is

proven in [7], that the hyperbolic case as well as the elliptic case can occur.

2.5. Acoustical waves.

We consider the propagation of acoustical waves in elastic media. The
dispersion matrix is given by

where p(x) &#x3E; 0 is the density and ~ -4 C(x, ~), the elastic tensor, is

a quadratic map on JR3 with values in the positive definite symmetric
3 x 3 matrices. In this case they are at most 16 singular points on

0 (see [36]). They can be elliptic or hyperbolic (see [7]).

2.6. Oceanography.

The mode conversion problem has also been considered in oceano-
graphy, see [35], [49].

2.7. The Landau-Zener model.

We denote by

with Dl = (hli) 8/8ri and by

its Weyl symbol. Hypothesis (HI), (H2) and (H3) are satisfied at the points
~1=~2=~1=0.

The system Ho, which is closely related to the case computed by
Landau and Zener, will be our local model.

It will be usefull to denote by X, (resp. Xo ) the Hamiltonian vector
field of p (resp. We have:
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2.8. Avoided crossings.

Let us assume that our system Hu = 0 depends on a real parameter a.
We can add a as another coordinate (like some and we assume that

the new system satisfies our hypothesis (HI), (H2) and (H3). Then we
get the normal form Ho and the operator a (multiplication by a) commute
with it. So we see that the Weyl symbol of a is a function of (X2, x’, ~’) -
If we assume moreover that 8a/8x2 =I 0, we can recover X2 as a function
of (a, x’, ~’) so that we get a normal form

where Pa is an a-dependent pseudo-differential operator w.r. to x’ only.
This way, we see how to recover the results of [33] and [34].

3. Reduction of high dimensional systems to
two dimensional systems.

Let us consider a d x d symmetric matrix of pseudo-differential
operators H and assume that its principal symbol at some point 0
is singular with a kernel of dimension 2. Then it is well-known that we can
find an invertible matrix A of pseudo-differential operators such that AtHA
splits mod into a direct sum of a 2 x 2 symmetric system Hl whose

principal symbol vanishes at the point 0 and a (d - 2) x (d - 2) system H2
which is invertible at the point 0 (see for example [7] and [18]).

Hence, we will work in what follows with a 2 x 2 system.

We will derive a semi-classical normal form in the following way:
we first work on the classical level where we give a refined version of the
Braam-Duistermaat normal form. We then proceed on the semi-classical
level.

4. Some notations.

Our canonical coordinates will be (~i,~i;~2~2~~) with

The associated Poisson bracket will be denoted by ~ . , . ~ : if x f is defined

b, We will denote by Z the hyperplane
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(r2 = 0}? by Y the subspace and by E their intersection

This notation could seem to be confusing, but this E is the previous E for
the Landau-Zener model.

For n E N U oo, f = Ov (n) means that f is of order n transversally
to the submanifold V, i.e., the Taylor expansion of f starts with terms of
degree &#x3E; n along V.

Let us denote by HN the space of smooth functions of (x, ~) which
are homogeneous polynomials of degree N w.r. to (X I Çl, X2).

5. The cohomological equation.

We will need the following lemma:

LEMMA 2. - Let and p E HN . The following equation:

admits a solution ( U, V) with and Y

Proof. We expand U, V and p as polynomials in x2 :
and UN _ 1 = U’ -~ U"UN-, = U’ -~ U" with and

witl and with

p~ E HN-j, we get the following equations:
. If I

where

. and:

Equation (*j), j  N - 1, can be solved by choosing Y~ so that

Th-2 - VjXIÇ1 admits no "resonant term", i.e., no terms 

Equation (*N) gives U". D
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6. Finding a gauge transform.

LEMMA 3. - We define zl - (xl , If L : -4 Sym2(JR) is a
linear map such that det

. - ..L 7 -- SJ

there exists a constant

invertible matrix A such that.

Proof. - We first restrict to X2 = 0. We put L = x 1 q, +Ç1q2+X2q3 with
fixed quadratic forms qj. We have det(9i) = det (q2 ) = 0 and q1 i= 0, q2 ~ 0.
The kernel of q, is generated by VI and the kernel of q2 by V2. (V1, V2)
are independent because q1 and q2 are linearly independent (otherwise
det (x 1 ql + giq2) = 0). We can assume that = q2 (Vi ) - ~ 1 (both
have the same sign because of the value of the determinant of L(zi, 0)).
Hence, by choosing the basis (V2, Vl ), we get

We have now = and by identification of
the determinants we get L(zi, x2 ) = ±X2)- It is easy to change -X2
into +X2 by using the gauge transform (u, v) H (u, -v). D

LEMMA 4. - Let H = Ho + Or (2) and assume that det(H) = det(Ho).
Then there exists a smooth map x 1---+ A(x) defined in some neighbourhood
of ~ such that

The same result holds in the real analytic and in the formal series settings.

Proof. We will use Moser’s path method.

1) Let us first construct a path HT, 0  T  1, from Ho to H
with det(Ho). Let H = Ho + K where K = OE(2) and
Hr = Ho + TK, 0  T  1. We have only det(Hr) = det(Ho) + Or(3).
Using the Morse-Bott Lemma to the function det (H r ), we can find a smooth
family of diffeomorphisms
such that

with

We define
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We have now det ( Ho ) and HT = Ho + Or (2) . We put

and let

From = det(Ho), we get

2) Let us solve the following linear equation:

with B = and Tr(B) = 0. We put
system of equations:

We get the following

From equation (6), we get that

So there are smooth functions a, c, b’, a’, such that

Then equation (6) implies a - a’ = for some smooth function w, so, if

we define b = b’ + we get equation (ii). Equation (iii) is then fulfilled
from equation (6). All previous arguments work smoothly with respect to T.

3) The path method works now as follows: we try to find AT such
that = Ho. Taking the derivative and putting dAT / dT = 
we get:

which we have already solved with ’ 
I
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7. The classical normal form.

7.1. Nelson’s result.

For convenience, we recall here an adapted version of the statement
of Theorem 8, p. 46 of [47]:

THEOREM 1 (Sternberg’s theorem). - Let X be a smooth vector field
on R’, with X(0) = 0. Let Xox = DX (o)x be the linear part of X at the
origin, let U(t) and Uo (t) be the flows generated by X and Xo, and define
X = Xo + We assume that X l is compactly supported. Suppose there
is a linear subspace N, invariant under Xo, such that Xl = ON(oo). Let

Then, for all j E N and x E E, Di (U(-t)Uo(t)) x converges as t - +oo
and the limit W_ (x) (x E E) has a smooth extension G to such that

G - Id = ON (oo) and such that (G-1 )*X - Xo = OE (oo) .
Moreover, if X and Xo are Hamiltonian vector fields, G can be chosen

to be symplectic.

7.2. Classical normal form.

THEOREM 2. - Assuming hypothesis (HI), (H2) and (H3) of Section 1,
there exists a germ of canonical transformation x : (T*IRn, 0) - (T*X, zo)
and a germ of map (x, ~) H ~4(~, ~) C GL(d, R) at the origin, such that

with K invertible.

The normal form is local while in [7] it was only formal along the
codimension 3 subspace :

Proof. Let f and g germs of function near the origin, we will denote
f N g if there exists a (germ of) canonical transformation X and a (germ
of) non vanishing positive function e such that f o x = eg. Same notation
for matrix valued germs by allowing gauge transformations: if H, K are
germs of matrix valued maps, we denote H N K if there exist a canonical

transformation x and an invertible matrix valued function A such that
H o x = At KA. This implies det(H) - det (K) as germs of functions.
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The proof splits into several steps. The idea is to start finding a
normal form for the ideal generated by the determinant p (the dispersion
relation).

1) Assuming hypothesis (HI), (H2) and (H3), we prove first

p-po+0s(3).
Let us denote by Mar the linearized vector field of Xp at the

point a E E and by ~~(~), A(a) &#x3E; 0 the non zero eigenvalues of Ma.
Using our hypothesis on p, we choose vectors e2, f2 E TaT*JRn so that

There exist local coordinates

(~2, X’, ~’) on E so that f 2 = 8Ç2 and d~’ A dx’. We extend
these coordinates to by choosing e1, f1 E so that

and

Applying Weinstein’s theorem (see [51], Thm. 4.1 ) , these coordinates can
be extended to symplectic coordinates near E. We have then clearly
p = x2) + OE(3).

We remark for later use that X2 is uniquely defined up to ± mod

Os (2) (look at the Hamiltonian vector field of X2 on E).

2) This part is a Birkhoff type normal form transversally to E. Using
Lemma 2 in order to solve the cohomological equation, we prove that

p - po + if we assume p = po + rN where rN = and N &#x3E; 3,
we use xN which is the time 1 flow of an Hamiltonian U E and e = 1- V

with V E ~~v-2. We want to solve

It is enough to solve

using Lemma 2. We get a new remainder term + 1)
and we proceed by induction. We need the elementary observation that

I HN, po I C HN in order to see that higher order terms in po o xN like

with # of brackets &#x3E; 2 are in Or (N + 1 ) . ~ 1 &#x3E;

(1) Let us remark that the conclusion of this step is already a corollary of the main
result of [7].
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3) We want to prove that We have already
a function which is homogeneous

of degree 0 w.r. to (~1,~1,~2)? vanishes in a conical neighbourhood of the
cone po = 0, is 1 in some conical neighbourhood of Y and the restriction of
which to the unit sphere is smooth. We define e as follows:

One can check that e is smooth and non vanishing near E and we have
p = epo + Oy (oo) .

’ 

4) We use Nelson’s Theorem 8 (p. 46 of [47]) (see also Subsection 7.1):
. With "Xp." - "xo - Xp, where p - po = Oy(oo) and p - po

compactly supported, and "N" - Y. We get p N po + 

. With wher( and

p - po compactly supported, and "N" = (ri = 01. We get conjugacy of
flows.

5) We reduce to the 2 dimensional case and we show that by gauge
transform Hclass rv Ho + Or, (2). This is based on Lemma 3.

We can assume the plus sign in the normal form of Lemma 3 by using
the canonical transformation (~1,~2~2~~) ~ (=L~h~2~2~~)-

6) We now apply Lemma 4. D

From the previous normal form, we can deduce some geometrical
properties: the dynamics of X admits the codimension 3 submanifold E as
a singular manifold, E admits smooth unstable (resp. stable) manifold E-
(resp. ~+ ) which are of codimension 2 and both included into a smooth
codimension 1 invariant manifold.

8. Matrix valued cohomologicai equation.

LEMMA 5. - Let Herm(2 x 2) such

that (R2)IE = 0, there exist smooth functions S : T*R 2 --~ R and
A : T*I1~2 ~ Mat2(C) such that

Proo£ - . Splitting A == Al + iA2, we get the equations
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where R1 is real symmetric, and

where R2 is real and antisymmetric. Equation (9) is easily solved, using the
hypothesis (R2)IE - 0, by Taylor formula.

. Equation (8) is the linearisation of our classical normal form problem.
In order to solve it it is enough to solve the classical normal form problem
using Theorem 2 for Hclass + tRi smoothly w.r. to t, using Lemma 1, and
to take the derivative w.r. to t at t = 0. 0

9. The semi-classical normal form.

We have the following normal form:

THEOREM 3. - Under the assumptions (HI), (H2) and (H3) of

Section 1, there exist a Fourier integral operator, microlocally unitary, U, a
symbol of order 0 denoted by Ah : T* Rn -4 GL(d, C) (a gauge transform),
and a real valued symbol denoted

(called the minimal gap) such that

ulith R elliptic.
The 2 x 2 submatrix of the previous normal form can be written (weak

normal form) as follows:

urith P commuting with the diagonal terms and P = X2 + O(h).

Proof. Using Section 3, we reduce to d = 2. Using the classical
normal form of Theorem 2 and Egorov theorem, we reduce the system to
Ho + hR where R is self-adjoint of order 0. We normalize the next terms
(transport equations) by using Lemma 5. 0
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QUESTION. - It would be nice to know what kind of semi-classical
hypothesis do imply that q vanishes. For example, what happens in the
Born-Oppenheimer case?

10. Microlocal description of the solutions
of the normal form.

-

We will assume in this section that y(h) - 0. The result can be
extended to the general case using the fact that 7(h) commutes with fi
and ç 1 .

10.1. Some notations.

We will give some notations for the Hamiltonian H. All geometric
sets defined below are preserved by canonical transformations and by gauge
transforms.

C will denote the characteristic manifold p- 1 (0) where p is the

determinant of Hclass- We have

which is a disjoint union where C+ (resp. C_ ) is defined by the fact that
both eigenvalues of Hclass close to 0 are A- = 0  A+ (resp. A-  A+ = 0).
We will also define ~+ C C (resp. E- C C) as the stable (resp. unstable)
manifolds of E for the dynamics Ot of Xp.

We will denote by W Fh (uh ) the semi-classical wave front set or
microsupport or frequency set of the family uh. We will write uh = 0 or
uh = in Q where Q is an open set in if W Fh (uh ) 0.

Let us choose zo E E and a &#x3E; 0 small enough. We define z n -
( 0, a, 0, zo ) , and,

- - -

If U a microlocal solution of HU = 0 in Q, an open neighbourhood of
some point zo E E, we will denote by

~ Uin the restriction of U to some neighbourhood of i
~ Uin the restriction of U to some neighbourhood of i

w Uout the restriction of U to some neighbourhood of

~ the restriction of U to some neighbourhood of
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Figure 1. The microlocal solutions

-

We will concentrate on solutions whose component Uin vanishes.
We will also use a partial Fourier transform w.r. to xl:

10.2. Special solution.

We will build a special solution of the model problem which will allow
- -

to describe all microlocal solutions of HoU = 0 near E.
Let us consider the solution

of the model equation:

given by

where Y is the Heaviside function and r the Gamma function. Previous

formulae define u as a distribution associated with a locally integrable
function and v outside x 1 = 0.
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The precise definition of the distribution v is given below in term of
its partial Fourier transform.

. the h-Fourier transforms it (resp. if) with respect to xl, of u
(resp. v) at the non zero values of Ç1 are given, for ~1 &#x3E; 0, by

for

The partial Fourier transform of v is the distribution associated with
the locally integrable function given by the previous formulae.

One get easily other solutions supported by 0 by multiplying the
previous one by an arbitrary function of (x2 , ... , 

Remark. 1 - If 1’(h) does not vanish, our system is replaced by

where P = X2 + commutes with Xi and 6. We can do the same
calculations where X2 is replaced at some places by P, at other places
by P*, and x2 is replaced by P* P or by PP* . We get the same kind of
formulae from which we can deduce that the results described below also

holds in this case.

and we get

where, by using Stirling’s formula (see [1], p. 257):
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More precisely

where 0 is the smooth function on ]0, +oo[, continuous at 0, whose limit at
infinity is 1, given by

Moreover, we can check that

10.3. Microlocal solutions.
- -

In this section, we will describe all microlocal solutions of Ho U = 0
-

for which Uin vanishes using our previous solution Uo. We get the

- THEOREM 4. - Let U be a microlocal solution near the origin of

where Q is a neighbourhood of the origin. Let us assume moreover that
Then, if we have

microlocally near the origin.

The proof is an extension of an argument given in [12], Prop. 17.

All microlocal solutions near E are sums of the previous one’s and a
similar one whose ingoing part is Uin , i.e. Uin - 0.

11. Lagrangian states.

11.1. Qualitative description.

We want to describe solutions for which Uin vanishes while Uin is a

Lagrangian state associated to a germ of Lagrangian manifold At C T~R~
which is contained in C+ near some point z E C+ r1 ~+ . We will assume
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that and ~+ intersect transversally inside C+. Their intersection is

then an isotropic manifold of dimension n - 1. We will denote by

Wo is an isotropic submanifold of E of dimension n - 2 transversal to the one
dimensional null foliation u of E. We will also denote by Wout C E+ n C-
the isotropic submanifold of dimension n - 1:

THEOREM 5. - Let be a microlocal solution of

HDUin = 0. There exists a unique microlocal solution of HoU = 0 in some
neighbourhood of E such that Uin vanishes.

We have the following qualitative description of this solution:

. The flovv-out li’ c C+ of E+ by Ot is a smooth Lagrangian
in

manifold whose closure is singular along £- f1 C+. U is a Lagrangian
distribution of order 0 on A’. Its principal symbol does not extend
continuously (in general) along ~ _ n C+ although A’ is C1 ( but not C2).

. Along C_ , is a Gaussian state of order 2 associated to the
isotropic manifold Wout and a positive Lagrangian manifold 

Proof. It is of course enough to prove the theorem for the model.
In this case U = cpUo where x’) is any Lagrangian state w.r. to

the variables (X2, x’ ) . The theorem follows directly by examination of the
-

expressions of Uo given by Theorem 4. D

11.2. Principal symbols.

We will now describe a construction of the Lagrangian manifold llout
out

as well as of the principal symbol of Uo-ut*
11.2.1. Logarithmic maps. - Let X be a fixed finite dimensional

complex vector space and Gn the Grassmann manifold of its complex
subspaces of dimension n. We will say that a map F : ~ - a, 0 ~~ Gn is

logarithmic if there exist maps fj : ] - a, 0~~ X, j = 1,..., n, such that
f~ (u) = ej log lul + gj (u) wit h gj smooth at 0 and F(u) is the vector space
freely generated by the fj (u)’s. Such a mapping F admits a formal extension
to u &#x3E; 0 defined by fj (u) = ej (log u + i-x) + gj (u). This extension, called
the canonical extension of F, is independent of the choice of the basis as
well as invariant by increasing diffeomorphisms 0 in u such 0.
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11.2.2. The transmission rule for the Lagrangian manifold. - We will
choose a trajectory l’+(t),t of Xp contained in At n E+. This
trajectory admits a unique prolongation 1’- as another trajectory contained
in C- n E+ so that the closure of their union is a smooth arc denote by -/(u)
with u close to 0. We will assume that

. if then ~ I

. if , then

It is clear that Wout is foliated by the trajectories -~-. So it is enough
to make our constructions along any ~y.

We will denote by L+ (u) the tangent plane of 11 n at the point
 0.

Similarly L- (u) will be the complex Lagrangian plane tangent to A-
at the point ’"’(( u), u &#x3E; 0.

L+ (u) is logarithmic in the sense of the previous section.

PROPOSITION 1. - L- (u), u &#x3E; 0, is uniquely defined by its formal

expansion which is the canonical extension of L+ (u) and its invariance by
the linearization of 

11.2.3. The transmission rule for the principal symbol. - Both limits
of L~ (u) as u - 0 agree

The following proposition describes the transmission rules for the principal
symbol which is an half density on L~ (u) .

PROPOSITION 2. We have

Once given the transport equation (see for example [18]), one can
check that there exists a unique (j:f: (u) which satisfy the transport equation
and such that the previous rule holds. So we have really described the
transmission rule for the principal symbol.
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12. Gaussian states:
"the dromedary becomes a Bactrian" ~2~ .

In this section, we will use the definitions of the Appendix.

12.1. Model problem.

In order to recover Hagedorn’s results, one first has to choose an
incoming trajectory C C+ n ~+ of the vector field Xp. We can assume
that -

We have two outgoing trajectories

so that

so that

THEOREM 6. Let be a Gaussian state of order 0 based on the

isotropic manifold -yt and assume Uin = 0. Then the microlocal solution
in -&#x3E; 

n

near o7o of HU = 0 satisfies
~ Uout is a Gaussian state of order 0 associated to 

~ Uo t is non Gaussian symplectic spinor of order 0 associated to 
Proof. We look at our model problem. We choose

We have ’"Y:ut (t) _ ( et, 0; 0, 0; 0, 0) and = (0, - e-t; 0, 0; 0, 0).
A typical "Gaussian state" is given by

where

andQl « 0.

. From the explicit formulae, we get that U ut is a coherent state

associated to 1’:ut. The symbol of u ut is

apart from trivial factors. The F factor prevents uj to be Gaussian.

(2) Thanks to George Hagedorn for pointing to me the appropriate names.
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Figure. The squares of the modulus of the solutions

We have

hence a Bactrian!

The rules for the symbol along are the same as for the Lagrangian
states. 0

It remains to describe the rules for the principal symbol of the
symplectic spinor associated to T+ut.

13. The elliptic case.

If we replace in our assumptions of Section 1 the condition (H3) by

(H4) the linearization of Xp admits a non zero pair of purely imaginary
eigenvalues 

and (iii) by

we get that the semi-simple factor is now elliptic. As already observed in [7],
this case occurs in Maxwell equations as well as in propagation of waves in
elastic media.

On the level of formal series expansions, the same results holds, but
we can no more use Sternberg’s theorem. We get the

THEOREM 7. - Assuming (HI), (H2) and (H4), Theorem 3 remains
true on the level of formal series transversally to
with
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We can describe easily the solutions of the model system

by using the unknown functions W:f: = u ~ iv. We get the following equation
for w+ :

where is an harmonic oscillator. The formal normal

form suffices to describe microlocal solutions whose microsupport is E;
it is enough to developp the value of w+ at x2 - 0 using the basis of

eigenfunctions of Q.

14. The Hermitian case.

The same method can be applied to other kinds of generic eigenvalues
crossings. The main hypothesis in order to get a microlocal normal form
is transversal hyperbolicity, namely the linearized Hamiltonian vector field
should have hyperbolic blocks and Jordan blocks with 0 as eigenvalue only.
We give below a sketchy presentation of the Hermitian case which will be
the object of [10].

In the Hermitian case, because of the signature (+, -, -, -,0, ... ,0)
of p", there are only four cases. We will classify according the corank of WIE
which is assumed to be locally constant:

14.1. Corank 0: the generic case (elliptic-hyperbolic).
The singular stratum E of the characteristic manifold is symplectic.

The linearization of xP do admit two pairs of non vanishing eigenvalues
(~~, ±ilL).

We get moduli in the normal form: we cannot reduce both semi-

simple blocks using our equivalence relation. We do not know some physical
example of this last case. The normal form should be:

where a(T, x’, ç’) is a smooth &#x3E; 0 function.

Both cases (:1:) are not equivalent: the open cones C~ which

correspond respectively to ~_ = 0  A+ (A-  a+ - 0) are well-defined
near E. Morse indices differs by 1 on those cones. Moreover, both cones are
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oriented by p &#x3E; 0. Hence the polarization bundle have a well-defined first
Chern class on C+ and both signes in the normal form gives both signes in
the Chern class.

In the case of two degrees of freedom and analytic data, the normal
form for the dispersion relation has been proved to be convergent by
Moser [46]. The model problem is studied in [21].

14.2. Corank 2: the hyperbolic case.

The singular manifold is not symplectic and the linearization of Xp
admits one pair of real non vanishing eigenvalues:

This normal form is local as in our previous result. We get this model in
the Born-Oppenheimer approximation with magnetic field.

14.3. Corank 2: the elliptic case.

The singular manifold is not symplectic and the linearization of Xp
admits one pair of purely imaginary non vanishing eigenvalues.

We get a normal form which is only formal as before. This model is
used in the example of spin-orbit interaction (see [19] and [20]). It leads to
transition of an eigenstate from one band to another one.

14.4. Corank 4: the involutive case.

The singular manifold is involutive. A similar case has been studied
by Melrose and Uhlmann in [45].

15. Bifurcations.

It would be interesting to describe generic bifurcations which may
occur at least for three reasons:

1) The condition 2) is no more satisfied at some points. This imply a
singularity of the manifold E.
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2) There is a change in the normal form involved. For example in
the symmetric case, how do we pass generically from the hyperbolic to the
elliptic case?

3) For a d x d system with d &#x3E; 3, there exists triply and more
degenerated eigenvalue of the classical Hamiltonian at some points.

16. Appendix: coherent states, symplectic spinors
and Gaussian states.

16.1. Definitions.

A (semi-classical) coherent state is, roughly speaking, a semi-classical
state whose microsupport is an isotropic submanifold I~ of the cotangent
space. It is desirable to describe nice families of coherent states for which a

so-called sgmbolic calculus is available. Of course, such families should be
invariant by Fourier Integral Operators.

There are at least three available theories of coherent states which are

closely related:

1) (Semi-classical) Fourier Integral Operators with complex phase
functions studied by Melin and Sj6strand [44].

2) (Semi-classical) Sgmplectic Spinors studied by Boutet de Monvel
and Guillemin [29] and [6], see also [39].

3) Hagedorn’s Semi-classical Wave Packets [30], [32] or Gaussian

states.

The first two theories are better adapted to the context of microlocal

analysis being invariant by Fourier Integral Operators. We will use the
second one in what follows: we will first give the definition of the semi-
classical symplectic spinors following closely [29]. Then we will define a
subset of it, the so-called Gaussian states, associated to some jet of order o0
of positive complex Lagrangian manifold containing K; they are very close
to Hagedorn’s semi-classical wave packets. After that, we will define the
principal symbols of these objects. All our discussion will be (micro-)local
even if it is not always specified.

DEFINITION 1.. Let Ko be the isotropic submanifold of

defined by
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We will say that is a symbol in 

a(x, . , h) E and, for all semi-norms N of the Schwartz space
and all E &#x3E; 0, we have

uniformly on compacts in 

. A classical symbol in Z/(Ao) is a symbol which admits an asymptotic
expansion a( (
this space.

We will denote by ~ 1

. A symplectic spinor (resp. classical symplectic spinor) uh (x, y)
of order l associated with the isotropic manifold ((r, 0; 0, 0)) C

is defined by

where a e (resp. a e We will denote a e SSf(Ko)
(resp. a E 

. If K is an isotropic submanifold of and x a canonical
transformation such that = K, we choose an elliptic FIO of order 0
say A and define

Remark. 2 - If K is a Lagrangian submanifold, symplectic spinors
associated with K are exactly the Lagrangian states (WKB-Maslov states).

The proof of the coherence of the previous definition is an easy

adaptation of Guillemin’s argument in [29] (see also [6]). It is clear that, if
uh E SS~(K), we have WFh(uh) C K.

An example which is useful in our paper is

(see formula (17)) where ao is in the Schwartz class w.r. to Y and P is a
real valued polynomial.

DEFINITION 2. - A positive formal Lagrangian manifold along K is a

jet of infinite order of complex Lagrangian manifold along K whose linear
part is a positive Lagrangian subspace of ((T K)O /T K) 0 C.

If K = Ko, A = defined by a formal series y) =
where is homogeneous of degree j w.r. to y and

is a strictly positive quadratic form.
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DEFINITION 3. A Gaussian state of order f associated to 

is defined by

where a is a classical symbol of order .~ - 2 ( n - k).
We will denote by the corresponding space. We can

define GS~ (K, A) using Fourier integral operators.

PROPOSITION 3. - A Gaussian state is a symplectic spinor. If

u E G,S’°(K°, A~,), its total symbol is where

Y) is a polynomial in Y of degree less than 3 j and conversely.

Remark. 3 - The "3 j" can already be seen in formula (3.2) of [16].

16.3. Principal symbols.

16.2.1. Symplectic spinors. - We will now define the principal symbol
of a symplectic spinor following [29].

Let K be a k-dimensional isotropic submanifold of T~R~. We will
assume as in [29] that K is equipped with a metalinear structure. The
vector bundle E = of dimension 2(n - k) over K is symplectic.
We will assume that it is equipped with a metaplectic structure. It implies
that each Lagrangian subbundle is equipped with a metalinear structure.
We assume also that R’ is equipped with the standard metalinear structure.

We want to define the principal symbol of a semi-classical symplectic
spinor which is a half form: We start with a direct sum

decomposition E = L (B L’ of E into a sum of two transversal Lagrangian
subbundles. The symbol a(uh) of Uh will be an element 
where x E K, Y E L and the equivalent class [.] ] is in ~° (L) /~ 2 (L) . We
use a local trivialisation of L in order to get functions of (x, Y). If K = Ko,
u=

we have

and

It is now enough to say what is the transformation rule for the

symbol under the action of an elliptic Fourier Integral Operatorof order 0:
the canonical transformation x such that x(Ko) - K transforms the Ko-
bundles Lo (D Lo C Eo into the K-bundles L (B L’ c E. It acts in a natural
way on principal symbols using the metaplectic representation associated
to the linear part of x. The symbol of A(uh) using this natural action is just
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obtained by multiplication by the principal symbol of the Fourier Integral
Operator.

It remains to speak about the transport equation: we assume that P
is a pseudo-differential operator whose principal symbol p vanishes on K
and such that Xp is tangent to K. If uh E Puh E and its

principal symbol is given by the familiar formula

where one need to interpret the Lie derivative properly as in [29]!
In the matrix case, we need a natural extension of the calculus of [18].

For the standard examples (Born-Oppenheimer or adiabatic cases), it is

enough to consider the canonical connexion on the polarization bundle.

16.2.2. Gaussian states. - The case of Gaussian states is easier

to describe: the principal symbol is just a half form on the bundle

of Lagrangian spaces over K. If K - Ko and 1~ - A~.
and, if we denote by

the canonical projection, the principal symbol of y) 
is 0) N/-dx-dy) -
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