
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER
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PLANE CURVE SINGULARITIES AND CAROUSELS

by LÊ DUNG TRÁNG

Introduction.

Let f : (C2, 0) - (C,0) be the germ of a complex analytic function.
Since we are only interested in the topology of the germ of plane curve
(r, 0) defined by f, we assume that f is reduced, i.e., if f - fi 1 , . , 
is the decomposition of f into irreducible factors in the ring YI of
convergent power series in two variables, then a1 - - - - = ak = 1. We still
denote by f a representative of this germ defined on an open neighbourhood
U of the origin 0 in E~2 and h = f -1 (o) n U.

Since f is reduced at 0, the point 0 is an isolated singular point
of r, i.e., there is a sufficiently small neighbourhood V of 0 in (~2, such
that the space (h - {0}) n V is non-singular. In other words the ideal
(~ 0 f /0X, 0 f /0Y) generated in C{X, YI by f and the partial derivatives
of f is primary for the maximal ideal Jlil of It can be shown that

this is equivalent to the fact that the Jacobian ideal (8 f/8X, 8 f/8Y) is

M-primary, i.e., the quotient C-algebra:

is a finite dimensional vector space over C. This dimension is called the

Milnor number of f at 0. We shall denote it by p (f 0) .
It is known (see [M]) that, for E &#x3E; 0 sufficiently small, the real 3-

sphere Sg(0) of C2 centered at 0 with radius - intersects r transversally.

Keywords: Plane curves - Singularities - Carousels - Puiseux expansions - Characteristic
exponents.
Math. classification: 14J17 - 57M27 - 57R30.
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Moreover the smooth type of the link r n Sg(0) in Sg(0) is an analytic
invariant of the germ (if, 0). For commodity we call algebraic link a link
which has the smooth type of the link associated to the singularity of a

complex plane curve.

The number of components of this link equals the number of
irreducible components of f = f, ... fk. Each component 
defines a branch (IB,0) of (if, 0). It was shown by K. Brauner in [B] that
the knot Ki = Fi n Sg(0) in Sg(0) associated to the branch (ri, 0) is an

iterated torus knot determined by the Puiseux pairs of fi at 0 (see 
The linking number Kj) of the knot Ki with the knot Kj in S, (0) for
i equals the complex dimension of the complex vector space (see [R]):

which is the intersection number of hi and Fj at 0.

In general a link is not determined by its components and their pair-
wise linking numbers. However, a consequence of a result by M. Lejeune-
Jalabert (see [L62] tome 1 ) and 0. Zariski ([Z]) is that algebraic links are
determined by their components and the pairwise linking numbers of their
components. This result is essentially a consequence of the computation of
the intersection number at 0 of the branches hi and r j by using the mini-
mal resolution of the function fifj. D. Eisenbud and W. Neumann in [EN]
and F. Michel and C. Weber in [MW] also obtained this result and gave an
explicit necessary and sufficient condition so that an iterated toric link is
an algebraic link (see [MW] (Proposition 5.3.2). The fact that an algebraic
link is determined by its components and the pairwise linking numbers of
the components is not satisfactory, because this statement does not show
directly how the equation of the associated curve gives the embedding of
this link in the 3-sphere. A similar problem arises with the topology of the
complement in the complex projective plane of a non-singular plane curve
of degree d. It is easily seen that this topology is uniquely determined by
the degree, but little is known about it except when d = 2 (see e.g. [LSV]).

In this paper we aim to describe an algebraic link in the 3-sphere.
For this purpose, we shall use the notion of carousel of a germ of plane
curve (see [Lê2]) and connect it with the description of the corresponding
algebraic link. In fact, we show that by integrating the vector fields which
define the carousel, we obtain an explicit Waldhausen decomposition of the

3-sphere (see [LMW]) adapted to the components of the link.

We thank the referee for valuable corrections in an earlier version of

this paper.
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1. Topological setting.

1.1. - We consider a plane curve h C U as in the introduction. It
is convenient to replace the ball of (C2 centered at 0 with radius E by
a polydisc (0) x D1J2 (0). We choose the polydisc in the following way.
There is r2 &#x3E; 0 small enough, such that

for any r~2, r2 &#x3E; q2 &#x3E; 0. Then, for a given q2 &#x3E; 0, there is r1 &#x3E; 0 such that,
for any 711, r~l &#x3E; It &#x3E; 0, (Itl x D.2/2(o)) nr contains points, where
1~ is the intersection number of 101 x C with h at the 

It is known that the ball is a manifold with boundary diffeo-

morphic to the manifold with corner D~1 (o) x D~2 (o) . In particular the
boundary of the ball is diffeomorphic with the manifold with
corners

Then, we have (see [Le3]) :

THEOREM 1.1.1. - For 1 » ~ &#x3E; 0 and 1 » Q2 » r~l &#x3E; 0, the

algebraic linkr n in has the same smooth type as the link

DQ2 (°) ) in (0) x Dn2 (0)) -

We have

Since we have only to consider

to describe the algebraic link T in 

1.2. - The embedding of rn ~a(D~1 (0) x D~2 (0)~ into the solid torus
(0) x D172 (0) defines a closed braid.

DEFINITION 1.2.1. - A closed braid is a closed embedded 1-

manifold L in a solid torus ,S’1 x D2, such that the first projection onto
the circle ,S’1 restricted to L is a covering over ,S’1, and, for any t E ,S’1, the

points of L over t are in the interior of Itl x D2.

The following theorem is needed to recognize algebraic links.
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THEOREM 1.2.2. - Let L and L’ be two closed braids such that L’

is contained in a tubular neighbourhood of L in the solid torus Sl x D2 and
the first projection onto the circle ,5’1 restricted to L’ is a covering of the
same degree as the covering of Lover Sl. Then, the links of the 3-sphere
defined by L and L’ are of the same smooth type.

For instance, let Lo be the trivial closed braid corresponding to the
curve Y = 0 at the point 0, then this theorem shows that the closed braid
L corresponding to a curve Y = defines a knot which has the

same type as the trivial knot.

2. Iterated torus knots.

In this paragraph let us assume that the germ of function f is

analytically irreducible at the point 0. In this case the algebraic link

associated to the curve defined by f has one component and is an algebraic
knot.

2.1. - Let us first recall Puiseux Theorem:

THEOREM (Puiseux Theorem). - Let f C C~~X, Y~ be an ana-
lytically irreducible germ. Assume the series f (0, Y) ~ 0 has valuation k.
There is unit u in (C~X, YI and a unique power series cr E such

that

where g is a k-th root of unity and Xl/k is a k-th root of X.

The series depends on the choice of coordinates and on the
choice of a k-th root of X. The set of series with ¡;k == 1, is

called the Puiseux expansion of f in the coordinates (X, Y). Therefore
the Puiseux expansion is the set of solutions of f (X, Y) = 0 in the ring

Let

Now, we define the Puiseux characteristic exponents of f relatively
to the coordinates (X, Y).

If k = 1, there is no Puiseux characteristic exponent.
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If k ) 2, the set 0, is not empty. Let .~1 be the
lower bound of this set and let

where ml and l~l are relatively prime. If ~1 = k, we only have one Puiseux
characteristic exponent If I~l  k, I~1 divides k and the set

is not empty. Let .~2 be the lower bound of this latter set. There is a unique
way to write

where m2 and 1~2 are relatively prime. If we have two Puiseux

characteristic exponents ml/k, and M2/klk2- If k1k2  k, di-

vides k. Suppose that we have defined r Puiseux exponents, r &#x3E; 2,
where mr and kr are relatively prime. If

~ ... kr = k, we have r Puiseux characteristic exponents. If ki ... kr  k,
k, ... kr divides and the set

is not empty. Let be the lower bound of this set. There is a unique
way to write

where mT+1 and kr+1 are relatively prime.

Since has a finite number of divisors, there is a finite number g of
Puiseux characteristic exponents of f relatively to the coordinates (X, Y).

2.2. - There is a more algebraic way to define the Puiseux char-
acteristic exponents. Consider the field extension generated by

root of X over the field of fractions C((X)) of ring of convergent series
We may consider the Puiseux expansion as elements of C((X1/k)).

Of course, the field C((X1/k)) is the field of fractions of the ring 
Let G be the Galois group of this extension. This Galois group is isomor-

phic to the cyclic group Z /kZ. In fact it is generated by the isomorphism
of induced by multiplying by a primitive k-th root of unity.

Let v be the valuation of the field for which = 1.

We define:
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Then G = Go and G D G.~ ~ ~ ~ . Notice that, for any
i &#x3E; 0, Gi is a subgroup of G. In fact, let ~1 and a2 be elements in Gi. Then

So

Since

we have that ala2 E Gi. Similarly We have

which yields all E Gi. Since G is a finite group the above descending
sequence of groups G D stationary. Moreover
G == ... == G f l’ ..., 

= ... == G f 9 The

Puiseux characteristic exponents relatively to (X, Y) are therefore
the quotients where are the indices where the descending
sequence G D G~ D ’ " is strictly decreasing.

2.3. - Puiseux characteristic exponents give an explicit description
of algebraic knots.

Algebraic knots are defined by successive satellisations:

DEFINITION 2.3.1. - Let K be an oriented knot in the oriented

3-sphere S3. An oriented knot L is a (p, q)-satellite of K if it has the
same smooth type of a torus knot (p, q) on the boundary of a tubular
neighbourhood of K on which meridians are chosen to be non-singular
closed oriented curves which have a linking number -f-1 with K and parallels
are non-singular closed oriented curves which do not link K and have a
intersection number -f-1 with a meridian.

Let m1/k1, M2/kik2, ..., be the Puiseux characteristic

exponents relatively to the coordinates (X, Y) of a plane branch defined by
f = 0. We define the following g numbers:
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Then the Theorem of K. Brauner can be formulated in the following
way:

THEOREM 2.3.2. - Let (F, 0) be the germ of a plane branch defined
by the germ of function f with the Puiseux characteristic exponents m1 
7~2/~1~2? ...? relatively to the coordinates (X, Y). Let Àr,
1  r  g, defined as above. Then the local knot associated to (F, 0) has
the type of the knot Kg defined by induction on g by

i) Ko is the trivial knot (oriented positively);

ii) for g &#x3E; r &#x3E; 2, Kr is the a of Kr-l.

A knot of the type Kr is a rth-iterated torus knot. The knot Kl
is a (À1, k1)-torus knot. In the original paper of K. Brauner, he uses a
parallel Pr of the boundary 9T of a neighbourhood of Kr which links Kr.
Actually if Pr and MT are a parallel and a meridian of as defined in the

definition 2.3.1, and P,’ and Mr are a parallel and a meridian considered
by K. Brauner, in the first homology of we have

where ~P~ is the homology class of P.

3. Carousels of plane branches.

In order to be simple, in this paragraph we first construct carousels
for plane branches.

3.1. - Let (IF, 0) be the germ of a plane branch defined by the germ
of function f with the Puiseux expansion relatively to the variables (X, Y):

where the terms (1 ~ r  g), called Puiseux terms,
correspond to Puiseux characteristic exponents. The non-zero terms of

have integral exponents, the non-zero terms of

have exponents in (1/k1... and

the non-zero terms of are in 
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3.1.1. - Now, let us choose r~l and T12, as in Theorem 1.1.1 (1 »
&#x3E; 0).

Consider the following truncated Puiseux expansions defined by in-
duction on g:

vi) for

3.1.2. - For r~l sufficiently small, we can define solid tori Tj c Tj
(0  j  g) inside the solid torus (0) x D172 (0) such that

a) the knot defined by wj is the core of Tj and the knot Lj defined
by CPj is the core of Tj ;

b) for any g &#x3E; ]1 &#x3E; j, the solid torus Tjl is contained in Ty.
We construct the solid tori Tj and T~ by induction on 3.
The solid torus To is the interior of x D~2 (o) . We set

~2 

The solid torus To is the open subspace of points (X, Y) of To for
which there is a point (u, v) of the trivial knot Lo such that u = X and
IY - vi  where is such that

Suppose that j &#x3E; 0 and that we have defined the solid tori Tr, Tr and
the positive numbers E, Er (~I1 ) for 0  r  j . By definition of C j 
the knot Lj+1 is contained in Tj. In fact the knot lies on a torus

surface whose core is the knot Lj and which is the boundary of a tubular
neighbourhood of the knot Lj contained in Tj. One can observe that Lj+1
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is a of the knot Let us choose such that

and such that the open subspace of points (X, Y) of Tj, for which there is
a point (u, v) of the knot Lj+l such that u = X and  (~I1 ), is
an open tubular neighbourhood of Lj+l contained in Tj. We denote T~+1
this tubular neighbourhood. It is an open solid torus whose core is Lj+1.
It contains the knot 

Theorem 1.2.2 implies that the knots Lj+1 and Lj+1 have the same
smooth type. Now we choose Ej+l (,ql) in the following way:

i) If j + 1 = g, we choose any positive number such that the subset
of the points (X, Y) of for which there is a point (u, v) of the knot Lg
such that u = X  is an open tubular neighbourhood
Tg of Lg contained in Tg;

ii) we choose Ej+1 (~71 ) such that the subset of the points
(X, Y) of Tj, for which there is a point (u, v) of the knot £j+1 such that
u = X  is an open tubular neighbourhood of

contained in and

3.1.3. - In the preceding construction, we notice that, for g,

the complement, in the closure Tj of Tj, of the open solid torus Tj is

diffeomorphic to the product of a torus surface S~ x S~ with the closed
interval ~0, 1~ .

Moreover, since, for j &#x3E; 1, the knot Lj has the same type as the
knot Lj and Lj is a (Aj, kj )-satellite of one can prove by induction

on j that Lj is an iterated torus knot. This provides another proof of the
Theorem of K. Brauner which is essentially due to F. Pham (see [P]).

3.2. - In this paragraph we construct a vector field in the solid
torus (0) x DT/2 (0) which lifts the vector field ~ of constant length r~l
of (0) by the projection p of (0) x D.2 (0) onto (0) and which
is tangent to the closed braid it n (0) x DT/2 (0)).

3.2.1. - In each space ii B Tj+1, for j, 0  j  g - 1, we do the
following construction. By definition the knot Lj is the core of the solid
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torus Ty. Let Ej the unique vector field tangent to fj which lifts the unit
vector field ~ of 9D., (0) by p. We extend this vector field to a vector
field defined in the whole solid torus tj in the following way. For any
(X, Y) in 7~, there is a unique point (u, v) of Li, such that X = u and

 So we set

Now, define the vector field pj in

where arg(z) is the argument of z E C. On we consider the vector

field v j defined by

for any

The integral paths of the vector field vj are knots which are translates

of These paths define naturally a S’-foliation of ti B 
Consider j = g. The closed solid torus Tg is a locally trivial fibration

over ODl (0) by the restriction of the projection p. In rg, we define any
vector field vg which is tangent to the knot L9 and the boundary 

Now we patch these vector fields vo, ..., vg to define a vector field v

on the whole 9D., (0) x DT/2 (0).
First we recall (see 3.1.3) that the spaces Tj, for 0 # j # g are

diffeomorphic with S~ x S~ x [0,1]. On the other hand, on the boundaries

0Tj and of the solid tori Tj and Tj, there are already vector field
restrictions of vj and Since the projection p induces a locally trivial
fibration over we can extend these vector fields on Tj B Tj, e.g.
using a convenient partition of unity. We obtain the required vector field v
on (0) x DT/2 (0).

By construction the vector field v is tangent to the knot

and tangent to the boundary

3.2.2. - Integrating the vector field v we obtain a diffeomorphism
of x D~2 (o) onto itself that we have called a carousel of the plane
curve h relatively to the coordinate X (see [Lê3]). In fact the integral
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paths of the vector field v define a 1-dimensional foliation of the solid
torus (0) x D~2 (o) which is transverse to the discs x Dl,,, (0) -
From this viewpoint the carousel is nothing else than the Poincar6 map
of the vector field. By construction the knot r n ~(D~1 (0) x D~2 (o) ) is an
integral path, so the carousel leaves the set r n x D~2 (o) ) invariant.
Since the embedding of the knot r n (0) x (o) ) in the solid torus

(0) x D"’2 (0) defines a braid and this braid is an iterated "toric braid" ,
the carousel is quasi-finite. One can also view the carousel as the braid
monodromy of the preceding braid.

In the paragraph 4 we shall indicate how to build a similar vector
field in the case of a germ of plane curve with several branches.

3.3. - Using the preceding vector field we shall give a minimal
Waldhausen decomposition of the 3-sphere S3 in which the knot of the
branch is a leaf.

3.3.1. - Recall that a Waldhausen decomposition of a 3-manifold
M (see [W]) is a finite partition:

where the are Seifert manifolds, i.e., 3-manifolds with a given Sl-
foliation, and the 7k’s are 2-tori. This Waldhausen decomposition is

adapted to a 1-dimensional submanifold, if this submanifold is the leaf of
one of the Seifert manifold This partition is minimal when the number
of tori is minimum.

When M is irreducible and sufficiently large, Jaco-Shalen (see [JS1]
and [JS2]) and Johansson proved that if M has a Waldhausen decomposi-
tion, it has a unique minimal Waldhausen decomposition up to isotopy.

3.3.2. - Now we show how the vector field v gives a Waldhausen
decomposition of the 3-sphere
adapted to the knot

We saw in (3.2.1 ) that the integral paths of the vector field v define
on each Tj for j, g, a 81-foliation. Since the spaces Tj B Tj,
for 0  j  g are diffeomorphic with S~ x S~ x ~0, 1~ , these foliations of

Tj, for 1  j  g - 1, extend to Tj B Tj . In this way we have a S 1-
foliation on Therefore, the space M = To B T9 has the following
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Waldhausen structure:

We have to extend this structure to the whole

This extension is easy because what is left are solid tori and thickened

tori.

First, the boundary of the solid torus T9 is foliated, this foliation

extends trivially to the whole solid torus Tg, but eventually the core
of Tg will be a singular leaf. Note that the core of Tg is the knot

The space is by definition To B To. We saw
that it is diffeomorphic to S 1 x S’ x [0, 1]. Then, the foliation defined on
8To extends trivially to (o9D,,, (0) x D172(0)) B To. This gives us a foliation
on the boundary which extends trivially to the solid
torus D "11 (0) x aD "12 (0), the core of this solid torus being a singular leaf.

This ends our construction of a Waldhausen structure on the 3-sphere

adapted to the knot

3.4. - By using the unicity theorem of Jaco-Shalen and Johansson,
we prove the following theorem:

THEOREM 3.4.1. - The above construction gives the minimal

Waldhausen decomposition of the 3-sphere

adapted to the knot

and to the trivial knot

The proof of this result uses the fact that none of the different

foliations on the Seifert pieces considered in (3.3) can be deleted.

In the case that the first Puiseux exponent is 1/ k1, the Waldhausen
structure of Theorem 3.4.1 is not minimal if we do not require that it is

adapted to the trivial knot
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The complement of Tl in I is a solid

torus, since the knot Li is a trivial knot. To obtain the minimal Waldhausen

adapted to the knot it n 8(Dr¡1(0) x Dr¡2(0)), we endow this complement
with the foliation trivially extended from the one on the boundary of Ti
and we keep the other Seifert manifolds of T2.

Then, one can obtain that the minimal Waldhausen structure of a 3-

sphere adapted to the algebraic knot of the plane branch (F, 0) is uniquely
determined by the knot if the knot is not the trivial knot, i. e., if (r,0) is

not non-singular.

3.4.2. - The main consequence of this construction is that it is

equivalent to know the iterated torus knot associated to the plane branch
or to know the minimal Waldhausen structure of the 3-sphere adapted to
the local knot of the branch.

This explains the viewpoint of what follows as we consider plane curve

singularities with several branches. The natural structure which generalizes
the iterated torus knot structure of an algebraic knot will be the minimal
Waldhausen structure of the 3-sphere adapted to the components of the

algebraic link. Except in the case of non-singular curves or ordinary double

points this latter structure is a topological invariant of the plane curve

singularity (see [LMW]).

4. Plane curves with several branches.

In this paragraph we shall consider a plane curve singularity (F, 0)
with several branches Fi , ..., r r. We shall assume that r &#x3E; 2.

4.1. - Consider the Puiseux expansions of the branches (hi, 0),
0  i ~ r, in the given coordinates (X, Y) :

It will be convenient to set and write the Puiseux expansions
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in the following way:

with - whenever is divisible by ri := k1 ... kr,
and ai,R = 0, whenever not divisible by ri, for I x i x r.

We can consider a series Y = ~~ as an element of the ring
and therefore of the field C((X1/k)) (see §2.2 above).

Let and with ,LetG

be the Galois group of the extension C((X1/k)) of (~((X)). We call contact
exponent of these two series the following

where v is the valuation of which is 1 for Note that the

contact exponent is +oo if and only if i = j. Otherwise it is an integer.

Let ki,j be the contact exponent of Yi and Then the G-orbits of

the truncated series of both Yi and Yj at ki,3 are the same. In that case,
whenever there will be no confusion, we shall say that the truncated series
at ki,j coincide.

We define the characteristic exponents of the set of Puiseux series

in the following way:

DEFINITION 4.1.1. - The characteristic exponents of the series

Yl, ... , Yr are the set of Puiseux characteristic exponents of each Yi,
1 ~ i x r, and the quotients by k of the pairwise contact exponents

Note that characteristic exponents of any subset of series among
Yi,..., Yr are characteristic exponents of Y1, ... , Y~..
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4.2. - We use the notations of 4.1. Let 1  j  s, be the

characteristic exponents of the set of Puiseux expansions:

We assume that .~1  for 2  j  s.

We order the characteristic exponents by induction in the following
way.

In the case of one branch, i.e., one Puiseux expansion, we consider
the natural ordering. So the first Puiseux characteristic exponent is called
the characteristic exponent of order one, the second Puiseux exponent is
called the characteristic exponent of order two and so on.

In the case of r &#x3E; 0 branches, we assume that we have defined the
order of the characteristic exponents for r’ branches when r &#x3E; r’. Suppose
that all the series truncated at f 1 coincide. Then is not an integer and

f1/k is the unique characteristic exponent of order one. We shall write

If all the series truncated at £i do not coincide, the exponent = 

is one of the characteristic exponent of order one. Call ai, I  i ~ r1, be
the distinct truncated Puiseux series at .~1 for which the coefficient of order
.~1 is ~ 0. We are left with Puiseux series for which the term of order £i
vanishes. The other characteristic exponents of order one (2  j  sl )
are the ones of the set of these remaining Puiseux series. In this case the
characteristic exponents of order &#x3E; 2 are the characteristic exponents of

order &#x3E; 2 of each bunch of Puiseux series with ai, 1  i  ri, as truncated

series and the characteristic exponents of order &#x3E; 2 of the set of remaining
Puiseux series.

It remains to define the characteristic exponents of order &#x3E; 2 in the
case the truncated series at .~1 of all Puiseux series are the same. Let

= m1/n1, where m1 and n1 are relatively prime. Consider £2 the
smallest among .~2, ... , .~5. If the truncated Puiseux series at .~2 are again
equal, is not in (1/nl)1‘~, and is the unique characteristic exponent
of order 2.

If all the truncated Puiseux series at .~2 are not equal, :_ is

one of the characteristic exponents of order two. The other characteristic
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exponents of order two are the characteristic exponents of order two of
the bunch of Puiseux series for which the term of order .~2 is 0. Then,
the characteristic exponents of order &#x3E; 3 are the characteristic exponents
of order &#x3E; 3 of each bunch of Puiseux series having the same truncated
Puiseux series at .~2 and the characteristic exponents of order &#x3E; 3 of the
set of remaining Puiseux series for which the term of order .~2 is 0.

Then, we proceed by induction on the number of exponents for which
the corresponding truncated series of all the Puiseux series are the same.
Since these Puiseux series are distinct, this process ends.

Now the order on the set of the exponents is the following:

Let 1 ~ j ~ si, be the characteristic exponents of order i. We

say that

if i  m and there is a subset of the set of the given Puiseux series such
that and are both Puiseux characteristic exponents respectively
of order 1 and m of that subset of Puiseux series.

4.3. - In this paragraph we construct a family of solid tori or

thickened tori by induction on the number of branches and the number
of characteristic exponents:

i) We define the solid torus for the

coherence of the notations, we shall also write To,i,1 . :== To,,, for any i,
1 ~ i ~ s.

ii) As above, .~1 = .~i is the smallest of the exponents of order one.
Let qi small enough. Then, we can choose (~I1 ) such that

and the solid torus TO,l, subspace of points (X, Y) of To for which there is
a point (u, v) of the trivial knot Lo defined by the Puiseux expansion

such that u = X v) I  is a tubular neighbourhood of Lo
contained in the interior ofTo,i As in i), we write io,i,i := To,i and
also Lo,i : Lo, for any i, 1 ~ i ~ s.

iii) If there are several characteristic exponents of order one, say ~,
1  j  sl, we order these exponents:
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Then, let ai &#x3E; 0 such that

Call To,1 the solid torus, subspace of points (X, Y) of To,, for which there
- li

is a point (u, v) of the trivial knot Lo such that u = X and I Y - v|  *

For 7/1 small enough, the geometric braids corresponding to the Puiseux
series for which the coefficient 

1 
~ 0 are all contained in the interior of

To,1 B To", and the geometric braids of the other Puiseux series for which
ai , £1 1 = 0 are contained in the interior of T6 " 1. For any i, such that 1 

~ 0,
we shall write TO,i,1 = To,1 and T6,i,1 := To,1 Now, let the numbers a~ &#x3E; 0

be such that

We construct by induction on j, 1  j  the trivial knots Lj, and
the sequence of solid tori Toj such that the interior To,~
contains all the geometric braids corresponding to the Puiseux series for
which 

t 
= 0 for t  j and ai ’ £1 J ~ 0, while ’to’ ’ J" is the solid torus, subspace

of points (X, Y) of To,, for which there is a point (u, v) of the trivial knot
- 

’ 

Lj such that u = X vi  which contains the geometric
braids of all the Puiseux series such that = 0 for t  j, in its interior.
Suppose that, for a given j, 1  j  si, we did this construction. By
definition of the characteristic exponents, one of the Puiseux series, such
that = 0 for t x j, has a truncation at 

such that

The truncated series

define a trivial knot Lj+,. For 7/1 small enough, there is such

that 
_ -1

and the solid torus To,j+i, subspace of points (X, Y) of To for which

there is a point (u, v) of the trivial knot such that u = X and
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IY - vi  is a tubular neighbourhood of £j+1 contained in the
interior of We call To,~+1 the subspace of points (X, Y) of To,i for

which there is a point (u, v) of the trivial knot £j+1 such that u = X and

IY - v]  For 171 small enough, the interior of To
contains all the geometric braids corresponding to the Puiseux series for
which = 0 for t  j + 1 and T§ j ~~ contains all the geometric braids
of the Puiseux series such that =0 for t # j + 1. As above, for the
coherence of the notations, for any i such that ai , £1 t = 0 for t  j + 1, we
shall write and, for any i, such that = 0 for t  j + 1
and # 0, we also write and

iv) Now for each Puiseux series such that i = 0 for t  j, and

ai,ti 3 i- 0, we consider the knot L1,i,j defined by the truncated series at .~~ :

Then, there is such that

and, for 77, small enough and for all i such that 
t 
i = 0 for t  j 

*

and 0, the solid tori subspaces of points (X, Y) of To,, for
which there is a point (u, v) of the knots such that u = X and

IY - vi  are mutually disjoint and contained in the interior of

v) If we only have characteristic exponents of order one, we have
finished the construction of the desired solid tori by induction on the
number of characteristic exponents of order one. Otherwise, we have to
proceed by induction on the order of characteristic exponents. Let

with n &#x3E; 2, be a chain of characteristic exponents of our set of Puiseux
series. Let

be a Puiseux series having these characteristic exponents, so the coefficients
0, for I  m  n. Consider the truncated series at fJ’r!- :3- jn
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This defines a knot Ln,i,jl ,...,jn. We have assume by induction that we have
constructed the solid torus Tm-1,i,jl,...,jrn-l which contains the solid tori
Tm-1,i,jl,...,jrn and with 1  rrz  n. The interior of the

space

contains all the geometric braids associated to the Puiseux series having
the same truncated series

and the coefficient of order 0, while the interior of 
contains all the geometric braids associated to the Puiseux series having
that same truncated series, but with the coefficient of order fT - 0. We’ jm.

can find (,ql) such that

and, for qi small enough and for all i corresponding to the indices of the
Puiseux series having the truncated series and such that = 0

for j  jn and 0, the solid tori subspaces of points
(X, Y) of To,, for which there is a point (u, v) of the knots 
such that u = X and IY - vi  En,jl,...,jn are mutually disjoint and
contained in the interior of the considered

chain of characteristic exponents is maximal, then, we have finished. If

there are characteristic exponenta of order n + 1 then,
we construct the solid tori and by induction on
the number of characteristic exponents of order n + 1. Let us order these

exponents such that

There is such that

and the solid torus subspace of points (X, Y) of To,, for

which there is a point (u, v) of the knot such that u = X and

IY - vi  1 (’ql) is in the interior of Tn,i,jl,...,jn; for this purpose it
is enough that
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Let ce’ &#x3E; 0 be such that

We define as the subspace of points (X, Y) of To,i for which
there is a point (u, v) of the knot such that u = X and 

. 
_ 

_ .

c~l+1r~11 . We notice that the interior contains

all the geometric braids corresponding to the Puiseux series such that the
truncated series at t’ln is an and the term of order .~i +1 is ~ 0. While the
other series with the same truncated series are contained in the interior

of Tn ~ i ~~ 1 ~ , .. ~~ n ~ 1. Let us suppose that for j, 1  j  the solid tori

and have been defined, such that all the geometric
braids corresponding to the Puiseux series such that, the truncated series
at t’ln is an and the terms of order .~~ ±1 - 0, for j’  j, and is ~ 0,
are contained in while all the geometric braids
corresponding to the Puiseux series having the truncated series a nand
the terms = 0, for j’ # j are contained in Tn,i,~l,...,~n,~ . As above,
let be chosen such that the solid torus 

subspace of points (X, Y) of To,i for which there is a point (u, v) of the
knot such that u = X and IY - vi  ~n,i,jl,...,jn,jr,,+1 (y), is

contained in Tn,i,~l,...,~n,~n+1 _1 and

If = r, we finish here. If jn+1  r, we choose such that

Then, ’ is the subspace of points (X, Y) of To,, for which

there is a point (u, v) of the knot such that u = X and

Finally, in this way, we have obtained the desired family of solid tori.

4.4. - In this paragraph we build a vector field in (0) x Dr¡2 (0)
tangent to the algebraic link r (0) x Dr¡2 (0)) whose integration will
give the carousel relatively to X.

Similarly to what we have done for a plane branch, we first construct
the vector field in a subspace of each thickened tori and solid tori which
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contain points of the link F n (aD 171 (0) x D 172 (0) ). Then we shall glue our
construction by using a partition of unity.

4.4.1. - For simplicity in the notations, we let m be the index

(n, i, j 1, ... , jn, j~+1 ) . We first do the construction in a thickened torus
like Am = Tm B Tm. Remember that the core of Tm is the algebraic knot
Lm defined by a Puiseux expansion

As in §3, let ~ be the positive vector field of constant length 71, of 8DT/l (0).
Let ~~, the unique vector field tangent to Lm which lifts the unit vector field
E of (0) by p. We extend this vector field to a vector field Em defined
in the whole solid torus Tm in the following way. For any (X, Y) in Tm,
there is a unique point (u, v) of Lm, such that X = u and IY -vi  
So we set

Now, define the vector field /

where arg(z) is the argument of z. On the subspace Tm B (Tm Ut Tmt ) of
where mt is the multi-index (n+ 1, t, jl, ... , jn, jn+1) and t ranges

in the set of indices of Puiseux series having the truncated Puiseux series
y = 0, we consider the vector field vm’ 

3n+l
defined by

for any Notice that the integral curves of this
vector field are satellites of Lm.

This construction for all the thickened tori Tm .
Since the other thickened tori like

do not contain components of the link r n x D’r/2(0)), we can
extend the preceding vector fields in these thickened tori by vector fields
which lift the vector field ~ by p by using a proper partition of unity. In
this way we obtain a vector field v on (0) x D’r/2 (0) which lifts ç.
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4.5. - Integrating the vector field v, we define a diffeomorphism of

8D1Jl (0) x onto itself which is the carousel (see [Lê3] and [L[4]) of the
germ (r,0) relatively to X.

As already said in §3.2.2 the integral paths of v define a 1-dimensional
foliation of the plain torus (0) x whose leaves are transverse to the

meridian discs. The carousel is the Poincar6 map associated to the vector

field v. Therefore the carousel map is the braid monodromy of the braid
defined by the embedding of the knot in the solid torus (0) x D1J2 (0).

As above, we also obtain a Waldhausen decomposition of the 3-sphere

in the following way:
The spaces like UtTmt are foliated by satellite of an algebraic

knot. We can extend to the thickened tori that foliation. In the

union of solid tori UtTmt we make a decomposition by induction on the
number of branches and number of characteristic exponents. In this way
we have a Waldhausen decomposition of (0) x D"’2 (0) which extends
to (0) x åD"’2 (0) with eventually a singular leaf x (0). Then,
this gives:

THEOREM 4.5.1. - The preceding Waldhausen decomposition is

the minimal Waldhausen decomposition of the 3-sphere x D"’2( 0)) U
(D~1(o) x o9D,,,,(O)) adapted to the components off n (0) x D,,, (0))
and 101 x åD"’2 (0).

As in the case of branches, we can extract from this the minimal
Waldhausen decomposition of (0) x D"’2 (0)) U (0) x (0))
adapted to the components of r n O(D,,, (0) x D"’2(0)). We shall omit
details about this latter assertion. It is enough to know that, except for non-
singular plane branches or the germ of an ordinary double plane singularity,
the minimal Waldhausen decomposition of

adapted to the components of r n (0) x Dr¡2 (0)) obtained in this way
is unique up to isotopy.

This minimal Waldhausen decomposition of

adapted to the components of r n o~(D~1 (0) x D172 (0)) is therefore a natural
generalisation of the iterated knot structure of algebraic knots.
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