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1. Introduction.

1.1. The resurgence phenomenon.

I.I.I. - The present article is a contribution to Resurgence theory.
It is devoted to the first-order partial differential equation

where 0 is the unknown, the variables are T E and z E C, and p is a
complex parameter. This equation must be viewed as the Hamilton-Jacobi
equation

associated with the Hamiltonian ’

1.1.2. - Resurgence here means that there exists a divergent formal
solution

whose coefficients are 27r-periodic in T (they are in fact trigonometric
polynomials; of course they depend on /~), and whose formal Borel transform

converges near the origin and defines a holomorphic function of ( with
analytic continuation along any path of C which starts from the origin and
avoids iZ. The divergence of ~o is analysed through the alien derivations A~;
these are operators which measure the singularities of the determinations
of 10 at points w of iZ*.

The coefficients Cn (T) of ~o can be computed inductively, but this is
not the case for the alien derivatives A,~o, which encode the singularities
of 10 with respect to (. However these formal series turn out to be

proportional to elementary series:

where the coefficients of can be computed by
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induction and only the scalar factors fl’l remain somewhat mysterious. The
divergent series S’ is very akin to its formal Borel transform converges
and has the same property of analytic continuation as ~o, and in fact S
also stems directly from equation ( 1 ) .

1.1.3. - Indeed, looking for a more general object satisfying
formally ( 1 ), we shall find an array of formal series 0,, (Z, T) of the same
kind as ~o, which together give rise to the formal integral

i.e., a double series (in c with coefficients which depend periodically
on T except for ~1 ) formal solution of (1). The components &#x26; of the

formal integral are resurgent functions in z, which satisfy resurgence

relations similar to (4) and involving new coefficients this gives
access to the singularities of the analytic continuations of their Borel
transforms, since the classical rules of alien calculus allow one to compute
all the successive alien derivatives in terms of the

"mysterious" coefficients fl’l and of the series On themselves.
In other words, we shall obtain a closed system of resurgence relations.

Using the generating series
into a single equation

they can be grouped

This is the so-called Bridge equation, which throws a bridge between alien
calculus (the alien derivatives in the left-hand side) and usual differential
calculus (here the partial derivative with respect to c in the right-hand
side) in the case of the formal integral of an equation.

1.1.4. - This phenomenon is typical of Resurgence theory. In fact,
the property that the germs ~n (~, T) reappear in such a clear way in their
own singular behaviour at the points of iZ* is the very origin of the name
"resurgence" chosen by J. Ecalle when he developed his theory [Eca81]. We
also refer to [Eca92], [Eca93] or [CNP93a], [CNP93b] for an introduction to
resurgent functions and alien calculus.

All kinds of local analytic objects (germs of holomorphic vector
fields or of holomorphic diffeomorphisms, differential equations, difference

equations) fall in the scope of Resurgence. For a pedagogical description
of a resurgent formal integral and the Bridge equation it satisfies in some
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examples, besides the previous references, let us mention [BSSV98] (case
of singular Ricatti equations) and [GS01] (detailed study of a second-order
difference equation).

To our knowledge, the present study is the first resurgent treatment
of a nonlinear partial differential equation. 1 In the framework of ordinary
differential equations, "formal integral" means a formal solution which
depends on the appropriate number of free parameters; there is an analogous
notion for difference equations. Here we use the formal counterpart of what
is called a complete solutzon for a first-order partial differential equation
(see Section 3.1.1).

1.2. Equation (1) as "inner equation".
We present here the Hamiltonian problem which motivates our study

of equation (1).
1.2.1. - Some integrable Hamiltonian systems, when perturbed by a

rapidly oscillating term, behave like nearly integrable systems even though
the perturbative term is not small: as the frequency of the perturbation
becomes larger, the corresponding chaotic zones become extremely small.

Chaos is often measured by the splitting of the separatrices related to
a hyperbolic periodic orbit: the angle between those separatrices gives an
idea of the magnitude of the chaotic zones appearing near the unperturbed
separatrix. 

’

A typical example which presents this kind of phenomenology is the
pendulum with periodic forcing:

where E &#x3E; 0 and p are two parameters of which the first is assumed to

be small but not necessarily the second. The unstable equilibrium of the
pendulum gives rise to a hyperbolic 27ré-periodic solution whose stable and
unstable manifolds do not coincide any longer as was the case with the
separatrix of the pendulum.

Several articles (for instance [DS92], [GeI97], [Tre97]) have been

devoted to the estimation of the splitting of the invariant manifolds in

(1) Our problem is very close to the one of [Sau95], but here we adopt the viewpoint of
equational resurgence, which allows us to go much farther (but on a simpler equation),
and shall not refer to any parametric resurgence. On the other hand, see [BM99]
for a study of the Borel summability of the formal solutions of certain linear partial
differential equations of higher order.
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such a system. The present paper is part of a study of this problem by a
method relying on the Hamilton-Jacobi equation, complex matching and
Resurgence.

1.2.2. - The rapidly forced pendulum (7) was already considered
by Poincaré [Poin93], who wrote the two-dimensional stable and unstable
manifolds as graphs of differentials; indeed, being Lagrangian and close
to the unperturbed separatrix if IMI is small, they admit equations
p = 8qS-i::.(q, t), where ,S’+ and S- are 27rE-periodic in t and analytic
for q &#x3E; 0 small enough in the case of ,S’-, for q  27r large enough in the
case of S+, and satisfy the Hamilton-Jacobi equation

with asymptotic conditions

(see for example [Sau95], or [LMS03]). In order to study the possible
splitting between the manifolds, we thus need to study the difference
between these two particular solutions of the Hamilton-Jacobi equation (8).

In [OS99], it is explained how to apply complex matching methods
in this problem. Using the variables T = tIE and u = log tan(-! q), one is
led to define the so-called inner region by the condition that u be close

to ! in (the singularity which is the nearest to the real axis for the time-
parametrisation q = 4 arctan eu of the unperturbed separatrix), and to use
there the inner variable z == ~-(~ 2013 ~Tr). Having performed the change of
variables (q, t) H (z, T) in (8), it is then possible to isolate in the resulting
equation a dominant part which does not involve the parameter E: this
truncated equation is the so-called inner equation; this is our equation (1),
which can be viewed as the Hamilton-Jacobi equation associated with the
truncated Hamiltonian ?-~ (the corresponding system is closely related to
what is called "reference system" in [Gel97]).

Equation (1) admits two particular solutions cp+ and cp- which satisfy
for  0 asymptotic conditions which parallel (9):
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It turns out that 0+ and 0- provide sufficiently good approximations of S+
and 6’’, and that an asymptotic estimation of for Izl -4 oo allows
one to recover an asymptotic formula for the original separatrix splitting
problem as 6- -4 0. See [OS99] for more on this.

1.2.3. - We shall see in Section 2.2 that these particular solutions 01
of (1) can be obtained from the formal solution ~o by Borel-Laplace
summation:

and an evaluation of ~+ -~- will follow from the first resurgence relation (4).
Since, in the case of the first singular point w = i, (4) can be rephrased as

regular germ at

where x is the formal Borel transform of x = -1 + we shall end up
with the exponentially small asymptotic equivalent (for sm z -4 -oo)

1.3. Structure of the article.

The article is organized as follows. In Section 2.1 we prove the ,
existence of a formal solution 4&#x3E;0 of equation (1) and we state two theorems
on its Borel transform ~o . Theorem 1 deals with the convergence and the
analytic continuation of $0 in the main sheet of its Riemann surface (i.e.,
its holomorphic star), as well as in the nearby sheets. Theorem 2 provides
the shape of $0 near the first singular point = i. The proofs of both
theorems are deferred to Sections 2.3 and 2.4 respectively.

In Section 2.2, we derive from Theorem 1 the existence of solutions 01
satisfying (10) and from Theorem 2 the estimate (12) of their difference.

In Section 3.1, in order to obtain the complete resurgent structure of
equation (1), we introduce the so-called formal integral and state Theorem 3
about the resurgent character of all its components and the resurgence
relations they satisfy. Sections 3.2 and 3.3 are devoted to the proof of
Theorem 3.

The structure of the article and part of the techniques we use here offer
certain similarities with [GS01]; this is particularly obvious for the method
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used in Section 2.3.3 (geometric part of the analyticity argument) for

instance. However, from the analytical viewpoint, the method of majorant
series of Section 2.3.3 differs quite a bit from that of [GS01] because
it depends a lot on the precise form of the equation. And we wish to
emphasize that the arguments of Section 2.4 are new and more general
than the corresponding ones in [GS01]: the chain of reasoning is shortened
by a more systematic use of the formalism of majors and singularities.

Remark 1. - Equation (1) can be written as
z-2P~(T) = 0, with

More general perturbative terms Pl can be handled by our method with
little effort. The symmetry property PJ-L (7r - T) = Pi, (T) is not essential, but
it makes the analysis simpler (as will be seen in the proof of Lemma 3 and
in Remark 11 for instance). Nonsymmetric perturbations lead in fact to a
Borel transform §o whose singularities are more complicated (not "simply
ramified" in the terminology of Section 3.1.3).

Acknowledgements. - At the occasion of this workshop in his honor,
it is a pleasure to acknowledge Frédéric Pham’s influence and the help that
his work on Resurgence offers to whom wishes to use this theory.

This work has been partially supported by the Catalan grants
DRAC 2002-PDI and 2001SGR-70, the Spanish grants DPI2002-00706
and DGICYT n° BFM2000-0805-C02, the INTAS grant 2002-221 and the
Franco-Spanish grant Picasso n° 05241UA.

2. Study of the Borel transform 00 of the
formal solution.

2.1. Statement of the results.

2.1. l . Formal solutions of equation (1). - We shall work with

formal series in z-1 whose coefficients are trigonometric polynomials of T,
i.e., elements of where P stands for the space of

trigonometric polynomials. All our formal series will also depend on the
complex parameter p; in fact their coefficients will be entire functions of p.

, we shall denote the space of expansions in negative
powers of z, i.e., formal series of which the z-independent term vanishes;
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the largest space of formal series we shall consider will (sums
of polynomials in z and formal series in z-1 all of whose coefficients depend
on T as trigonometric polynomials).

Thus all the formal series to be found in the sequel may be expanded
in two ways:

where no is some integer (positive in the case of possibly
negative in the case of P[z][[z-1]]), and the pn’s belong to ~, whereas
each can be written

with scalar coefficients cp~n ~ . As usual, we define the formal Borel transform B
as the linear operator of
formal series reads

or o whose action on such

(where when necessary, this action is extended to (~ ~z~ ~ ~z-1 ~ ~
or P[z][[z-1]] by use of the Dirac mass at 0 and its derivatives: zj H 6(3)
if j &#x3E; 0 - see [Eca81], [CNP93a] and Section 2.4.2 below).

LEMMA 1. - For each p E C, the solutions in ~~z~ ~~z-1~~ of the

Hamilton-Jacobi equation (1) are of the form 
’

or

where a is an arbitrary complex number and

is determined as the unique solution with leading term 4z-1.
Its coefficients are determined by the recursion formulae

and for n &#x3E; 2,
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where ( . ~ denotes the mean val ue of a trigonometric polynomial.

Observe that the right-hand side in (15) has zero mean value, so
that (14) and (15) do define a unique trigonometric polynomial Cn (which
depends polynomially on p). Here are the first few terms

The proof of this lemma is left to the reader. Of course the possibility
of adding a constant corresponds to the fact that equation ( 1 ) involves

only the partial derivatives of the unknown function. The choice of the sign
4plus’ or ‘minus’ in front of z is more significant: if we think of ( 1 ) as an
approximative Hamilton-Jacobi equation for the perturbed pendulum, this
means that we can study the splitting of the upper part of the unperturbed
separatrix as well as of the lower part (p = ~2 sin( 2 q) with the notations of
Section 1.2). This corresponds to a symmetry of the equation with respect
to the substitution z ~ -z. We choose the ’plus’ sign in all the sequel.

Our equation ( 1 ) presents another symmetry which will simplify
certain details of the analysis below and which corresponds to the

symmetry with respect to the substitution T ~ 7r - T of the perturbation
= 2 ( 1 - we have chosen (cf. Remark 1).

LEMMA 2. - The formal solution Øo of equation (1) is antisymmetric
with respect to the involution

The proof is immediate, in view of the symmetry of the equation and
of the unicity statement in Lemma 1. We observe in the same way that in
our case there is also a symmetry with respect to p:

(due to the relation
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2.1.2. The Riemann surface R. - We shall be interested in the

convergence and the analytic continuation of Øo = Boo with respect to the
variable (. According to the classical properties of the Borel transform,

with

and hence equation (1) is transformed into

We shall see that, as indicated in Section 1.1.2, the only possible
singularities of the analytic continuation of 4&#x3E;0 lie on iZ. It is convenient to

express this as the property of being holomorphic on the Riemann surface 7Z

consisting of all homotopy classes (2) of paths issuing from 0 and lying
in C B iZ (except for their origin). We denote by ( E E (C B U {0}
the natural projection, which is biholomorphic at each point (~ is the

extremity of any path representing (; only the origin projects onto 0 and
this is the only difference between TZ and the universal cover of C B iZ).

In Section 2.1 we shall confine ourselves to subsets of R only. Analytic
continuation of 4&#x3E;0 in the whole of the Riemann surface is deferred to

Section 3, because it will not be obtained independently of the study of the
other components ~n of the formal integral mentioned in the introduction.

The main sheet R(°) of R is obtained as the subset of the points (
of R which can be represented by the straight segment ~0, ~~ ; it is

isomorphic to the cut plane C B [1, ooD. For p E ~ 0,1 ~, we define 
by "thickening" the singular half-lines ±i [1, 00 [ and considering open
discs D(i, p) and D ( -i, p) of radius p centered at i and -i (see Figure 1 ) :

By we denote the union of R(°) and of the "nearby half-sheets",
i.e., the half-sheets which are contiguous to the main one: this is the subset
of TZ consisting of the homotopy classes of paths still issuing from 0 and

lying in C B iZ but crossing at most once the imaginary axis (no crossing at

(2) When mentioning homotopy of paths, we always refer to homotopy with fixed
extremities; we follow here the notations of [GS01] up to minor details.
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Figure 1. Examples of points of the subsets and of R

all means we stay in the main sheet, but we arrive to a new half-sheet each
time we cross between two consecutive singular points mi and (m + 1)i,
or - (m + 1 ) i and -mi, with m &#x3E; 1).

Analogously to the auxiliary sets (which will be used to prove
analyticity in TZ~°&#x3E; , by considering arbitrarily small p), we shall define
subsets of TZ whose union covers &#x3E; and which will be used in the

study of the analyticity and growth of ç#o in R~1~ . However, since their
definition is quite technical and is a mere adaptation of [GS01], we delay it
to Section 2.3.3, although we refer to them in the statement of Theorem 1.
See Figure 1: points in can be represented by a path which stays in 
or which passes between the discs D (±mi, mp) and D (~(m -f-1 )i, (m -f-1) p)
with 1  m  2 (p-1 - 1) and crosses the imaginary axis at most once. Of
course this requires p  1

2.1.3. Statement of the first analyticity result for ;¡o. - It will be
convenient to use the auxiliary formal series

defined by

Its formal Borel transform satisfies
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THEOREM 1. - The formal Borel transforms ~o (~, T; M) and F((, T ; ~)
are convergent fort close to the origin ( uniformly in T and ~c) . The resulting
holomorphic functions of the three variables (, T (still denoted by ;¡o
and F) admit an analytic continuation in R(l) &#x3E; x x C. Moreover,
for each p E ] 0, l [, there exists a continuous function R on R(l) such that

where the integer m indicates on which sheet of R the point ( lies:

m = 0 if ( E and if not, m is determined by the necessity of
crossing ~mi, (m + or [-mi, -(m + 1)i] to represent ( (necessarily

The proof is the subject of Section 2.3 below (the definition of the
function is given in Lemma 7).

Remark 2. - We are not particularly interested in complex values
of T, but since we shall work with Fourier expansions this does not make

any difference: the results which will be obtained can be specialized to real
values of T at the end.

Remark 3. - The auxiliary function F satisfies an equation which
is easier to study and we shall obtain directly the bounds (22) when
proving Theorem 1. It is straightforward to deduce from them analogous
estimates for the function ~o : according to Lemma 7 in Section 2.2, for

2.1.4. Statement relative to the singularity at ( = i. - Let us now
focus on the singularity of ;¡;O((,T;/-l) at ( = i. Obviously, all what follows
could be done for the singularity at -i analogously, or one can use the
antisymmetry of ~o ~ Lemma 2 implies that

As announced in the introduction (formulae (4) and (11)), the singular
behaviour of ~o will be related to a formal series S’ whose coefficients can
be computed by induction.
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LEMMA 3. - The linear equation (linearization of equation (1)
around ~o )

admits a unique solution of the form

We have

Remark 4. - This formal series ,S’ is antisymmetric with respect
to the involution (z, T) H (-z, 7r - T) because, being symmetric,
whenever satisfies (25),

is also solution.

Proof. In view of (20), the equation for ,5’ is

Plugging inside, we find the system of equations

(by convention, the empty sum in the right-hand side of (28) at rank n = 1
means 0).

There is no obstruction to solve (27) because Fo = cos T has zero
mean value (as should be due to symmetry: the T-average of a symmetric
series is always an even series in z-1 ) . It is then easy to check that this

system of equations admits a solution, which is uniquely determined by
supplementing (27) and (28) with

(indeed, (29) at rank n follows from (28) at rank n + 1, but then the

right-hand side in (28) at rank n has zero mean value thanks to (29) at
rank n - 1) and to compute the first few terms. 0

We shall see in Section 3 (Remark 10 and Lemma 13) another way of
obtaining the series S’. Its formal Borel transform ,S’ too will be convergent
for ( close to the origin and will extend analytically to R.
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THEOREM 2. - There exist functions and,,

which are holomorphic for such that

for i + ~ staying on the main sheet (i.e., the above equation describes
the singularity at ( = i of the principal determination of Øo ((, T; ~c) ) .

Moreover, there exists an odd entire function
such that

where

The proof is given in Section 2.4 below.

By definition (3) of the alien derivation Ai (and because i is the

first singular point we meet when we move along iR+ starting from 0),
equation (30) is equivalent to

In the case of w - i, the relation (4) announced in the introduction can
thus be considered as a resurgent formulation of equations (30) and (31).
Observe that A(T;j1), which can be defined as the residuum of the polar
part of ~o at ( = i (up to the factor 27ri) and to some extent computed as
such, reduces to

The oddness of is a special feature of our problem which follows
from (16).

~3~ In fact we use here a slight generalization of the classical operator Ai introduced

by tcalle: when a formal series 0- is known to belong to the algebra RES of resurgent
functions, in the sense of having a Borel transform holomorphic in 7Z, the alien

derivatives are defined for all nonzero complex numbers w (only integer multiples
of i may yield a nonzero result) and are themselves resurgent functions. Here, the
formal solution ~o is not yet known to belong to RES, but we can define, like in [GS01],
Section 5.4, a larger space which contains it and on which 4lz acts as a derivation
(but Ai sends in a still larger space SING) - see Section 2.4.2 for more on this.
This is in fact a simple extrapolation from [Eca92b] (beginning of Section 2.1).
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2.2. Borel-Laplace sums of 00 and application to the
separatrix splitting problem.

Theorems 1 and 2 are sufficient to implement the method alluded to in
Section 1.2.3 to study particular analytic solutions of the Hamilton-Jacobi
equation ( 1 ) .

When restricting ourselves to x (C/27rZ) x C and identifying RP°~
with a subset of C, we must use .~(~) == 1(1 I in the bound (24); this bound
thus indicates that ~o ((, T;Jl) has at most exponential growth with respect
to (, with exponential type not larger than

Thus, for any 0 such that the ray [0, e’6oo [ is contained

in i.e., such that

we can consider the Laplace integral

provided &#x3E; c = Cp(T;1-1). By virtue of the Cauchy theorem, this
defines two holomorphic functions ø+ and 0-. We shall denote by ø-x the
one which is obtained by gluing the functions with f) E ZP ; it is

defined and holomorphic E C x (C/27rZ) x E ’Dl (T; /-I) I for
every p E ~ ]0,1[, where DP (T; ~u) is obtained as the union of the half-planes

&#x3E; c for 9 C 11 that is

(see Figure 2). For technical reasons, we shall also use the smaller domains

and

COROLLARY 1. - The functions ol (z, T; J-l) just defined are solutions
of equation (1). They satisfy the condition ( 10), and in fact they admit the
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Figure 2. The condition z E Dp = is imposed when performing the
Laplace transforms in directions 0 E It; the domain is seen on

the right picture as the complement of the grey tinted region.

formal solution 4&#x3E;0 of Lemma 1 as asymptotic expansion: for each p G ] 0, ~ [,
&#x3E; 0, 7-0 &#x3E; 0,

as

uniformly four I/-LI  po and ~  To.

Their difference is exponentially small as am z --~ with the

notations of Theorem 2,

as again uniformly  po and

In particular, we have an asymptotic equivalent for Qvm z tending
to -oo and p tending to 0 independently, uniformly for | SSm T|  To,

Remark 5. - Lemma 2 implies . The

splitting problem thus amounts to measuring the defect of antisymmetry
of ø+ or ~- , while their common asymptotic expansion is antisymmetric.

Remark 6. In fact, more than in the solutions ø+ and ø- themselves,
we are interested in their partial derivatives: it is 8zç#+ which corresponds
to 8qS+ and thus to the geometric object (stable or unstable manifold);
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intersections of the manifolds take place at critical points of ,S’+ - ,S’- and
the corresponding angle of splitting is measured by 8§(S+ - 6~). But it
will be clear that the asymptotic formula (34) can be differentiated with
respect to z.

Proof. The functions ~+ and ~- were obtained from the solution 00
of (1) by Borel-Laplace summation, whose general properties ensure that
they admit ~o as asymptotic expansion and satisfy the same equation. As
for the uniformity statement in (33), what we mean is that, for each n &#x3E; 0,
the function

is bounded in C  To, 1/-tl  (in fact,
this is a Gevrey-1 asymptotic expansion: this function is bounded by

It is sufficient to follow here [Ma195], Sec. 1.4.2,
treating T and J1 as parameters with respect to which uniformity is obtained
by fixing p, /10, TO. Indeed, inequality (24) yields

with A, B, C &#x3E; 0 depending only on P, Mo, TO, provided IMI I  Mo

and I  To. In particular, one can take C == and

if z E DP (iTO, /-Lo) one can find 0 E It such that &#x3E; C + 1,
hence inequality (35) is satisfied in the strip ~dist(~, e"9R+)  p~ and
the asymptotic estimates for ø+ follow like in [Ma195]. The case of ø-
is analogous.

We now move on to the proof of (34), which is a uniform asymptotic
expansion of the same kind as previously except for the exponentially small
factor e-iz . We fix p  ~ , a + p, 2 - 2p[, and po, To ; we still denote by C
the number Let (T;A) E (C/27rZ) x C such that  To

and I tt  ~o : for 0 G ]0, ~7r - arcsin (2p) [, we consider the difference

for z such that and Qvm z  0

(letting 0 vary, we would thus cover DP n (3m z  

Applying the Cauchy Theorem, we can push the path of integration
upwards as long as we do not reach i. The analytic continuation of 00
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Figure 3. Deformation of contour for the study of 0+ - ø-

in the nearby half-sheets of the Riemann surface R allows us to deform
this path, crossing the imaginary axis between i and 2i and even going to
infinity forwards and then backwards before returning on the main sheet
as shown on Figure 3. Indeed, the possibility of going to infinity in the
corresponding half-sheet still preserving the convergence of our integral is
guaranteed by (24) with m == 1, i.e., .~(~)  3~~) + 24, which yields

for the points ( of interest, with A, B depending only on p, 

So, the integral decomposes into the contribution of the singularity
at i (integral on and an exponentially smaller term (integral on r a,()):

Indeed, using (37) and the condition on Re(z e’o), we see that the second
term is bounded by D e-al where D depends only on p, To, J-lo (by
factorizing e- iaz).

In view of (30), the integral on -yg can be written as

and is thus asymptotic to which-according
to (31 ) -coincides with This time the uniformity
statement follows from the bounds analogous to (24) which are available
for ,S’ in (see inequality (72) in Section 3.2 below) and thus

for (this sum of repeated
convolutions is easy to bound in the main sheet). 0



1203

2.3. Proof of Theorem 1.

2.3.1. The equation for F. - The formal series 10 E was

defined in Lemma 1. To study its Borel transform, which is the unique
solution in P ~ ~~~ ~ of (18), we first apply a couple of transformations to
replace equation (18) by. another one which lends itself better to the

method of "majorants" we have in mind.

LEMMA 4. - The formal series F defined by equation (21) is, for each
J-l E C, the unique solution in P[[(]] of

where the operatore of P~~~~~ is defined using Fourier expansions

(here iff

and ~’, are defined analogously by

Proof. The change of unknown series

(where we consider 8z as an invertible operator
transforms equation (1) into

Correspondingly, in the Borel plane, ~o - 4 - and we can look

for G as the unique formal solution in ~2~~~~~~ of the equation



1204

The inverse of the linear operator which appears in the left-hand side is

nothing but S:

(notice that X1°1 = 9[0]). Equation (39) can thus be rewritten

Since G E ~2P~~~~~ can be written G = ( * 8¿ê, we obtain the equation
for F by differentiating twice: F = 8(G is the unique solution in P[[(]] of
an equation which involves the operator
Using

we see that the resulting equation amounts to (38). 0

2.3.2. Analyticity in the main sheet. - The formal series F can be
written where the Dj’s are trigonometric polynomials
in T which depend polynomially on We shall now prove the convergence
of this series and the holomorphy in x (C/27rZ) x C of the resulting
analytic function; this obviously implies similar results for 

Let us fix p G ]0,1[. Using the identification between ( and ( for points
of n(O), we can rephrase (19) as

(see the left part of Figure 1 ) .

PROPOSITION 1. - For each T and p, the power series F has positive
radius of convergence with respect to ( and the resulting holomorphic
function extends analytically to R(o) x x (C where it satisfies

inequality (22) with i(C) = 1(1.

The rest of the present section is devoted to the proof of this

proposition. To this end, it is convenient to expand (38) in powers of 1L:
we find with
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Since and the operators S, ~’, S" do not
decrease the valuation, we obtain Fn E (np[[(]] (this corresponds to the fact
that the coefficients Dj have at most degree n as polynomials in /1). Thus,
for each it E C, the series J1n Fn((, T) converges formally towards F
in P[[(]]. 

_

The series Fn are convergent and it is easy to check by induction on n
that the resulting functions are holomorphic in x ((~~2~-7~) . In fact Fo is
meromorphic, and analyticity in R~°&#x3E; is preserved by the operators ~, S’ , S"
and the convolution, but the repeated convolutions are responsible for more
complicated singularities on :f:i [1, oc [: on the one hand they create higher
harmonics and under the action of £, £’ , £" poles will appear at all points
of iZ* ; on the other hand they will create ramification at these singular
points. (This is the origin of the Riemann surface R. )

To prove Proposition 1, it is thus sufficient to study the convergence
of the series of holomorphic functions ~ 

DEFINITION 1. - Majorant Fourier series for 7Z(o): we shall write

where each is analytic in 

where each is continuous in R+

and the Fourier series ~ (() eikT is convergent for T E 

( uniformly for ( in any compact 

In fact, in the present section, the majorant Fourier series ~4((, T) will
always be trigonometric polynomials. Notice that

LEMMA 5. -

Proof. Analyticity in is preserved under convolution because
this set is star-shaped with respect to ( = 0; the first inequality follows

easily. For the other ones, observe that, for all k E Z and ( E 

] ( - thus
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LEMMA 6. We have Fn « .~n for all n 2 0, where Fa = p-3 cos T
and

for n &#x3E; 1. Moreover,

where 0  rn  1 and the Pn ’s are polynomials satisfying

with /~(X) = p~~ max(6X, (6X)1/3).

Proof. In view of the induction formulae (41) and (42) and of the
previous lemma (using p-1 &#x3E; 1), it is clear that the Fn’s are majorant
Fourier series for the Their formal Laplace transforms are

easy to compute, because the generating series 0 _ satisfies

the quadratic equation

hence

with

Since with 0  rn  1, we end up with
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with

and the corresponding formula for 0n involves Pn = 

Letting we can write

with

Now,

has positive radius of convergence with respect to z-’ for all X &#x3E; 0.

Observing that

and using the Cauchy inequalities, we obtain
yields (44).

In view of (43), Lemma 6 implies

which

D

for each n. With (44), this is sufficient to obtain the analyticity in of F
for all T and /1, and a bound

with X = 4p-31JLI which yields (22) (with .~(~) _ I ( 1) -

This ends the proof of Proposition 1.
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2.3.3. Analytic continuation in the nearby sheets. - We now give the
precise definition of the sets 7Z(I) introduced in Section 2.1.2 and complete
the proof of Theorem 1. Let p e 0, 3 [. We follow [GS01], p. 535-539, but
it is simpler to fix the integer parameter which was called M there to its
maximal value:

Thus M &#x3E; 1 and the discs Dm = D(mz, with

do not overlap; let

(Mark the use of M-f-1 here instead of M in [GS01 ] : we seize the opportunity
to correct this misprint.) We shall sometimes use the convention Do = {0}.

DEFINITION 2. - We call the subset of R consisting of all the
p

points ( which can be represented by a path contained and such that

the shortest such path ~y~ is either

1) a straight segment;

2) or the union of a straight segment issuing from the origin and tangent
to Dm, m  M and m =I 0, and of an arc of the
circle 9D.. ending at (, and we require in that situation that this
arc of circle be shorter than a half-circle(’) and that the backward

half-tangent L(() to!( at ~ do not meet 

3) or the union of a straight segment issuing from the origin and tangent
to Dm, with -M  m  M and m =I 0, of an arc of the circle 
and of a straight segment S(() tangent to Dn, ending at ( and such
that the half-line L(() which extends S(() backwards from ~ do not
meet we also require in that situation that the arc of circle be
shorter than a half-circle. See Figure 4.

There is in fact a certain amount of latitude in the definition of a

set like 7Z(’). The point is to cover R(’) &#x3E; as p tends to 0 and to control

the symmetrically contractile paths F associated with the paths !( well
enough to guarantee the stability under convolution of the property of
being holomorphic in R(l)
(4) This condition is just a way of ensuring the necessary property that ~l E 
whenever (1 E q, ; unfortunately it had been omitted in [GS01], as noticed by
A. Fruchard whom we thank.
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Figure 4. The paths -y( and r~ define the same point I

Indeed, when trying to follow the analytic continuation of a

convolution product along the path -y( for a given point ( of 7ZPl , one
is led to introduce the path r e, defined as follows (see Figure 4):

. in case 1) above, r e, coincide with 

. in case 3), if m &#x3E; 1, r e, is a union of straight segments and arcs of
circle obtained as the shortest path which starts from the origin, meanders
between the discs (in that
order) and then reaches ( (if m  -1, replace by and 

by in the previous sentence);
. in case 2), the description is the same except that there is no straight

segment from because of tangencies.

One can check that r~ is contained in and is homotopic to ~(,
i.e., it defines the same point ( of the Riemann surface. Moreover h~ is

symmetrically contratile, i.e., it is symmetric with respect to its midpoint
and can be deformed continuously into the trivial path {0} using only
symmetric paths issuing from 0 and contained in 

As a consequence, when two holomorphic functions A and B are given
on 7~) , their convolution product too extends analytically to Its

analytic continuation is indeed given explicitly by the formula
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where (2 is determined as the symmetric point of (1 with respect to the

midpoint -1 ( of ]Pc.
To some extent, this formula makes it possible to obtain bounds for

the convolution products in We reproduce here the corresponding
lemma from [GS01] (Lemma 9, p. 538):

LEMMA 7. - Let .~(~) denote the length of the path r~ for any ( 
If A and B are holomorphic functions in which satisfy

and

where A are continuous non-decreasing functions on R+, their

convolution product is holomorphic in and satisfies

For the proof the reader is referred to [GS01], p. 539. This proof uses
crucially the fact that each (1 on F~ has a curvilinear abscissa not smaller
than .~(~1 ); this can be checked directly with our definition of thanks to

the limitation we have imposed on the possible paths 1( when defining IZ( 1
Variants of Definition 2 are conceivable, but one must take this point into
account.

With these preliminaries, we can easily adapt the work of the previous
section to obtain the analyticity of F in and the inequality (22) with
the function defined in Lemma 7.

DEFINITION 3. - Majorant Fourier series for 7~~: we shall write

where each is analytic in ~

where each is continuous

and non-decreasing in R+, and the Fourier series iS

convergent for T E (uniformly for ( in any compact of R+);

An obvious adaptation of Lemma 5 which incorporates Lemma 7
yields
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LEMMA 8. - We have for all n &#x3E; 0, with the same

ma jorants 0n as in Lemma 6.

Property (43) being replaced by

we now see that, for

X = 

and we conclude like before by using (44).
To end the proof of Theorem 1, we just need to check the validity

of (23) for any point ( of For this we use our description of F in
Case 3 of Definition 2 when m &#x3E; 1 (with obvious adaptations for the other
cases): each of the m + I segments between Dk and Dm-k (0  k  m)
has length  ~~ - mil + mp, each of the m segments between 
and Dk+l (0  k  m - 1) has length  )I - (m + + (m + 1)p,
the arcs of circle have total length  2 ( 1 + 2 + ... + hence

f (()  (2m + 1)p + 2m(m + 1)(1 + p) + 2m(m + 

2.4. Proof of Theorem 2.

We could begin the proof of Theorem 2 by verifying inductively that,

near ( = i, all the components of the Taylor expansion with respect to M
of Qo and thus Qo itself(5) have the form of a simple pole plus a logarithmic
term as announced in (30). This would correspond to the approach adopted
in [GS01] at this stage. But there is a more concise and more general
method, which relies more systematically on the concepts of "major" and
alien derivation.

2.4.1. Majors of singularities. - We follow here [Eca92b], Sec. 2.1,
and [CNP93b], "Pre II", and describe the basic notions related to

singularities of holomorphic functions.

~5~ In fact such a verification is best performed on the components Fn of the auxiliary
function F, like in Section 2.3, and we would obtain for them a polar part of order 3.
Notice however that the argument for the convergence with respect to p of the polar
parts and of the logarithmic terms which is given in [GS01] (at the end of Section 4.1)
is somewhat incomplete: as remarked by E. Delabaere whom we thank, the convergence
of the series of functions ~ J.ln Fn for ( E is not sufficient because Rp does not
contain a path which encircles the singular point; this can easily be remedied by a

slight modification of the definition of (the paths q, must be authorized to turn
around D(:t:i, p) until a second crossing of the imaginary axis; this does not alter much
the shape of the corresponding paths r, described in Section 2.3.3).
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Using a suitable translation, its is sufficient to deal with singularities
at the origin of the Riemann surface of the logarithm

Given two real numbers 81  82, we shall denote by So ,o the sector of
defined by B1  arg (  82.

DEFINITION 4. E R and a &#x3E; 0. Consider the space of germs
of holomorphic functions v(() defined for ( E SO-a-27r,O+a and 1(1 small
enough. Its quotient by the space of regular germs is, by definition,
the space SINGO,, of singularities in the direction 0 with aperture 2a. A
germ § is called a major, its class in SINGo,a is called the singularity
of ~p(~) and is denoted by sing(v) or ~p.

To any singularity (p in SINGo,a we associate its minor 0, which is
obtained from any major v by the formula

It is thus a germ of holomorphic function in 

A singularity and its minor are also called a "microfunction" and its
"variation" . The simplest examples of singularities are

or more generally if and sing I for

any ;~ E C{ (} (the chosen determination of the logarithm does not matter);
these are elements of SINGe,a for all 0 and a. The last example is a

particular case of an "integrable singularity" .

DEFINITION 5. - An integrable minor is a germ of holomorphic
function cp in which admits a primitive ~ such that ;¡;(() -4 0 as
( ~ 0 uniformly in any proper subsector of SO-a,O+a. We denote by ANA~~~
the corresponding space of germs.

A singularity is said to be integrable if it admits a major v such that
(~(() -4 0 uniformly as ~ -~ 0 in any proper subsector of 
The space of integrable singularities in the direction 0 with aperture 2a is
denoted by SING~~~.
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Integrable singularities are also called "small" singularities or

microfunctions.

LEMMA 9. - The linear map § - rp induces a bijection from SING"T
onto ANAB£ . The inverse map is denoted rp H bcp. 

~

For example, if @ we have ; for the proof
of the lemma in the general case, one can use a Cauchy integral.

Formula (17) turns ANA~~; into an algebra: this is the so-called

convolution of minors. The convolution law is extended as follows:

v v

LEMMA 10. - Suppose that cp and § are the majors of two’B7
singularities (P and V) of SINGe,a, and that u E has sufficiently
small modulus. The germ defined by

for arg u -1f  arg (  arg u small enough, where Iu,( is the straight
segment + (], extends analytically to SO-a-27r,O+a (for 1(1 ] small
enough) ; its class in SINGe,a does not depend on u and depends only

and ~. The law ~p * ~ turns SINGe,a into a commutative
algebra, with unit 8.

If moreover (p are integrable singularities, so is ~p * and the

induced lavv on SINGe,a is the counterpart of the convolution of minors:

For any integrable singularity ’(p, one can define the convolutive

analogue of the exponential:

The convergence of the corresponding series of minors is particularly obvious
when ~(() E C{(}, in which case a major of exp. (b~p) is

with

(see [CNP93b], p. 161-162, for the general case).



1214

Remark 7. - The regular germs ~o(0 and F((), of which Theorem 1
asserts the existence (considering the variables T and /-t as parameters), can
be viewed as integrable singularities:

But the above notions will be relevant only when studying the singularities
of their analytic continuation at any w C iZ*. For instance, if we choose the

direction 0 - 2 1 7r, the analyticity of ~o in allows us to consider

as an element of SINGo,a for any a  7r. Observe that this means that we
consider here the translation ( ~ (’ - i + ( as an automorphism between
the part of C where 0 - 27r  arg (  9 and  1 and the part of n(O)

.

where (’ tf. and 1(’ - il  1, whereas the points (’ in the half-
sheet of R accessed from 7Z~°~ by crossing i, 2i from the right to the left
correspond to 0  arg (  9 + cx (and the half-sheet accessed by crossing
from the left to the right corresponds to 0 - 27r - a  arg (  0 - 27r).

It should be clear at this point, in view of (48) and (49), that
Theorem 2 amounts exactly to the existence of a scalar (/-t) such that

Remark 8. - Among general singularities, some can be expanded in
series of monomials, i.e., elementary singularities like with n E Z (we
define S~-n~ - if n &#x3E; 1), or sing((l - 
with a E C B Z, etc. For them one can define the formal Laplace transform
by its action on monomials (the image is z-n for the first example above,
z-" for the second) in such a way that convolution and multiplication
are exchanged. We then recover the formal Borel transform defined in
Section 2.1.1 as the inverse map (taking the minors in the case of integrable
singularities). The differentiation with respect to z corresponds to the
operator

which is a derivation of the algebra of singularities.

However it would not be convenient to restrict our attention to this

kind of singularities only. For instance our chain of reasoning in Section 2.4.3
0

will not presuppose that X admits such an expansion.
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2.4.2. First alien derivations. - Resurgence theory focuses on

singularities whose minors enjoy good properties of analytic continuation,
but we shall formulate these properties very progressively like in [GS01],
Sec. 5.4 (because our proof that Øo fulfills such properties is progressive).

We now formulate a definition adapted to situations in which the first

singular point in the direction 0 is w = eie, since we are interested in such
a case (with 0 == ! 7r or §7!’)-

DEFINITION 6. - Let 0 E R and {3 &#x3E; 0. We define to be the

space of all 7 which belong to SINGO,, for some a &#x3E; 0 and whose 

extends analytically along 0, so that the germ ~v(~) _ ~p(e28 + (), which
is thus for arg ( close to 0 - 7r, extends analytically to SO-27r-(3,O+(3

small enough).
We define the operator by

It is easy to check that

where 9 is the "natural" derivation mentioned in Remark 8. The

operator is called the alien derivation of index eie because of

PROPOSITION 2. - We have CP1 * CP2 E whenever 

and

According to Theorem 1, we have 00 E with 0 - -1 7r for any
0  7r, and formula (50) can be rephrased as

Of course, all the definitions of Sections 2.4.1 and 2.4.2 are extended to

the case of majors depending on further variables T C M E C, by
treating them as parameters.

(6) Observe that we are choosing the same lift of the translation ( ~ ei9 -~ ~ as in
Remark 7 when 0 = ~ 7r.
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When there is a formal counterpart as indicated in Remark 8 (and
v B7

this will be the case for 00 and X), the operator De2e can be viewed as
acting on formal expansions in z; this allows us to formulate everything
in the formal model, as we did in the comments following Theorem 2 in
Section 2.1.4, although things are to be interpreted in the convolutive
model. The relation (52) can then be expressed as the commutation of 19/Oz
and the dotted alien derivation

(here w = On the other hand, when dealing with singularities
admitting majors depending analytically on T (E C/27rZ, the operators 

.

and A, commute (and so do and Aw).
2.4.3. The major of the singularity of ~o at i. - We now move on

to the proof of the existence of (p) such that the relation (51) holds,
0 v .

where X = The underlying idea is that Ai commutes with 8z and o9,,
. ~ -

thus satisfies the linearization of equation (1) around i.e., the same

equation (25) as z - T -f- ,S’; but any solution of (25) must be a "function"
- . -

of z - T + 6’, and in the case of the requirement of periodicity in T
and the nature of its dependence with respect to z will force it to be

proportional to e~~~~~~. We present below rigorous arguments which
use the language of majors and singularities.

Since its formal Laplace transform is solution of equation (1),
0

00 satisfies

Applying Ai to this equation, using (53) and (52), we find

where
0

in view of (20), i.e., Do corresponds
to the formal series Do = 1 - J-LF.

Equation (25) reads = 0 and is satisfied,
according to Lemma 3, by z - r + 6B But any function of this solution, e.g.

will also verify equation (25). Thus the formal series Z = 
satisfies
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Proposition 5 in Section 3.2 below shows that the formal Borel transform
2013 v 

i-r 
-

of ,S’ converges and we can thus define a singularity Z = e-iT exp* (i S).
0

According to the previous computation, Z satisfies an equation analogous
to (54) but with opposite right-hand side.

As a consequence, exp* verifies

But § admits a major ~p(~, T; ~c) which is holomorphic for 1(1  1,

- ~ 1f  arg(  ~ 1f, and (T, JL) E x C (because this is the case

for X by virtue of Theorem 1 and for bs according to Proposition s),
v V v

and Do admits such a major Do too (for instance 

1/(2~ri~) - We can thus expand equation (55) in
Fourier-Taylor series with respect to T and JL. Writing

we find:

Equation (56) amounts to (ik - ()~’00,k(() E for each 1~ E Z. This

yields the existence of Ao E C such that

while for k = 0. Hence (Po = Ao6 and 8§o = 0. Inserting
this into (57), we find successively §1 A,6, (P2 == A26, ... by the same
argument, for some sequence of complex numbers Al , A2,...

The expansion of (P thus reduces to A(&#x3E;)6, where the series

¿n20 defines an entire function because of the domain

of holomorphy which was known in advance for the aforementioned

major cP((,T;J1).
The relation (16) expresses the symmetry of ~o with respect to the

involution (T, J1) ~ (T -~ ~r, -p), a property which is shared by ,5’ and thus
by = the oddness of A(/-t) follows. The
value of Al is easily computed from (41). This ends the proof of Theorem 2.
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Remark 9. - The uniform estimate (24) shows that the entire

function (/1) is of order 1 with respect to p.

3. Formal integral and Bridge equation.
3.1. Statement of the results.

3.1.1. Huygens principle. - In the resurgent approach, it is important
not to restrict oneself to a particular formal solution of the problem in
hand. For a system of ordinary differential equations for instance, one
uses the notion of "formal integral" : a formal solution which depends on
the appropriate number of free parameters; were it convergent, one could
describe locally all possible solutions by varying these parameters. For a
first-order partial differential equation like (1), there is a classical notion of
"complete solution" , of which we shall use the formal counterpart.

Following [Che02], for an equation f (q, c~~/aq, ~) - 0 in a region
of JR2n+1 where at least one of the partial derivatives 9fl,9pi(q,p,s) does
not vanish, one defines a (local) complete solution to be a function O(q, a)
on some open subset of JR2n such that

is a (local) parametrisation of the hypersurface f = 0 in the space of
1-jets JR2n+l. The Huygens principle asserts that, locally, any solution of
the equation can be obtained from 0 by formation of envelope.

In our case, the equation can be written

with a Hamiltonian function -

One can check that, if §(z, T, c) solves the equation for each c (where c
denotes a one-dimensional parameter) and if

is invertible for each T and c, the function (z, T, c, a) H T, c) (where a
denotes another one-dimensional variable) is a complete solution.

A way of checking the validity of the Huygens principle in that

case is to consider the exact-symplectic transformation Tp : (z’, T’, c, e) H 
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(z, T, C, E) generated by the function
implicitly defined by

Indeed, in the coordinates (z’, T’, c, e), the Hamiltonian is reduced to e

and the corresponding Hamilton-Jacobi equation is trivially solved; but the
formulae relating the solutions in different canonical systems of coordinates
are not so easy to write down, since it is the graphs of their differentials
which correspond one to the other by the symplectic transformation TO
(they must represent the same Lagrangian manifold contained in the zero
energy level).

This explains why we can content ourselves with looking for a formal
solution as described in (5): 19,~(Z, T, C) - z - T + ... will be formally
invertible.

In fact, to obtain the Bridge equation, we shall make use of the

Huygens principle only at an infinitesimal level, i.e., of the fact that

the solutions of the linearization of equation ( 1 ) around the formal

integral (~(~, T, c) are functions of 9c~. But we hope to study in a further
article the possibility of resumming the formal integral as we did for its
first term Øo, and to investigate the connection formulae between the two
sums ~+ (z, T, c) and 0- (Z, T, C) which would then be defined.

3.1.2. The components ~n of the formal integral. - A series

beginning with ~o (z, T;Jl;) defined in

Lemma 1 solves formally equation (1) if and only if

where Observe that

equation (58) is nothing but equation (25); as already mentioned we choose
N /V

the solution Q1 = z - T + S defined in Lemma 3. We shall now determine
a sequence of formal satisfies (59) and which
gives rise to the formal integral (5) announced in the introduction.

Technically, it will be convenient to consider x = z + S (z, T; J1)
as a formal change of variable which straightens the vector field

aT +Í5O(Z,T;J1)az.
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LEMMA 11. - For each JL E C, the relation

defines a formal series R E x-’P[[x-1]], which is the unique solution in
that space of the equation

It is also the unique solution in x-lp[[X-1]] of the equation

which expresses the conjugation of 0, + Doåz to the straightened vector
field aT + 8z . Like ~o and ,S’, the series R is antisymmetric with respect to
the involution a : (z, T) E--~ (-z, 7r - T).

Remark 10. - Equation (60) expresses that two formal transforma-
tions x - ’I~ (Z, T; p) and z == BII (x, T;/1) are mutually inverse; equation (61)
amounts to the relation 4) 0 BII = Id. But one can also define R through (62)
and recover the series S, for each /1, as the unique solution in 
of the equation

which expresses the relation T = Id. This alternative definition of ,S’
will be useful for the study of its Borel transform.

Proof. The equivalence of (60) and (61) (or (63)) is clear, and it is
easy to check the existence of a unique solution R, which is antisymmetric.

The conjugation between the vector fields is equivalent to 1 +

which amounts to (62 ) , but also to

1 = which amounts to (8r + Do 0z ) ( z - T + S) = 0.
The conclusion thus follows from Lemma 3. 0

PROPOSITION 3. - For each E C and n &#x3E; 2, there exists a unique
series On in P ~z~ ~ ~z-1 ~ ~ vvhose constant term ( the coefhcient of eikT z-j when
k = j = 0) vanishes, such that any solution of equation (59) in that space
is sum of CPn and an arbitrary complex number. The series On itself is

antisymmetric with respect to the involution a : (z, T) H (-z, 7r - T) and
can be written

where Pn has degree
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The sequence f~,1,,&#x3E;2 is determined inductively by formu-

lae (66), (67) and (68) below. We supplement it by the first two terms (~o
and ~1 = z - T -f- S defined by Lemmas 1 and 3, so as to obtain the "formal
integral" (or "formal complete solution")

Remark 11. - Antisymmetry is a convenient feature of our problem
which stems from our choice of the perturbation 2 ( 1 - in (1). It will
guarantee that the right-hand sides in (59) have zero mean residuums (i.e.,
the T-average of their z-residuum, or the coefficient of when = 0

and j = 1, vanishes) and admit therefore primitives with respect to z which
belong 

With other choices of perturbation, it can be necessary to admit

multiples of log z : the components ç#n belong to P [z] ~z-1 ~ ~ log z (despite
the non-linearity of the equation these logarithmic terms do not proliferate,
because the right-hand sides in (59) are built from the derivatives of the
components and still belong to P ~z~ ~ ~z-1 ~ ~ ) .

Proof. Let us perform the change of variable (60) in the system
of equations (58), (59) : in view of Lemma 11, the equations for the new
unknown series gn (x, T) = ~n (x ~ R(x, T), T) read

with

We have already chosen
the solution

which corresponds to

of (65). Observe that the only solutions of this homogeneous equation
in ~ ~x~ ~ ~x-1 ~ ~ are the constants. Hence the first claim of the proposition
amounts to the existence of a unique solution 9n(X, T) of (66) in 7~[~][[.r~~]] I
with zero constant term for each n &#x3E; 2.
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Given B E P ~x~ ~ ~x-1 ~ ~ , the equation (0r + = B is easily studied
by expanding both sides first in Fourier series and then in power series
of x. For each E Z, we find (ik = which admits obviously a
unique solution in C[~][[~"~]] if k ~ 0:

The only possible obstruction is the residuum in 81°1 (coefficient of x-1);
when this residuum vanishes, the equation 8xA[O] = 81°1 admits a unique
solution in C[x][[x-’]] without constant term. Moreover the valuation with
respect to x-1 is increased by 1 at most when passing from to 

therefore the obtained Fourier series ¿ A[k] (x) belongs to P[x][[X-1]]
too.

Since in a series which is symmetric with respect the Fourier

coefficient of zero index is even in x, there is no obstruction when B is

symmetric, and the corresponding solution is antisymmetric in that case.

One thus proceeds by induction on n &#x3E; 2: the series T) being
symmetric with respect for I  m  n - 1 and having a polynomial
part in x of degree 2m - 2, the series Bn (n &#x3E; 2) is symmetric and has
a polynomial part of degree 2n - 2, thus the corresponding solution gn is

antisymmetric and has a polynomial part of degree 2n - 1.

We recover the solutions Øn of equation (59) by

and they are antisymmetric with respect to the involution a, since our
formal change of variable commutes with a. Moreover, as ,S’ E 
the degree of the polynomial parts for ç#n and gn is the same. n

3.1.3. Resurgent properties of the formal integral. - We shall see that
the formal Borel transforms ~((, of the series introduced in (64)
are convergent for ( close to the origin, including in the case of = S

(we set Pl - z -_ T). According to Remark 8, we may thus consider all
the components cPn of the formal integral (for fixed T and JL) as the formal
counterparts of singularities

"V

where Pn is a linear combination of the elementary singularities 8(j) -
with 0  j  2n - 1 corresponding to the

monomials zi (we set Po = 0).
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In order to state our main result on the analytic structure of these
germs ~, we resume the description of the basic concepts of Resurgence
theory that has started in Sections 2.4.1 and 2.4.2.

DEFINITION 7. We define RES to be the space of all § which belong
to SINGO,, for some 0, a and whose minor cp extends analytically to the
universal cover Its elements w are called resurgent functions (ivith
singularities above iZ).

Notice that we have restricted to iZ the set of possible singular points
for the minors whereas the general theory can handle much richer singular
sets. We could have imposed the further restriction that the minors be

regular at the origin, since this will be the case for the 0,,’s, but this does
not facilitate particularly the exposition.

DEFINITION 8. Let w = m eio E C with 0 + 1rZ and m E N*.

We define a linear operator A, : RES  RES by the formula

where p(~) and q(£) = m - 1 - p(~) denote the numbers of signs ‘-~-’ and of
signs ‘-’ in the sequence E, and (cv + () denotes the germ which
is obtained for arg ( close to () - 7r by following the analytic continuation
of the minor 0 along 0, w[ [ and circumventing the intermediary singular
points reie to the right and to the left 

This definition is obviously compatible with Definition 6 when m = 1.
The operators A, are called alien derivations of because of

PROPOSITION 4. - The space RES is a subalgebra of -RES(’) for any
e E 2 7r + TrZ and ,3 &#x3E; 0 ; the operators A, satisfy the Leibniz rule.

With our definitions, the operators A, and differ (see [CNP93b],
p. 208-209), but their action coincide on resurgent functions whose minors
are regular at the origin (these minors are analytic on the Riemann sur-
face R of Section 2.1.2).

.

We have [A,, 8] = i.e., the dotted alien derivations OW -
commute with a, as was the case for m = 1. As already mentioned

at the end of Section 2.4.2, it is convenient to view the operators A, as

acting in the formal model whenever the resurgent functions in hand admit
a formal counterpart.
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For instance, if ep E RES admits a formal Laplace transform

cp (which means that § can be decomposed like CPn in (69),
or equivalently that its minor rp is regular at the origin), saying that

. - , -

for all wl, - .. , amounts to the property that
all the singularities encountered when following the analytic continuation
of § are sums of polar parts (linear combinations of 6(J) ) and logarithmic
singularities (integrable singularities with regular minors). Such a resurgent
function (~ or is said to be simply ramified.

One must keep in mind that A~ - -’ OW1 (p is a combination of the

singularities of various determinations of at the point W1 + ... + wr, and
that the knowledge of all these successive alien derivatives allows one to
compute the whole singular behaviour of rp.

THEOREM 3. - All the components ~n (n &#x3E; 0) of the formal

integral (as defined in Proposition 3) are simply ramified resurgent functions
depending analytically on T E C/27rZ and p E C, whose minors have at
most exponential growth along the non-vertical half lines contained in R.

For each cv E iZ*, there exists a sequence of entire func-

(where coincides width the function introduced

in Theorem 2) such that the "Bridge equation" holds:

This equation must be understood as a system of infinitely many
"resurgence relations" obtained by expanding it in powers of c: =

and

for n &#x3E; 1.

Observe that the alien derivative A~~ is thus determined in terms of
the scalars (/-,)I - ..., (&#x3E;) and of the series 0-1, - - - , The successive

alien derivatives of the components are determined by applying one or
several dotted alien derivatives to both sides of the Bridge equation and
expanding the result in powers of c. For that, one just needs to know the
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rule for the alien derivative of an exponential, which is deduced from the
Leibniz rule applied to (48). For instance,

allows one to compute each series in terms of

Theorem 3 does not make any assertion about the convergence
of the formal integral ~ with respect to c; the results must be

understood component-wise. If the series of the Borel-Laplace transforms

T; &#x3E;) in the direction of R+ and were convergent, they would
yield two complete solutions of equation (1). The relation between them
(which should exist by virtue of the Huygens principle) might be deduced
from equation (71). We postpone this study to a further article.

The rest of the article is devoted to the proof of Theorem 3. We begin
by proving the analyticity of the auxiliary Borel transforms S and R for
( E by a majorant method which is very similar to that of Sections 2.3.2
and 2.3.3 (in fact this study could have been placed in Section 2; the result
on ,S’ was already used in Sections 2.2 and 2.4.3). Then we shall employ the
ideas of Section 2.4.3 in a more systematic way to derive progressively the
resurgence relations and propagate analyticity from one sheet to the other
in the Riemann surface R.

3.2. Study of the auxiliary Borel transforms Rand S.

3.2.1. Statement of the analyticity results.

PROPOSITION 5. - The formal series defined

in Lemma 11 and the formal series S(z, T; E Z-lp[[z-l]] defined in
Lemma 3 admit formal Borel transforms f?((, T; J-L) and S ((, T; J-L) which are
convergent for ( close to the origin ( uniformly in T and J.1). The resulting
holomorphic functions of the three variables (, T and p extend analytically
to n(l) x (C/27fZ) x C.

Moreover, for each p E ~ 0, 3 [, there exist a non-decreasing function K
and a positive number K such that

with the same function as in Theorem 1

(defined in Lemma 7 of Section 2.3.3).
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The rest of Section 3.2 is devoted to the proof of this proposition; we
shall omit the dependence on p of the various series for the sake of clarity.
We begin by two lemmas which will be the starting point of a majorant
series method.

- 

LEMMA 12. - The formal Borel transform of R can be written
R((, -r) = T), with formal series Rn E (np[[(]] defined by the
induction formulae

where F((, T) was defined by (21) and the operator £0 is defined using
Fourier expansions:

provided vanishes at ( = 0.

Proof. Since F satisfies the condition F~°~ (o) = 0 (because of (41)
and (42)), one can check inductively that, for each n, Rn is well defined
and belong to (np[[(]]. The operator £0 was defined in such a way that the
corresponding formal Laplace transforms satisfy

which shows that the series (which is formally convergent)
satisfies equation (62), by Taylor’s formula applied to F. D

- 

LEMMA 13. - The formal Borel transform of S’ can be written
with formal series defined by the

induction formulae

Proof. One recognizes the use of the Taylor formula in (63). 0
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3.2.2. Majorant series for R. - Let us fix p E ] 0, -1 [. The proof of the
analyticity of R for ( E will be somewhat similar to the study of F in
Sections 2.3.2 and 2.3.3. Using the notation of Definition 3, we can rephrase
what we had obtained there: with, according to
Lemma 8, the majorant series being defined in Lemma 6. We
can thus write

defining 5i*((, T) by its Fourier coefficients
These coefficients are entire functions of ( which vanish at 0, with
a Taylor expansion involving only non-negative coefficients. By a slight

improvement of the reasoning in the proof of Lemma 6, the Fourier series
E ilk] (() is seen to converge for T E C/27rZ uniformly for ( in anyE Y, (() 

-

compact of C. The formal Laplace transform of i( (, T) is given explicitly
in (45) (replacing J1 by 1/-tl).

We observe that, in view of the definition of So and of Lemma 7,
the series Rn introduced in Lemma 12 are convergent and define functions
which are analytic in x (C/27rZ). We shall now look for majorant
series Rn for them which will help us to prove the convergence of the series
of holomorphic functions ~ Rn.

We begin by decomposing Ro as + where

(because ~[,01(() - 0 and 1( - p 0 and ( E Majorant
series for £oF* and the remaining Rn’s will be deduced from

LEMMA 14. - There exists cx &#x3E; 0 which depends only on p such that,
whenever with entire functions which vanish at 0 and whose

Taylor expansion involves only non-negative coefhcients,

Notice that the formal Laplace transforms of the majorant series
are related by j(Z,T) -- azB(z, T), and that our hypothesis implies that
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Proof. - The vanishing of the functions at the origin allows us
to write A = with C = £Ê4::.1 2p-lB according to Lemma 5 adapted
to Observing that moreover ~~~-1.~(~) is bounded in (because
of (23), using 1(1 = .~(~) on the main sheet and 1(1 &#x3E; p on the other ones),
we thus have for all E Z and ( E 

for some a &#x3E; 0. We conclude by comparing and

for any

COROLLARY 2. We have for each n, with majorant series
defined by the induction formulae

Proof. One checks by induction on n that Tn, thanks to the
behaviour of majorant series with respect to convolution in described

.. , 
p 

..

in Section 2.3.3 (of course because 1(1  l(E)) , and that %
fulfills the hypothesis of the preceding lemma. 0

In view of (47), there just remains to bound the terms of the series
~ Rn (.~(~), Z!am T) thus defined. As in the proof of Lemma 6, this can be
done by considering the series of the Laplace transforms T), which are
convergent series of x (when dealing with R or R, we prefer to denote by x
the variable which is called z in the case of F or ,S’) . They are determined
inductively by the formulae

We recognize here the Taylor expansion of an implicit equation: the

generating series is solution of
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Substituting (45) inside but writing R(z) - 1 + zS(z), and setting
and we find

where solves

We conclude by the Implicit Function Theorem: there exist a positive
number C and a non-decreasing function A (depending only on p)
such that the function U is holomorphic and bounded by C for

181  2 and IXI Hence

for which yields

with K = 2p-4C and K = 

We deduce the desired result for R(~, T) on R(l) x (C/27rZ) by (47).
Changing a little bit the notations, by specializing to 6 = 1, we also retain
that R with a majorant series R = T) which satisfies

3.2.3. Majorant series for ,S’. - Clearly, the formal series Sn of

Lemma 13 converge for ( close to the origin and extend analytically
to x (C/27rZ). We obtain by defining

The generating series is solution of
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and we conclude like previously (by enlarging K and ~) . Specializing
to 6 = 1, we retain that S with a majorant series which satisfies the
same inequality (74) as ~Z.

This ends the proof of Proposition 5.

Notice that the analyticity of ,S’ can also be obtained by applying the
ideas of [Pha89] concerning "resurgent implicit functions" .

3.3. Resurgence relations and propagation of analyticity.

We are now in a position to begin the proof of Theorem 3 itself. The
statement amounts to the analyticity of each in((, T;J-l) in 7Z x (Cj27íZ) x C
(with at most exponential growth in non-vertical directions on R), with
only "simply ramified" singularities which are determined in terms of the
formal integral and scalars (~c) .

We shall begin with the proof of analyticity in x x C,
and explain then how to "propagate" it from one sheet of 7Z to the other

by solving linear equations for the alien derivatives.

3.3.1. Analyticity in of the 0,,s.

PROPOSITION 6. - The formal Borel transforms ~~ (~, T; ~) of the
components of the formal integral all possess property (A) of being
convergent for ( close to the origin and defining a holomorphic function
on 7Z(’) x x C with at most exponential growth in non-vertical
directions on R~1&#x3E; .

Proof. Property (A) was checked for 00 in Section 2.3 and for i1
in Section 3.2.3 (remember that ~1 = ,S by definition).

For n &#x3E; 2, we use formula (68), decomposing §n in the sum of

a polynomial part pn E P[x] and a series and then

similarly as the sum of Pn and

This is consistent with the notation of (64), and we have

In view of Proposition 5, property (A) is immediate for p[n]((,T) (expand
each monomial (z + and use the stability by convolution of the
property to be checked).
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As for the second term in the right-hand side of (75), we observe that
its formal Borel transform can be written

and that, as a consequence of (66),

where is obtained from Bn by removing the polynomial part.

We first check that the series gn = satisfy property (A). Indeed,

implies that B2 satisfies property (A), since one can use (72) to bound
by KIMI cosh thus

satisfies it too, and the same is true for the next functions Bn and
9n = by induction on n.

We then see that (76) is a convergent series of holomorphic functions
for each n &#x3E; 2 (use (72) to bound s*r). D

B1

COROLLARY 3. - The singularities On defined by (69) for n &#x3E; 0

belong to the spaces for E 1 7r + 7rZ and /3  1f.,3 2 -

Proof. This was already noticed in the case of 1&#x3E;0 == in

Section 2.4.2, as a consequence of Theorem 1. Proposition 6 shows in the
v

same way that the remaining singularities On also satisfy the property
described in Definition 6. D

3.3.2. Proof of the Bridge equation for w - ±i. - For the time being,
we have at our disposal only two alien derivations (7) that can be tested

B1

on the singularities On, namely Ai and A-i. According to Theorem 2,
especially after the explanations of Section 2.4.3, we already know that

eiT exp* (iS)), and there is of course a similar relation
v

for A-i 00; these first relations can be written in the formal model:

(7) In fact, we should speak of all the alien derivations with 0 E 7r + TrZ, but we
know in advance that our singularities (since they have a regular minor) belong to an
algebra where only two alien derivations among this family are to be distinguished.
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(Notice that = due to the relation 0 a = A-z (ç#o o a~) and
to the antisymmetry of (~o.) We can now easily derive analogous relations
for the remaining singularities Øn, by following exactly the same chain of
reasoning as in Section 2.4.3.

It is more efficient to deal with the generating series

for w = eiB, = 7r. Observe that, at this stage, the
nature of the singularity of each Øn still being unknown, there is no obvious

v

formal counterpart for the singularities X n (for n &#x3E; 1, that is). But the
rules of alien calculus show that these singularities satisfy linear equations
obtained by applying 0~, to (58) and (59); the corresponding equation for
the generating series is

On the other hand, we can easily produce a series of singularities
which satisfies

w v

Consider indeed Z - + (which must be understood,
0

using the expansion of the exponential, as a formal series with

coefficients in Zo = e-" exp*(w etc.). In fact, equation (78)
is a consequence of the equation

which is simply the linearization of equation (1) around the whole formal
integral ~.

Combining equations (77) and (78), we obtain

which is solved by expanding in powers of c and reasoning as at the end of

Section 2.4.3: we find indeed +Do * = 0, which is equation (55),
thus o must be proportional to 8 by some factor ()? must vanish,
and we obtain by induction that every ~pn is proportional to 6.
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The upshot is a sequence of proportionality factors (p)) such that

’7

And now, expanding with respect to c, we see that each admits a

formal Laplace transform the relation corresponding to (79)
and its expansion in the formal model are precisely the resurgent relations
indicated in Theorem 3 in the case of w = ±i.

3.3.3. Alien derivations as a tool to explore the Riemann surface R.
Let denote the algebra consisting of all singularities which belong
to RES(1)0,n for 0 E 2 n + 7rZ and admit a regular minor which extends
analytically to TZ~1&#x3E; . We know by Corollary 3 that each Øn belongs
to 

When expanded with respect to c, equation (79) shows that the
singularities Øn belong in fact to a subspace that we can denote by 
consisting of the members (p of RES(1) whose alien derivatives belong
to 

The arguments (and the notations RES’B RES (2) ) are essentially the
same as in [GS01], p. 588. The idea is that the alien derivations provide
a tool to explore the Riemann surface R, since, when ~~ = the

determination of § in any of the four half-sheets accessed by crossing the
imaginary axis between i and 2i or between -i and -2i can be expressed
in terms of the principal determinations of rp, 0+ and 0- (this yields
expressions like or (

The process can be continued because RES (2) is a subalgebra on
which not only the first alien derivations A±i are defined, but also the
operators o A±i and A±2i. The operators A2z and A-2i 71 are defined

by (70) (which is meaningful when w = +2i and ep E RES (2) ) and they
satisfy the Leibniz rule.

This allows us to "alien differentiate" equation (79) (applying 
after having expanded it) and to repeat the arguments of Section 3.3.2
with A±2i, obtaining expressions of all the (so far) computable alien

derivatives in terms of singularities which are all known to belong
to RES (2) . Again, these formulas can be interpreted as a piece of

information concerning the determinations of the minors ;¡;n on farther
v

sheets of R, sufficient to establish that the singularities Øn belong to
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and etc.:

a decreasing sequence of spaces can be constructed, all of which contain the
singularities Øn, the intersection of which is nothing but RES.

The reader is referred to [CNP93b], p. 210-216, from which we have
borrowed the title of the present section.

This ends the proof of Theorem 3.
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