
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Olivier PILTANT

On the Jung method in positive characteristic
Tome 53, no 4 (2003), p. 1237-1258.

<http://aif.cedram.org/item?id=AIF_2003__53_4_1237_0>

© Association des Annales de l’institut Fourier, 2003, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2003__53_4_1237_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


1237

ON THE JUNG METHOD

IN POSITIVE CHARACTERISTIC

by Olivier PILTANT

1. Introduction.

The first proof of resolution of singularities of complex surfaces can be
traced back to Jung [18]. Roughly speaking, the argument can be sketched
as follows [24]: a normal complex surface ,S’ has a finite number of singular
points, so the question is local on S. One then takes a finite projection 7r of
,S’ to the affine plane. The branch locus is a plane curve C. By embedded
resolution of plane curves, one reduces to the case that the only singular
points of C are normal crossings. The singular points of ,S’ now have a very
simple structure, which is the content of Abhyankar’s lemma. We state it
below in its analytic form and in all dimensions ([6] Proposition 1, [15]
2.3.4).

PROPOSITION 1.1. - Let k be an algebraically closed field of char-
acteristic zero, and let R := ~[[t6i,...,~]]. Let S be a normal domain,

R, which is finite as a R-module. Assume that the map 7r : Spec ,S’ ~
Spec R is unramified above Spec for some d, 0 -_ d  n.

There exists a nonsingular matrix A = With entries in

Z such that the extension of fields of fractions L/K of SIR is equal to
K(X1, ... , where the zj ’s satisfy the relations

Keywords: Valuations - Coverings - Resolution of singularities.
Math. classification: 13A18 - 14E22 - 14J17.
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For d = n = 1, Proposition 1.1 is an equivalent formulation of the
Puiseux theorem: k ((u a I )) is an algebraic closure of 1~ ( (u) ) . For n &#x3E; 2,
Proposition 1.1 implies that ,S’ is generated as a R-module by a finite

i 1

number of monomials in t,... ,1, where A :=| ] det (A) &#x3E; 1.

The singularities of ,S’ are toric [19], and a resolution of singularities can be
described explicitly from some combinatorial data associated with the set
of exponents of the Mj’s. This fact is the main feature in the Jung method.

Abhyankar’s series of articles in the 1950’s ([1] to [6]) was originally
motivated by the positive characteristic version of Proposition 1.1. Some
of his observations of fundamental importance [1] are

(1) if char k = p &#x3E; 0, Proposition 1.1 holds if 7r is tamely ramified
above ud) but fails in general.

(2) if char k = p &#x3E; 0, the Galois group of the normal closure of L/K
in Proposition 1.1 needs not be solvable.

Abhyankar’s resolution of surfaces singularities in characteristic p &#x3E;

0 proceeds from the valuative version of Jung’s method. Although the
difficulties caused by wild ramification in (1) persist along a valuation,
those in (2) disappear: Krull’s theorem [21] states that the inertia group
of a finite and separable extension of valuation rings is solvable. This fact
allows Abhyankar to reduce local uniformization for surfaces to pulling it
up in a cyclic extension of degree p, which is performed in [2].

In the last few years, de Jong’s foundational paper [17] triggered
renewed interest in Jung’s method; some of Abhyankar’s conjectures have
been studied and proved recently by Cutkosky [9] [10] (see also [11] and
[13]). A valuative version of de Jong’s theorem is proved in [22] using
ramification theoretic methods (see also [20]). Plugging in a semistable
reduction argument, de Jong [17] succeeds in proving by induction on
dimension a weak form of the resolution of singularities theorem for

algebraic varieties, which is valid in all characteristics. This weak form

is not birational, but requires a finite extension of the function field. The

gap from being birational comes precisely from fact (1) mentioned above.
It was subsequently proved in [7] and [8] that no such extension of the
function field is necessary in characteristic zero. In positive characteristic,
even in dimension two, it is still an open problem that such an extension
is necessary. This article is devoted to stating the precise definition of its
valuative version (Definition 4.1) and to giving evidence that enlarging the
function field should not be necessary (Theorems 5.3, 6.5 and 7.1).
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Known facts and definitions are stated in Sections 3 and 4. For

convenience, we restate in here Definition 4.1, which is our definition of the
valuative Jung problem for an algebraic surface over an algebraically closed
field of characteristic p &#x3E; 0: let L/K be a finite and separable extension
of function fields of dimension two over k, and let be a valuation ring
which is birational to L. We say that (L/.K, W ) has the strong (resp. weak)
Jung property if there exists a (resp. for any) local uniformization R of
V := W n K such that for any (resp. there exists a) local uniformization R’
of V dominating R, the integral closure R’ of R’ in L has a toric singularity
at the center of W. Basically, this means that the singularity of R at the
center of W is toric once R has been blown up "sufficiently many times"
along V, and that this remains true after performing further blowing ups in
case (L/K, W) has the strong Jung property. The main question addressed
in this paper is: does any such pair (L/K, W ) have the weak or even strong
Jung property?

In Section 5, we give a simple citerion for R to have a toric singularity
at the center of W for a given local uniformization R of V. Theorem 5.3
provides an affirmative answer to the strong form of the above question
whenever the value group h of W is finitely generated. Since L and K have
dimension two over k, this includes all valuation rings except those whose
value group 1, is rational and nondiscrete.

In this remaining case, two main difficulties arise: the extension of
valuation rings W/Y may have nontrivial defect (Definition 4.2), and r
may be p-divisible. In Section 6, it is proved that the strong (resp. weak)
Jung property holds in the defectless (resp. not p-divisible) case.

Finally, we prove in Section 7 that any (L/K, W ) has the weak Jung
property if L/K is a finite and separable (but not necessarily Galois)
extension of degree p (in characteristic p &#x3E; 0). We view this fact as

convincing evidence that any pair (L/K, W ) should have the weak Jung
property, since fact (1) above is the main difficulty along a valuation in
positive characteristic.

2. Notations.

From now on, I~ denotes an algebraically closed field of characteristic
p &#x3E; 0. Function fields over are denoted by K, L. A model of 

is an integral separated scheme of finite type over whose function field
K(X) is K.
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The maximal ideal of a local ring R is denoted by mR and its residue
field by K(R). We will denote the quotient field of a domain R by QF(R).
Suppose that R c S is an inclusion of local rings. We say that R dominates
,S’ if ms rl R = MR. Given a function field and a valuation ring V
of K containing such that QF(V) = K, a model of (or of V for
simplicity) is a normal local domain R, essentially of finite type over k,
such that QF(R) = K and which is dominated by V.

Suppose that R is a local domain. A quadratic transform of R is a
local domain of the form where 0 ~ x E mR and m1 is

a prime ideal of such that m1 n R = mR. If R is a model of some

valuation ring the quadratic transform of R along V is the unique
quadratic transform of R which is dominated by V. In other terms, Rl
is obtained from R by taking any x E mR having minimal value w.r.t. V
among all elements of mR, and taking ml := mv n R~ ~R ~ .

Suppose that L / K is a finite extension of function fields over k. If 
is a model of the normalization of X in L is denoted by X whenever
there is no risk of confusion about L. Also, let R be a local domain with

QF(R) = K and ,S’ a local domain with QF(S) = L. We say that ,S’ lies

over R if ,S’ is a localization at a maximal ideal of the integral closure of R
in L.

3. The generalized Jung problem.

In this section, we state well-known results on unramified coverings
of the complement of a divisor with strict normal crossings in a regular
surface. We also include some classical examples, due to Abhyankar, which
point out some of the main differences between characteristic zero and

positive characteristic.

LEMMA 3.1. - Let be a finite and separable extension of
function fields of dimension two over k and let be a proper and smooth

model of There exists a commutative diagram

such that 7r is a composition of point blowing ups and n’ is ramified above
a divisor with strict normal crossings.
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Proof. The branch locus B C X of n is a divisor by purity
of branch locus ([14] Theorem X.3.1) since X is regular. There exists
a composition of point blowing ups 7r such that 7r*B is a divisor with

strict normal crossings by [16] V.3.9. The branch divisor B’ C X’ of n’ is
obviously contained in the support of 7r*B, and therefore has strict normal
crossings. D

When 1~ has characteristic zero, each singular point of a given surface
X satisfying the conclusion of Lemma 3.1 has a toric singularity (see
Proposition 3.3 below). We use the following definition.

DEFINITION 3.2. - Let (R, mR) be a normal local domain which is
essentially of finite type over k and such that k. We will say that

R has a toric singularity if there exists a lattice N ^_~ Zd and a strongly
convex rational cone a C N 0 Q spanning N 0 Q such that the formal
completion R of (R, mR) is isomorpllic to the power series ring 
with coefficients in the semigroup av n M, where M = Hom(N, Z), and
07V C M 0 Q is the dual cone of a. Necessarily, dim R = d.

A typical example of toric singularity is obtained as follows: let

(R, mR) be a regular local ring of dimension d &#x3E; 2 which is essentially
of finite type over and let I be an ideal which is generated by monomials
in a regular system of parameters (r.s.p. for short) (U1,..., Ud) of R. Then
the local ring of each singular point of the normalized blowing up of Spec R
along I has a toric singularity.

PROPOSITION 3.3. - Assume k has characteristic zero. Let L/ K be
a finite extension of function fields of dimension two over k. There exists

a proper and smooth model of such that for any composition of

point blowing ups 7r’ : X’ -4 X, the local ring of each singular point of the
normalization X’ of X’ in L has a toric singularity.

Proof. Lemma 3.1 shows existence of a proper and smooth model

of whose normalization X in L is ramified above a divisor with

strict normal crossings. Any X’ as in the statement of the proposition
shares this same property. By Abhyankar’s Lemma ([6] Proposition 1 or

[15] 2.3.4), X’ has toric singularities. 0

Examples 3.4. - 1) The ring R = k[x, y, has an An
singularity at its maximal ideal M = (x, y, z) which is toric. This singularity
is also a Brieskorn-Pham singularity. has characteristic p &#x3E; 0 such that
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p does not divide n ~-1, the covering Spec R - A~ = Spec k [x, y] is ramified
above the curve xy = 0.

2) It is well-known that Abhyankar’s lemma does not hold in general
in positive characteristic as soon as wild ramification appears above the
branch locus. For example ([1] p. 586), the covering

is ramified above the line x = 0 if k has characteristic p &#x3E; 0. The surface

X is a cone over a smooth curve of degree p which is not rational if p ~ 3.
Consequently, the singular point M - (x, y, z) of X is not a rational

singularity if p &#x3E; 3 and a fortiori is not a toric singularity.

3) Similarly ( ~1~ p. 589), the covering

is ramified above the line L : x - 0 if p &#x3E; 0. Note that the origin
in X is a singular point and that the inverse image of L in X splits in a
union of two curves. Neither phenomenon occurs in characteristic zero ([6]
Proposition 2).

However, example 2) above does not provide a counterexample to the
conclusion of Proposition 3.3 in positive characteristic. It shows that a given
X such that the is ramified above a divisor with strict normal

crossings does not satisfy in general the conclusion of Proposition 3.3.
The following statement which is a simple consequence of resolution of

singularities holds in all characteristics p &#x3E; 0.

PROPOSITION 3.5. - Let be a unite extension of function

fields of dimension two over k. There exists a proper and smooth model 

such that for any composition of point blowing ups ~r’ : X’ -4 X,
each singular point of the normalization X’ of X’ in L has a rational
singularity.

Proof. Let be a proper and smooth model of and Y/k
be a proper and smooth model of By elimination of indeterminacies

([23] Theorem 26.1 ) , it can be assumed that the rational map Y ~ ~ ~ -4 Xo is
defined everywhere. Let Ei , ... , En be those irreducible curves in Y whose
image in Xo is a point. There exists a composition of point blowing ups
7r’ : X --+ Xo such that the rational map Y ... is finite at the generic
point of Eel,.., En by [3] Theorem 3.

Let ~r’ : X’ -4 X be a composition of point blowing ups and X’ be
the normalization of X’ in L. It follows from the construction of X that the
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rational map X’ ~ ~ ~ -4 Y is defined everywhere by Zariski’s Main Theorem
([16] III.11.4). Each singular point of the surface X’ therefore has a rational
singularity by [23] Proposition 1.2 p. 199. D

Remark. - The above proof actually implies the stronger statement
that X’ has a sandwiched singularity in the sense of [25].

4. A local version of the Jung problem.

In this section, we recall some basic facts of valuation theory and
ramification theory as can be found in [5] or [26] and [27]. A local version
(in the sense of valuations) of Definition 3.2 is given in Definition 4.1.

Let L/K be a finite and separable extension of function fields of
dimension two over k. Let be a valuation ring which is birational
to L and let Y := W n K. The value group of V (resp. W) is denoted by
A (resp. h) . The rational rank of W,

and the residue transcendence degree of W,

satisfy Abhyankar’s inequality ([27] Proposition 1 p. 330)

The case tr.deg(W) = 2 corresponds to the zero valuation of L and the
case tr.deg(W) - 1 corresponds to prime divisors of L ([27] p. 88). In all
that follows, we assume that tr.deg(W) = 0, and therefore = k,
since is algebraically closed. The possible value groups F are

(1) Z2 lexicographically ordered or (2) any free Abelian subgroup of
rational rank two of (R, x) if rat.rk(W) = 2, or

(3) Z or (4) any nondiscrete subgroup of Q if rat.rk(W) = 1.

Note that, since L/K is a finite extension, we also have K(V) = k,
and A is of the same type (1), (2), (3) or (4) as r.

The local uniformization theorem ([2] p. 492) implies that there exists
a regular model R (resp. ,S’) of (resp. The set of all regular
models of V (resp. W) dominating R (resp. S’) forms an infinite chain
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by [3] Theorem 3, where each Rr (resp. Ss) is the quadratic transform of
(resp. along V (resp. W). In addition, we have V = Rr

and W = by [2] Lemma 10. In particular, there exists a pair (R, S)
of regular models as above such that S dominates R, since R is essentially
of finite type over k.

The local version of the Jung problem can now be stated as follows.

DEFINITION 4.1. - Let L/K be a finite and separable extension of
function fields of dimension two over k and let be a valuation ring
which is birational to L.

The pair (L/ K, W ) is said to have the strong Jung property if there
exists a regular model R of V := W n K with the following property: for
every regular model R’ of K dominating R, the unique model R’ of 
lying above R’ has a toric singularity (Definition 3.2).

The pair (L/K, W ) is said to have the weak Jung property if for
every regular model R of V := W n K, there exists a regular model R’ of
K dominating R, such that the unique model R’ of lying above R’
has a toric singularity ((Definition 3.2).

We recall that, by definition, R’ is the unique local ring of the integral
closure of R in L which is dominated by W.

Finally, we recall some basic facts of the ramification theory of W/V
that can be found in [27] pp. 50-82. The ramification index of W/V is the
positive integer

and the residue degree of W/V is f . :== [r,(W) : ~(V)~ = 1, since the
residue extension is assumed to be trivial. When is Galois, we have
the equality

where g is the number of conjugates of W under the action of G =

Gal(L/K) and b &#x3E; 0 ([27] Corollary on p. 78). By convention, 6 = 0,
and formula (2) still holds. One extends the definition of 6

for not necessarily Galois as follows: let L’/K be a Galois closure of
L/K and W’ be a valuation ring which is birational to L’ and lies above W.
If b’ (resp. b) is the integer which is associated with W’/Y (resp. W’/W )
as in (2), the defect of W/V is the integer where
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Let Wl , ... , W. be the set of all valuation rings which are birational to L
and lie above V. Then

extends (2) to the case when L/K is separable but not necessarily Galois.

DEFINITION 4.2. - With notations as above, W/V is said to be
defectless (resp. tamely ramified) if Ó(W/V) = 0 (resp. if 6(W/V) = 0 and
p does not divide e(W/V)). If p = 0, W/V is always tamely ramified.

5. Finitely generated value groups.

In this section, we show that any pair (L/K, W) such that L/K is
a finite and separable extension of function fields of dimension two over k
has the strong Jung property (Definition 4.1) if the value group h of W is
finitely generated, with V := W n K. We keep conventions and notations
as in the previous section.

In order to prove that a given pair (L/K, W) has the strong or weak
Jung property, we will use repeatedly the following criterion.

LEMMA 5.1. - Let (R, S) be a pair of regular models of (V, W) such
that S dominates R, where R (resp. S) has a regular system of parameters
(u, v) (resp. (x, y)). Let R’ be a regular model of v dominating R which
has a r.s.p. (u’, v’) given by

where

is a unimodular matrix with integer entries. Assume the following condition
holds:

(1) The integral closure IS of the ideal IS is generated by monomials in
(x, y), where

(2) The unique model R’ lying above R’ dominates S.
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Then R’ has a toric singularity.

Proof. We claim that R’ is the unique local ring of the blowing
up X’ of SpecR along I which is dominated by V.

First assume that at least one of a’, b’, c’, d’, say c’ is zero. Necessarily
a’ - 1 since A is unimodular and V u’ &#x3E; 0. Since R C R’, A-1 has
nonnegative entries. Therefore d’ - 1 and b’  0. We get that R’ =

and the claim is proved.
Assume now that a’b’c’d’ i= 0. We have a’c’, b’d’  0 since A-’ has

nonnegative entries. The inclusion

is a birational inclusion of regular rings which is unramified at (u’, v’), since
Therefore we have

which proves the claim.

Let R (resp. X’) be the normalization of R (resp. X’) in L = QF(S),
so that by definition, R’ is the unique local ring of X’ which is dominated
by W. There is a commutative diagram with proper arrows

Now, the universal properties of blowing up ([16] II.7.14) and normalization
together imply that J~ is the normalized blow up Y’ of SpecR along I R.

By assumption (2), we have R C S  R’, so that R’ is also the

unique local ring of the normalized blow up Z’ of Spec S’ along IS which
is dominated by W.

By assumption (1), I,S’ is generated by monomials in x, y. Since ,5’ is

essentially of finite type over k, Z’ is obtained by blowing up the integral
closure of for some n &#x3E; 1 which is also generated by monomials in x, y
(in fact one can take n = 1 by Zariski’s Theorem [27] Corollary 2 p. 380).
The ring R’ therefore has a toric singularity. D

The following statement is [13] Theorem 7.3.

PROPOSITION 5.2. - Let be a valuation ring which is

birational to L and V := W n K. Assume that the value group 
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finitely generated, that is, of type (1), (2) or (3) with notations as in the
previous section.

There exists a pair of regular models (Ro, ,S’o) of (V, W) such that
So dominates Ro, Ro (resp. So) has a regular system of parameters (u, v)
(resp. (x, y)) and there is a relation

where "Y1, "Y2 E So are units, a, b, c, d &#x3E;, 0 and ad - 0. Let A be the

matrix 
, ,

If rat.rk(W) = 2 (type (1) or (2)), vrTe have r = ZWy.

Z (type (3)), uTe have f = ZWy and A has the following form:

In all cases, W/V is defectless and

Proposition 5.2 is the main ingredient in the proof of the following
theorem.

THEOREM 5.3. - Let L/K be a finite and separable extension of
function fields of dimension two over k. Assume that the value group T’ of

is finitely generated.

Then (L/ K, W) has the strong Jung property.

Proof. Since V = Rr by (1), the unique model Rr of W/I~
lying above Rr contains the local ring So of Proposition 5.2 for r ~ ro.
Remark that the special form of A provided by Proposition 5.2 implies
that one can take ro = 0 if F ~ Z. Let R :== Rro and r ~ ro.

First assume that r has rational rank two. Then Wx and W y
are rationally independent since they generate r. Equation (4) and the
condition ad - bc =A 0 together imply that Yu and V v are also rationally
independent. Therefore the regular local ring R’ :- Rr has a regular system
of parameters (u’, v’) satisfying the relation
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where

is a unimodular matrix with integer entries. Then R’ clearly satisfies the
hypotheses of Lemma 5.1 from which the conclusion follows.

In case F rr Z we now have F = ZWy. Equation (5) and the
special form of the matrix A in this case show that A = Let

m . := Vu/Vv E Z. There exists p such that V(u - &#x3E; 

After replacing u with and x with

one gets a new value ml := &#x3E; m. After iterating a finite number
of times, it can be assumed that m &#x3E; r. Therefore the regular local ring
R’ :- Rr has a r.s.p. (u’, v’) satisfying the relation

One then concludes as in the case when r has rational rank two. 0

6. Nondiscrete subgroups of Q.

In this section, we consider any pair (L/K, W) such that L/K is
a finite and separable extension of function fields of dimension two over
I~ and r is of type (4), that is a nondiscrete subgroup of Q. We prove
that has the strong (resp. weak) Jung property when W/V is
defectless, where Y := W rl K (resp. when F is not p-divisible).

Let R (resp. ,S’) be a regular model of V (resp. W) such that S
dominates R. We restrict our attention to certain such pairs R C S which
are called prepared pairs.

DEFINITION 6.1. - With notations as before,

(1) Given an index r &#x3E; 1, Rr (resp. S8) is said to be a 1-point if
the reduced exceptional locus Er (resp. F8) of Spec Rr -4 Spec R (resp.
Spec Ss - Spec ,S’) has precisely one irreducible component.

(2) Given a pair (r, s) of positive integers, the pair (Rr, S8) is said to
be prepared if the following properties hold:

(i) Ss dominates Rr.

(ii) Both of Rr and S8 are 1-points.
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(iii) The singular locus of Spec R, is contained in Fg.

(iv) We have u = -yx’ for some a &#x3E; 0, where u (resp. x) is a regular
parameter of RT (resp. Ss) whose support is Er (resp. Fs), is a unit

in Ss .

PROPOSITION 6.2. - Assume that the value group of W is a

nondiscrete subgroup of.

The set of prepared pairs is cofinal in the set of all pairs (Rr, Ss).
Given a prepared pair any pair (Rr"Ss’) with r’ &#x3E; r, s’ &#x3E; s,

such that both of R,, and ,S’s~ are 1-points and Ss, dominates R,, is also

prepared.

Proof. Since the value group of W is a nondiscrete subgroup oft
it is true that the set of I-points Rr (resp. S s) is cofinal in the set of all Rr
(resp. Ss) ([5] Theorem 4.7(A)).

Since L/K is separable, the singular locus of the map Spec ,S’S 2013~

Spec Rr is a (possibly empty) curve CT,s in Specs.

If C is a curve in Spec ,S’S, its total transform in Spec is contained in

Fs, for all large enough s’ ([2] Proposition 3). Applying this statement to Er
and Cr,s for a given pair (Rr, Sus) satisfying (i) and (ii) of Definition 6. l, one
gets that (iii) and (iv) automatically hold for any pair (Rr~ , satisfying
(i) and (ii) provided r’ and s’ are large enough. This proves the propo-
sition. 0

DEFINITION 6.3. - Let (Rr, ,S’S) be prepared. A r.s.p. (u, v) (resp.
(x, y)) (resp. ,S’S) is said to be prepared if the support of u (resp. x)
is equal to Er (resp. FS) and if Vv (resp. Wy) is maximal among all such
r.s.p.’s containing u (resp. x).

The following result is [13] Theorems 7.33 and 7.35 and gives a
satisfactory analogue of Proposition 5.2 in the defectless or not p-divisible
case. Equations (7) and (8) are a rephrasing of the statement "gn = 1

for rt &#x3E; &#x3E; 0" in loc.cit. For 6 = 0, the inequality ni &#x3E; 1 follows from the

definitions in [13] and for 6 &#x3E; 0, the inequality ni &#x3E; p6 follows from ibid.
Lemma 7.29 (2).

PROPOSITION 6.4. - Let be a valuation ring whose
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value group r is a nondiscrete subgroup of Q. Assume that r is not p-
divisible, or that W/V is defectless (Definition 4.2), where Y := W n K.

There exists an infinite sequence of prepared pairs of models 
i &#x3E; 0, such that for each i &#x3E; 1, (resp. dominates (resp.
,SS2-1 ) and having the following properties: each Rr2 (resp. has a r.s.p.

(ui, V’) (resp. (xi, y2)) and a prepared r.s.p. (ui, vi) (resp. (xi, yi)). There
are relations

where qi E ,S’S2 is a unit, e is the ramification index of W/V, and
ordy2 ( f2 mod x2) = p6 is the defect of W/Y.

There are relations

and

where Ai, pi E k are nonzero, ni &#x3E; p~, and

THEOREM 6.5. - Let L/K be a finite and separable extension of
function fields of dimension two over k and be a valuation ring 
whose value group r is a nondiscrete subgroup of Q.

( 1 ) Assume that W/V is defectless, where V := W n K. Then

(L/ K, W) has the strong Jung property.

(2) Assume that r is not p-divisible. For each r » 0 such that Rr is a
1-point, the unique model fir lying above Rr has a toric singularity.
In particular, (L/K, W) has the weak Jung property.

Proof. - Let R and let r &#x3E; ro. Pick the unique integer i &#x3E; 0

such that ri  r  The unique model Rr of lying above Rr
contains ,S’s2. We clearly have Rri = S,, which is a regular local ring so it
can be assumed that r &#x3E; ri.

Since r  ri+1, it follows from (8) that the regular local ring R’ :- Rr
has a r.s.p. (u’, v’) satisfying a relation
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where

is a unimodular matrix with integer entries.

First assume that W /V is defectless. Then R’ clearly satisfies the
hypotheses of Lemma 5.1 from which the conclusion follows.

Assume now that W/V has defect p5 &#x3E; 1, so that p &#x3E; 0 and we are

in case 2 in the Theorem, i.e., r is not p-divisible. We need only consider
the case when is a 1-point, so that a’ - d’ - 1, c’ - 0, b’  0. More

generally, let E Z be such that a  0, 0 and W(u’v 3) &#x3E; 0. We

claim that the integral closure of IS, where

is generated by monomials in x, y. By (6), (7) and (8), we have

Since ordy2 ( fi mod xi) - p8, the Weierstrass preparation theorem allows
to write f as

where is an invertible power series, = 1 and E

l~~~xi~~. We have

by [2] Proposition 3. Computing from (7), we get

Since r is not p-divisible, p does not divide ni for large enough i, so to

begin with, it can be assumed that p does not divide n. for all i ~ 1. We
have g.c.d.(ni, eli/p8) == 1 and g.c.d.(ni,li) = 1, so that we deduce that

g.c.d.(e, ni) = 1 for each i ~ 1. Therefore by (7), the image of Wyi has
order ni+1 in the quotient group + Using (9), (10)
and the fact that ni+1 &#x3E; ps, we deduce that each 0  I~  p~, satisfies
the condition

Using once again (9), we hence get for each k,
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Since &#x3E; 0, this shows that for each k, p~, we have

Consequently,

Since

equation ( 11 ) is an equality of integral closures

which proves the claim.

Applying this fact to the pair - (b’, d’) = (b’,1), we get that
is generated by monomials in x, y, where I . := Then R’

satisfies the hypotheses of Lemma 5.1 from which the conclusion follows.D

7. Extensions of degree p.

In this section, we consider the case of a (not necessarily Galois)
degree p separable extension L/K. Let be a valuation ring which is
birational to L and let V := W n K. The goal of this section is to prove
the following theorem.

THEOREM 7.1. - Assume that char k = p &#x3E; 0. Let L/K be a finite
and separable extension of degree p of function fields of dimension two over
k and let be a valuation ring which is birational to L. Then (L/K, W)
has the weak Jung property.

Recall that (L/K, W ) has the strong Jung property if F is finitely gen-
erated by Theorem 5.3. In case 1, is a nondiscrete subgroup of Q, (L/K, W)
has the strong Jung property if W/V is defectless by Proposition 6.5.

By equation (3), the remaining case is when W/V has defect p which
we assume from now on. Let (R, ,S’) be a prepared pair, where R (resp. S)
has a r.s.p. (u, v) (resp. (x, y)). There is an expression
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where q E S is a unit and x does not divide f. The following statement
follows from [13] Theorems 7.20 (1) and 7.33.

PROPOSITION 7.2. - Assume that f E S is a nonunit. Then

LEMMA 7.3. - There exists a prepared pair (R, S) with b = 0 in
(12).

Proof. Pick any prepared pair. If f is a unit in (12), the ideal
(u, v),S’ is a principal ideal. Therefore, R c S factors through the quadratic
transform R C Rl of R along V and we replace (R, ,S’) with (Ri, S). After
a finite number of iterations, we may assume that f is a nonunit to begin
with. Proposition 7.2 allows to distinguish two cases.

Case 1. a - 1, ordy (f mod x) == p.
Let R’ be the iterated quadratic transform of R along V with regular

parameters (u’ - u, v’ = vu-b). We get the following expression for the
prepared pair (R’, S) :

which satisfies the conclusion of the lemma.

After replacing x with Az for some A E k, A # 0, it can be assumed

that -y - 1 mod mR. Let y := f. Note that (x,y) is a (not necessarily
prepared) r.s.p. of S. Let ql /nl .- W y/W x E Q, with &#x3E; 0 and

g.c.d. (nl , q1 ) = 1. Since nl W y = ql W x, there exists p E k, p =1= 0, such
that &#x3E; Write = 1, with &#x3E; 0 and

let S8l be the iterated quadratic transform of ,S’ along W whose regular
parameters (xl, yl) satisfy

By (12), there is an expression
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Let 11 := Clearly, g.c.d.(ll, n1) = 1 so that i
or p. There exists A E k, ~ ~ 0, such that
Write a1pnl/e1 - 1, with ai, b1 &#x3E; 0. Let R,l be the iterated
quadratic transform of R along V whose regular parameters (ui, satisfy

We get an expression

Since q - 1 mod xl, we get A = J-lp/el and mod xl. Therefore the

prepared pair (R,l, satisfies the conclusion of the lemma. 0

Proof of Theorem 7.1. - Pick any prepared pair (R, S) satisfying
the conclusion of Lemma 7.3. We will build up another pair 1 Ssl) also
satisfying the conclusion of Lemma 7.3 such that R C Rrl, S C and

any regular model R’ of V with R C R’ c R., satisfies the hypotheses of
Lemma 5.1. Since V = by (1), the theorem then follows from

Lemma 5.1 by induction on r. We distinguish two cases as in the proof
of Lemma 7.3.

Case 1. a = 1, ordy ( f mod x) = p.
After replacing x with it can be assumed that -y = 1. Pick prepared

r.s.p. (u, v) of R and (x, y) of S. By the Weierstrass preparation theorem,
we have

where 9 is an invertible power series and 1. After replacing y with
Ay for some A E k, ~ ~ 0, it can also be assumed that 0(0, 0) - 1. Let

ql /nl := W y/Wx, with n1,q1 &#x3E; 0 and g.c.d.(nl,q1) = 1. Note that 2

since (x, y) is prepared. There exists a unique p E 0, such that

J-lxql) &#x3E; W (y’21 ) . Let ,S’ C ~0, ... , p~ be defined by

Given E ~0, ... , p~, let
_. Àkxmk + higher order terms.

Finally, note that 1 implies that
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In particular, S ~ ~ 1 implies that p.

First assume that ,S’ ~ 0. Let 1~0 := After possibly replacing
v with v - it can be assumed that 1. Define

Write = 1, with cl , d1 &#x3E; 0 and let be the iterated quadratic
transform of ,S’ along W whose regular parameters (Xl, Y1) satisfy

Also let 11 := mko nl + = Wv/Wxl and let

Write with be such

that &#x3E; and R,, be the iterated quadratic
transform along V whose regular parameters (ul, vl ) satisfy

A computation analogous to that in (15) gives an expression

with g, h E S81. Modding out vl by we get

After performing consecutive Euclidian divisions of I(x, in y, we

obtain an expression

with VA E k and A:== (Ao, Al, A2) subject to the conditions

By Proposition 7.2, we have

After noticing that
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we conclude from (20), (21) and (22) that el divides p and that

for some po, E k. Necessarily = 1 since up - 1, and /-Ll = 

since 1 so that we had to begin with

The argument following (9) in the proof of Theorem 6.5 now applies directly
by replacing (9) with (23), and the pair (Rrl’ S8l) is as required.

We now sketch the argument in the case S = 0. Necessarily n, = p
and v can be written in Weierstrass form

where 0 is an invertible power series. Equation (18) is unchanged and
equation (19) is replaced with

Finally any regular model R’ of V with R C R’ c R,l has a r.s.p. (u’, v’)
given by

for some with 0  I~  ql. Therefore there is an equality of integral
closures

and R’ satisfies the hypotheses of Lemma 5.1 from which the conclusion
follows.

Case 2. a = p, ordy (v mod x) = 1.

The pair (R,,, S8l) is defined by equations (13) and (14). That any
regular model R’ of V with R C R’ c R,, satisfies the hypotheses of
Lemma 5.1 is trivial since ordy (v mod x) = 1. -

BIBLIOGRAPHY

[1] S. ABHYANKAR, On the ramification of algebraic functions, Amer. J. Math., 77
(1955), 575-592.

[2] S. ABHYANKAR, Local uniformization on algebraic surfaces over ground fields of
characteristic p ~ 0, Ann. Math., 63 (1956), 491-526.



1257

[3] S. ABHYANKAR, On the valuations centered in a local domain, Amer. J. Math., 78
(1956), 321-348.

[4] S. ABHYANKAR, Simultaneous resolution for algebraic surfaces, Amer. J. Math.,
78 (1956), 761-790.

[5] S. ABHYANKAR, Ramification theoretic methods in algebraic geometry, Annals of
Math. Studies, 43, Princeton University Press (1959).

[6] S. ABHYANKAR, Tame Coverings and fundamental groups of algebraic varieties,
Amer. J. Math., 81 (1959), 46-94.

[7] D. ABRAMOVICH, and A.J. de JONG, Smoothness, semistablility, and toroidal
geometry, J. Alg. Geom., 6 (1997), 789-801.

[8] F. BOGOMOLOV, T. PANTEV, Weak Hironaka theorem, Math. Res. Lett., 3 (1996),
299-307.

[9] S.D. CUTKOSKY, Local factorization and monomialization of morphisms, Astéris-
que, 260 (1999).

[10] S.D. CUTKOSKY, Simultaneous resolution of singularities, Proc. Amer. Math. Soc.,
128 (2000), 1905-1910.

[11] S.D. CUTKOSKY, Generically finite morphisms and simultaneous resolution of
singularities, to appear in Contemporary Math., (2001).

[12] S.D. CUTKOSKY, and O. PILTANT, Monomial resolutions of morphisms of algebraic
surfaces, Comm. Alg., 28 (12) (2000) in honor of R. Hartshorne, 5935-5959.

[13] S.D. CUTKOSKY, and O. PILTANT, Ramification of valuations, to appear in Adv.
Math., (2002).

[14] A. GROTHENDIECK, Revêtements étales et groupe fondamental, Lect. Notes Math.,
224, Springer Verlag (1971).

[15] A. GROTHENDIECK, and J.P. MURRE, The tame fundamental group of a formal
neighbourhood of a divisor with normal crossings on a scheme, Lect. Notes Math.,
208, Springer-Verlag (1971).

[16] R. HARTSHORNE, Algebraic geometry, Graduate Texts in Math., 52, Springer-
Verlag (1977).

[17] A.J. de JONG, Smoothness, semistability and alterations, Publ. Math. IHES, 83
(1996), 51-93.

[18] H. JUNG, Darstellung der Funktionen eines algebraischen Körpers zweier un-
abhängigen Veränderlichen in der Umgebung einer Stelle, Journal für Mathe-
matik, 133 (1908), 289-314.

[19] G. KEMPF, F. KNUDSEN, D. MUMFORD, B. SAINT-DONAT, Toroidal embeddings
I, Lect. Notes Math., 339, Springer Verlag (1973).

[20] H. KNAF, and F.V. KUHLMANN, Abhyankar places admit local uniformization in
any characteristic, preprint Valuation Theory homepage, http://math.usask.ca
(2001).

[21] W. KRULL, Galoissche Theorie bewerteter Körper, Sitzungsbereichte der Bayer-
schen Akademie der Wissenschaften, München (1930), 225-238.

[22] F.V. KUHLMANN, On local uniformization in arbitary characteristic I, preprint
Valuation Theory homepage, http://math.usask.ca (2000).

[23] J. LIPMAN, Rational singularities, with applications to algebraic surfaces and
unique factorization, Publ. Math. IHES, 36 (1969), 195-279.



1258

[24] J. LIPMAN, Introduction to resolution of singularities, in Algebraic Geometry,
Arcata, 1974, AMS Proc. Symp. Pure Math., 29 (1975), 187-230.

[25] M. SPIVAKOVSKY, Sandwiched singularities and desingularization of surfaces by
normalized Nash transformations, Ann. Math., 131 (1990), 411-491.

[26] O. ZARISKI, and P. SAMUEL, Commutative Algebra I, Graduate Texts in Math.,
28, Springer Verlag (1958).

[27] O. ZARISKI, and P. SAMUEL, Commutative Algebra II, The Univ. Series in Higher
Math., Van Nostrand, Princeton (1960).

Olivier PILTANT,
Universite de Versailles
LAMA-UMR 8100 du CNRS
45, avenue des Etats-Unis, Bitiment Fermat
78035 Versailles (France).
piltant@math.uvsq.fr


