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DISTRIBUTION OF NODES

ON ALGEBRAIC CURVES IN CN

by T. BLOOM &#x26; N. LEVENBERG

Introduction.

In [GMS], the asymptotic behavior of "good" points for bivariate

polynomial interpolation (in particular, Fekete points) was determined for
sets in the plane consisting of a finite union of compact subsets of real

algebraic curves, each having genus 0. To define this notion of "good"
points, we generalize to the following situation. Let A be an algebraic
curve; i.e., A is a pure one (complex)-dimensional irreducible algebraic
subvariety in CCN, N &#x3E; 1. Note in particular we are assuming that A is
connected. Now for each d = 0,1, 2, ..., let md = dim PdlA be the dimension
of the complex vector space of all holomorphic polynomials of degree at
most d (this is Pa) restricted to A (this is By a standard result in

algebraic geometry, if D is the degree of A (D is the generic number of
points of intersection of A with an affine complex hyperplane), then for d
sufficiently large, md = dD + c for some integer c. Let K C A be compact
and nonpolar in A ; i.e., K n A° is nonpolar as a subset of the complex
manifold A° consisting of the regular points of A. Now for each d = l, 2, ...,
choose md points f Adj in K such that the fundamental Lagrange
interpolating polynomials (FLIP’s) l3d), j = 1, ..., md of degree d associated
to Adl, ..., And exist; i.e., each l3d) is a nonconstant polynomial of degree

Keywords: Algebraic curve - Lebesgue constant.
Math. classification: 32U05 - 31C10 - 41A05.
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at most d and We call

the d-th Lebesgue constant of the array this is the operator
norm of Ld : C(K) --~ Pd C C(K) on the Banach space C(K) of

continuous, complex-valued functions on I~ equipped with the supremum
norm maxz E K  where

is the Lagrange interpolating polynomial for f, Note that

if we take a basis e1, ..., emu of and points Ad1, ..., AdMd E K, and we
let

be the generalized Vandermonde (VDM) determinant of these points, then,
assuming we can write

DEFINITION 0.1. - We call an array . good
for K if

As an example of such an array, taking points
such that

(d-th order Fekete points for K), we have md and hence (0.2) holds.
In [GMS], as mentioned earlier, the authors considered the situation where
K = was a finite union of compact subsets Kj C &#x3E; and each

A(3) was a real algebraic curve of genus 0 in R 2. They showed that there
is a probability measure AK supported on K such that for any array in K
satisfying (0.2), the discrete measures
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converge weak-* to J-LK. In case such a curve K is irreducible, it has a

rational (real) parameterization which [GMS] utilized to pull back the
problem on K to a weighted potential theory problem on the real line
or on the unit circle.

Since an irreducible real algebraic curve in R2 has a rational parame-
terization precisely when it is of genus 0, the technique of weighted potential
theory is not available in the higher genus setting. However, complexifying
the situation allows one to use techniques of pluripotential theory in several
complex variables; we discuss this subject in the next section. At the end
of Section 1, we state our main result (Theorem 1.1), which includes the
claim that for any irreducible algebraic curve A in and any nonpolar
compact subset K C A, there is a probability measure J-LK supported on
8K such that for any array in K satisfying (0.2), the discrete measures

converge weak-* to J-LK. In particular, condition (0.2) implies that the
support of the (unique) weak-* limit of fadl is contained in 8K. The

proof of the main theorem follows in Section 2; and some final remarks
and examples comprise Section 3.

The authors would like to thank Professor Ed Saff for correspondence
which motivated our research.

1. Pluripotential theory and results of Sadullaev.

A real-valued function u defined on a domain D in C~ is plurisub-
harmonic (psh) on D if it is uppersemicontinuous on D and the restriction
of u to each complex line £ is subharmonic (shm) on (components of)
D n f. A plurisubharmonic function u on (CN is said to be in the class

(minimal growth in C’~) i Here,

function

is called the global or ,--xxtrmma function of E; either m

lim sup(_ z VE (() =- +00 or V~ E the former case occurs precisely
when E is pluripolar; i.e., E C fz : u(z) = for some psh function u.
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If I~ is a compact subset of C’, the ,C-extremal function can be obtained
using polynomials:

(Theorem 5.1.7 [K]). Note that VK = Vk where

is the polynomial hull of K. For K C C, K = k is equivalent to (C B K
being connected; however, it is not necessarily the case for I~ a compact
subset of a general algebraic curve A of CN that K = k is equivalent to
A B K being connected (note that in this setting K C A). As an elementary
example, take 

-

and K= E A : IZ11 = 1 ~; here k = K but consists of the

two components E A : I zi &#x3E; 1} and {(z1, z2) E A : &#x3E; 1}. We
will return to this example later.

Let A be a pure k-dimensional analytic subvariety in Following
Sadullaev, if we let A° be the set of regular points of A, then a real-valued
function on A is (weakly) plurisubllarmonic on A if it is plurisubharmonic
on the complex manifold A° and locally bounded above on A. There is a
stronger notion of plurisubharmonicity on analytic varieties: a real-valued
function on A is (strongly) plurisubharmonic on A if u is locally the
restriction to A of an ambient psh function (on a domain in A

good discussion of these notions can be found in Section 1 of [D]; we
present (without proofs) the main results and some examples. As a simple
(reducible) example, on the variety A = {(~1,~2) ~ zl z2 = 0~, the function
u defined as 0) - 1 and z2) = 0 (if z2 # 0) is weakly psh on A.
Clearly u is not strongly psh since there is no psh function U defined on a
neighborhood N of (o, 0) in (~2 which agrees with u on N rl A. In general,
however, if u is weakly psh and continuous on A, then is strongly psh on
A. More generally, if A is locally irreducible, i.e., if each point of A has a
neighborhood N in C~ such that A rl N is irreducible in N, then given any
weakly psh function u on A, the function

is strongly psh on A and u = u* a.e. on A ; indeed, u = u* q.e. on A ; i.e.,
off of a (possibly empty) pluripolar set. We remark that "irreducible" and
"locally irreducible" are different notions; e.g., the variety A = {(~1,~2) ~
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is irreducible (in c2) but is not locally irreducible at the
origin.

We will always take A to be a pure k-dimensional irreducible analytic
subvariety in CN ; thus the regular points A° form a connected complex
submanifold of (A B We now recall the fundamental result in

[Sal], giving a criterion for such a subvariety to be algebraic.

THEOREM [Sal]. - A is algebraic if and only if Yx E Lk:c (A) for
some (and hence for each) nonpluripolar compact set K in A.

Note that the global regularization YK (z) = lim sup03B6~z VK (() * +oo
since A and hence K is pluripolar in CCN . Thus when we write YK in this
paper, we refer to the regularization of VK along A ; i.e.,

We now restrict our attention to the algebraic curve case; i.e., 1~ = 1. If A
is algebraic, by [Ru] we can choose a basis for ~N so that

for some C &#x3E; 0. It can then be shown ([Sal], p. 497) that for the "disk"

we have VK (z) = manx[0, log for z E A, yielding the "only if" direction.
With respect to the notions of (pluri-) subharmonicity described earlier, if
A is of degree D, we can assume that 7r : A C CN --+ C via -x(z) - zN is a
D-sheeted covering map of A over C B V where V is a finite set. Thus,

where the are distinct for V. Roughly speaking, a weakly
subharmonic function u on A can be given as D shm functions U1, ..., UD
on each (s j (z N ), Z N) : ZN V if these functions

coincide as they approach the branch points (when zN E V), then ~c is

strongly shm on A.

As a concrete example of the theorem, in c2, if is an

irreducible polynomial so that A := c2 : Q (zl , z2 ) - 01 is

an irreducible algebraic curve, and we let

then provided K n A° is a real 1-dimensional submanifold of it is not

polar in A (see [BLMT], Lemma 1.7). Thus YK is locally bounded on A
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(moreover, if K is smooth, then VK is Lipshitz on A near K, as in the case
of a real interval away from the endpoints). We will need the following fact
from [Sal] (Corollary 3.3).

PROPOSITION [Sal]. - If A is an irreducible algebraic curve, then
for any nonpolar compact set K C A, YK is a harmonic function on K.

In the next section, we will always work on an irreducible algebraic
curve A C (CN with coordinates chosen to satisfy (1.1); and "shm" will
refer to "weakly shm." Let

If K C A is compact, for z E A we have ([Sal], Proposition 3.4)

If K is nonpolar in A, the function

is shm on A ; indeed VK C ,C (A) .
We identify a positive measure p on A with the (positive) (l,1)-

current IL where

Here d = 8 + 8 and d’ = i ( a - 0). The operator dd’ is considered on the
(one-dimensional) complex manifold A°; for a shm function u on A, dd’u
is a positive measure on A° and is extended by zero on A B A° (see [Be] for
details). Recall that md = dim Pd I A - dD + c for d sufficiently large where
D is the degree of A.

THEOREM 1.1. - Let A be an irreducible algebraic curve in (CN
and let K C A be nonpolar. Given an array C K satisfying (0.2),
the probability measures

converge weak-* to , I and C aK.
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2. Proof of Theorem 1.1.

We begin with a sequence of lemmas.

LEMMA 2.1. - Let p(z) be a polynomial and let a E AO be an
isolated simple zero (relative to A) of p. Then in a sufficiently small
coordinate disk B := B(a, r) c AO (B(a, r) is the image of a disk A C (C
under a one-to-one holomorphic map ddC(log 

Proof. Viao, we can identify B with A and log Ipl with log lp(O) I .
We may assume = a. The condition that a E A° be an isolated simple
zero (relative to A) of p may then be written as p(o(t)) = t ~ f (t) where f
is a holomorphic, nonvanishing function on a neighborhood of 0. Then

But since f is nonvanishing near t = 0, log is harmonic and the result
follows. D

Remark. - A similar argument shows the following: let p(z), q(z)
be polynomials and let a E A° be an isolated simple zero (relative to A) of
p and of q. Then in a sufficiently small coordinate disk B C A°,

where p is a positive measure with - 0. The only difference is

that, writing - t ~ f (t) and = t - g(t) where f and g are
holomorphic, nonvanishing functions in a neighborhood of 0,

Now since f and g are nonvanishing near t = 0, I
is bounded and hence is a positive measure
which can put no mass at the origin.

The next result is stated and proved in [H] (Theorem 3.2.12) in

the case of shm functions on domains in The proof is valid for shm
functions on domains in algebraic curves A since such functions u are locally
integrable with respect to area measure OIA and since is a positive
measure.

LEMMA 2.2. - Let be a sequence of shm functions on a

domain Q C A which are locally uniformly bounded above on Q. Then
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either Uj --~ -oo locally uniformly in SZ or else there exists a subsequence
C which converges in to a shm function u.

LEMMA 2.3. - Let G C A be a domain and let v be harmonic on

G; i.e., is harmonic; equivalently, ddcv = 0 on G. Let fu,l be a
sequence of shm functions on G satisfying

Suppose in where u is shm in G and that there exists one

point Zo E G n A 0 at which,

Then, 

Proof. - Fix a coordinate disk B := B (zo , r) with B(zo, r) C GnA°.
As in the proof of Lemma 2.1, we identify B with a disk A C C and v, Un, U
restricted to B with the corresponding functions on 0. By the sub-mean-
value property,

Since letting n - oo we obtain

On the other hand, by the mean-value property,

so that

But un - u in Ltoc(G) and v (z), n = 1, 2, ..., for z E G and hence
on B ; so that u x v a.e. on B. The above inequality thus implies that u = v
a.e. on B. Since u, v are shm, u = v on all of B. Repeating the argument
replacing zo by other points of B, and using connectedness of G yields the
result. 0

Proof of Theorem 1.1. - Note that since Md = dD + c for d

sufficiently large where c is independent of d, J.1K (see (0.3)) if and

only if Ad -~ p K where . For the remainder of the proof,
we always take d large so that md = dD + c.
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Now each 1, ..., md, is a polynomial of degree d which
vanishes at the md points except for Adj. By Bezout’s
theorem, each lid) has at most dD zeros on A. From the relation md -
dD + c, we see that if we choose any j = j (d) E 1, ..., the sequence
of measures

has the same weak-* limits as the sequence We record this observa-

tion.

Remark. - If a subsequence ftid,l of (pd) converges weak-* to a
probability measure v on K, then so does the corresponding subsequence

- , a,

where we may choose, for each dk, any choice of

The measure dd’Vk is supported on 0k since VK = 0 on k and Vz
is a harmonic function on A° B K (recall also that dd’Vk puts no mass on
the polar set A B A° ) .

We let

Proof of Claim. - This is where we use the hypothesis (0.2). The
proof is essentially in [BBCL], 2.3. First of all,

so that

and, using (0.2),

On the other hand, for any polynomial Pd of degree at most d,

so that, i
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Hence

thus

and the claim follows. D

Now we put all these ingredients together. Let C ladl be a
subsequence which converges to a probability measure v on K. We want
to show v 

Case I: Suppose intK = 0, i.e., the relative interior of K (relative to
A) is empty, and G := A B 8K = A B K is connected. Note that K has
empty interior, for example, in the case of a real curve K in A. Fix a point
ao E at which = For each d, choose id C- Tnd

the claim,

and, since this limit exists and equals VK (ao), the same is true for any
subsequence. Thus we pick a subsequence of ~d~ as above; i.e., such
that ,udk - v. We will use the notation v these are

shm functions in A. Since u - in all of A, 
is a sequence of shm functions (indeed, strongly shm) which are locally
uniformly bounded above on A. Since all but at most a bounded number
b of the zeroes of each lie in K, with b independent of d, it is clear

jdk
that f+ -oo in all of A and hence, by Lemma 2.2 applied to Q = A, we
may choose a subsequence, which we again call tudkll which converges in

to a shm function u. Note that u  TlK a.e. on A, so Vk
on A, and, by the previous remark, dd’u - 

We need to make a minor adjustment to apply Lemma 2.3 on G

(where dd’Vk = 0) : we don’t quite have YK in G; only

Since we can take
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Applying Lemma 2.3 to on G, we conclude that
Note that

sincE

on A ; since u, VK are shm on A, this yields (2.1).
Since we have

q.e. on 0K. Note that since Vk is shm and on all of A,

We show that 1

so that, combining (2.2) and (2.3),

But from in all of A; hence, using the fact that at points
(by shm of u),

and equality holds throughout this string of inequalities. Since has empty
interior relative to A, u = YK q.e. on K = 0K, and we have that u = Vk

In particular,

Remark. - If 0 but we take points which belong to
then dd’u has its support in 0K. The functions u and Vk agree q.e.

on G U 0K; in particular, u &#x3E; 0 q.e. on G UYK. Thus £ := max [u, 0] = Vk
q.e. on A and ddcfj, = ddcu so the conclusion is valid in this situation as

well. Note this applies to a "disk" E A : 1 ~ where

for some i and we thus have
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where D is the degree of A. This will be used in the next proposition.

PROPOSITION 2.4. - Let A be an algebraic curve of degree D in
C~. 

~

Proof - From the remark we have that

where
- ..... 1

Now first suppose
show that

To see this, we follow an argument of Taylor

Then G C C A and by the comparison theorem (valid for locally bounded
psh functions on relatively compact subsets of analytic sets (cf., [Be] or

The above inequality is valid for any c &#x3E; 0; letting c - +oo, so that G 2013~ A,
we have 

~ ~ ’"

Now let E - 0 to get (2.4).
If u E ,C(A) is not locally bounded, we can apply the above argument

to := max[u(z), -n] to get, from (2.4),

Now (un) decrease pointwise to u so that ddcu as measures

( ( 1,1 ) -currents with measure coefficients); thus, for any 0 E Co (A) (or
just in Co (A) ) we have
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Taking we see that

v 1 1 x "£1 "£1 .v - v n

The above inequality is valid for any R; hence the result. 0

Case II: Suppose A B 0K consists of finitely many components. For
simplicity in notation, we give the proof for A B 8K = G1 U G2 (two
components). Recall that

C fPd I is a subsequence which converges to a probability measure
v on K; and we want to show v = Fix points ai E Gi at
which VK (ai) - Vk (ai). For each d, we first choose jd G {1, ...~?7Z~} so that

By the claim,

and, since this limit exists and equals VK(ai), the same is true for any
subsequence. Thus we pick a subsequence of {d} such that J1dk - v.
We write Ud, ~ as before, is a sequence of

shm functions which are locally uniformly bounded above on A and by
Lemma 2.2 applied to Q = A, we may choose a subsequence, which we
again call fudkll which converges in Ltoc (A) to a shm function u satisfying
u x VK on A and dd’u - 27rDv.

Again we adjust (to apply Lemma 2.3) by setting Udk := 

ak log then

Applying Lemma 2.3 to on Gi, we conclude that u = V~ in G1 n A°.
Note that

since

on A ; since u, YK are shm on A, this yields (2.5). Hence we have

Now for each integer (
- , 1

. By the claim,
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and, since this limit exists and equals VK (a2), the same is true for any
subsequence. Thus we pick a subsequence of note that Pik - v.

We write (z) : log (z) ] these form a sequence of shm functionsk k k
which are locally uniformly bounded above on A and by Lemma 2.2 applied
to Q = A, we may choose a subsequence, which we again call fvjk 1, which
converges in to a shm function v. Note that v  VK a.e. on A, so
that v x VK on A. By an earlier remark, the fact that C is a

subsequence which converges to the probability measure v on K, and the
fact that is a subsequence of we have ddcv = 2JrDv.

Applying Lemma 2.3 to
Note that

since

We put these sequences together in the following way: for 1~ = l, 2, ...,
set

Thus Wk is defined from two FLIP’s of the same degree dk ; and wk x VK
for all k. By taking a subsequence of fwkl, if necessary, we may assume

_1 , - po .." - _ - _ , . , -

where w &#x3E; max[u, v] (since 1

; and, in particular, from (2.6) and (2.8),

We claim that ddcw = 203C0Dv. Essentially this follows since ddcu =

ddcv = 203C0Dv. Note first that and have md - 2 common zeros indk k k

K (all but 2 of the points ..., Ad m- ). By the remark after Lemma 2.1,k k dk

Bezout’s theorem, and the fact that mdk = dkD + c, it follows that ddcwk
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puts mass ~~--~ at each of these points except perhaps a fixed number,
independent of k. By Proposition 2.4, the total mass of each measure dd’Wk
is at most 27rD. Since this implies that has

a unique weak-* limit, namely 27rDv.

Since dd~w = 27rDv and w = Vk on A° B we complete the proof
exactly as in Case I, obtaining next that w = Vk q.e. on 0K so that w = Vk
q.e. on A°; hence dd~w = ddcVk = 27rDv.

Case III. Suppose A ) 0K = U’ 1 Gj has countably many components.
By performing the procedure in Case II recursively, we obtain a sequence
of subharmonic functions on A with the following properties:

1. w (n) E £(A) and

on A (recall w &#x3E; max[u, v] &#x3E; u in the construction of
Case II);

Thus the sequence is monotonically increasing and bounded
above by V:; hence

defines a function w with w* E £(A) and w = w* = VK q.e. on A B 8K. By
3., dd~w* = Again we complete the proof exactly as in Case I. 0

Remark. - Note the proof of the theorem yields the conclusion
that the weak-* limit of the measures pd is supported on 8K (since
supp (dd’Vk) C 8K) regardless of whether or not the array satisfying
(0.2) contains points in int K.

3. Final remarks.

Slightly generalizing the situation in [GMS], we will say that a

compact set K C C~ has an asymptotic interpolation measure (an AIM)
if there exists a probability measure 1-tK on K such that for any good array
for K (Definition 0.1), the discrete measures
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converge weak-* to J-lK. Here, md = dimPdlK; we do not (a priori) require
K to lie on an algebraic variety. The situation of [GMS] is to consider

certain compact subsets K of IR2; this is a special case of the N = 2 setting
(considering R2 as the set of real points in C2). In this higher-dimensional
setting (real or complex), essentially nothing is known about AIM’s outside
of the results of the [GMS] paper. In this vein, we mention an interesting
fact proved in the real setting in [GMS]; the proof goes through with no
changes to the complex setting.

PROPOSITION 3.1 (Theorem 3.2, [GMS]). - Let A = UT,A(i)
be an algebraic subvariety of (CN consisting of distinct algebraic curves
.A(i) I j - 1, ..., m of degrees Let Kj C A~~&#x3E;, j - 1, ..., m, be compact
subsets, and let K := UT 1 Kj. If each Kj has an AIM f.1KJ’ then K has an
AIM ILK; moreover, in this case,

Thus our Theorem 1.1 can be extended to the situation of a finite

union of nonpolar compact pieces of algebraic curves. We next go through
an interesting, albeit elementary, example. We return to the algebraic set
A == {(~1,~2) E c2 : ZlZ2 = 1} and the compact subset K E

[0,27r]}.

Claim. - = max[log+ IZ11,log+ ~z2~~.

Proof of Claim. - Note if 81 := (t = eie G C : 9 E ~0, 2~r~ ~ and
g( w) = (w, l/~), then = K and g(C ) (0)) = A. From Sadullaev
[Sal], we know that

at points (Zl, Z2) E A. Now for a polynomial we have p(g(w) ) _
p(w, llw) so that

But if p is of degree d, say, then

is a polynomial of degree at most 2d in w ; hence
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Thus, by the classical univariate Bernstein-Walsh inequality, if Iwl &#x3E; 1, and
we write g(w) = (Zl, Z2), then

so that

In particular, and we conclude that

Similarly, we get that log I z21 ]
. On the other hand, clearly

on all of A and the claim is proved. n

If we consider ,5’1 = It c C : Itl = 1~ as a subset of C c2, then the
space of polynomials of degree at most d in two variables restricted to ,5’1
are the trigonometric polynomials

We label these monomials = 1, ..., 2d + 1.

the mapping
is a one-to-one map of onto K; moreover, the

space Td is transformed into

which is the vector space of all polynomials of degree at most d restricted
to K. We label these monomials note that = ej (t), j =
2d + i.

In particular, any choice of 2d + 1 points Pl, ...,p2d+i in K, where
corresponds to a set of 2d + 1 points

). Therefore

Thus, not only do Fekete points of order d (equally spaced points on 
get transformed under g to Fekete points of order d on K, but for any set
of 2d + 1 points tl, ..., t2d+1 on with

we have
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and, moreover, the corresponding FLIP’s on and "coincide":

since the ratio of the VDM’s coincides; cf., (0.1). In particular, the Lebesgue
constants for the arrays on ,S’1 and on K are equal.

We next show that dd’VK - 2g* (d9) . To see this, note we have

where At is the (usual) Laplacian on C. Now YK o g(t) = max[0, log Itl,

which is harmonic for

We remark that since condition (0.2) for an array on ,S’1 implies
that the corresponding probability measures converge weak-* to dO/27r, the
above argument shows directly that if an array 

satisfies

We conclude with an open question.

Q. Is every u E £(A) the restriction to A of a (global) function u E
L(CN)?
If A° - A, so that A is a complex submanifold of it is well-

known that psh functions on A extend to all of we include the following
elementary proof of Sadullaev [Sa2] since it is not readily available in the
literature. We thank E. Poletsky for translating the contents of [Sa2].

THEOREM 3.2 [Sa2]. - Let M be a complex submanifold of ccN .
Then any psh function u on M has a global extension to i.e., there
exists w psh in (CN such that WIM = u.

The proof hinges on two facts, the first of which is decidedly non-
elementary.

1. If M is a complex submanifold OFCN, then there exist a neighborhood
V of M in (CN and a holomorphic retraction r : V - M [DG].
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2. If D c C’ is pseudoconvex and 0 is any real-valued function urhich is
locally bounded above on D, then there exists u psh in D 
in D.

Proof of 2: Let v be a psh exhaustion function for D and define, for
r real, 

- - - I - -

Then q is locally bounded above on R. We can find a convex, increasing
function f (r) such that f (r) &#x3E; q(r); composing with v, u (z) ( f o v) (z) &#x3E;
15(Z) . 0

Proof of Theorem 3.2. - Let V be a neighborhood of M in (~N as in
1; i.e., such that there exists a holomorphic retraction r : V -~ M. Now let
u be psh on M and define £(z) :- u(r(z)). Then u is psh on V and u = u
on M. Next let D be a pseudoconvex domain with M C D C D C V.

Since M is a complex submanifold of we can find global holo-
morphic functions Ø1, Ok such that

(cf. [Kr], Theorem 7.2.4). Define p(z) := log [lcp1 (Z) 12 + ... + ~ Ok (Z) 12] . Note
that -p is locally bounded above on OD; thus, we can find a real-valued
function 0 in CCN such that 0 is locally bounded above on C~ and 0 = u - p
on aD. By 2, we can find v psh in (CN on all of C~.

Finally, define

Clearly w is psh in all oaf d

Using Theorem 3.2, we can almost answer the open question for the
case when A° = A.

PROPOSITION 3.3. - For any u E £(A) and any E &#x3E; 0, there exists
a psh function U in C~ such that on A and

Proof. From Theorem 3.2, there exists u psh in
on u we are

done. If not,
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is an open neighborhood of A. Let A

large so that

Then for any q &#x3E; 0, the function := + M] satisfies

Since 8’ C C O, using b, we have

near a0’ so that U is a well-defined global psh function; moreover, by a.,
U(z) = u(z) on A. Condition c. gives a growth estimate of

on Since E’  E is fixed, we can choose 7y &#x3E; 0 sufficiently small so that
E’ + Ti  E and so that + M)  E. The result is proved. D
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