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BROLIN’S THEOREM FOR CURVES
IN TWO COMPLEX DIMENSIONS

by C. FAVRE and M. JONSSON

Introduction.

In 1965 H. Brolin [B] proved a remarkable result about the dis-
tribution of preimages of points for polynomial maps in one variable: if
f(z) = 2% + ... is a polynomial of degree d > 2, then there is a set £ with
#E < 1 such that if a € C\ &, then

1
(0.1) o Z(Sz—),u as n — oo,

frz=a

where y is the harmonic measure on the filled Julia set of f. In particular,
the limit in (0.1) is independent of a. Further, the exceptional set £ is
empty unless f is affinely conjugate to z — 2¢, in which case £ = {0}, the
totally invariant point.

Lyubich [L) and Freire, Lopez and Mafié [FLM] later generalized
Brolin’s theorem to rational maps of the Riemann sphere P!, with #& < 2.

In this paper we prove a version of Brolin’s Theorem in two complex
dimensions.

Keywords: Holomorphic dynamics — Currents — Lelong numbers — Equidistribution —
Kiselman numbers — Volume estimates — Asymptotic multiplicities.
Math. classification: 37TF10 — 32U25.



1462 C. FAVRE AND M. JONSSON

THEOREM A.— Let f : P? () be a holomorphic mapping of algebraic
degree d > 2. Then there is a totally invariant, algebraic set £, consisting
of at most three complex lines and a finite, totally invariant set £, with the
following property: If S is a positive closed current on IP? of bidegree (1,1)
and unit mass such that

(i) S does not charge any irreducible component of £;;
(ii) S has a bounded local potential at each point of E;;

then we have the convergence

(0.2) dinf"*S — T asn— oo.

Here T is the Green current of f, defined as the limit (in the sense of
currents) of d~" f™*w as n — oo, where w is the Fubini-Study form on P2.
See Section 1 for more details.

As a consequence we have the following result on the distribution of
the preimages of curves. The space of curves in P? of degree k may be
identified with PV for some N = N(k).

CoROLLARY B.— Let f be as in Theorem A and let k > 1. Let £*

be the set of curves C € PN such that
1 %
d"_kf [Cl»T asn— oco.

Then £* is contained in an algebraic proper subset of PV.

In a similar way, the space Holg of holomorphic maps of P? of degree
d can be identified with a Zariski open set of some PM.

CoroLLary C.— There exists an algebraic proper subset H C Holy
such that for any f ¢ H the convergence

1
d—nf"*S——»T asm — 0o

holds for all positive closed (1,1) currents S of unit mass.

The set & is defined asymptotically (see Section 3) and is nontrivial
to understand. It certainly contains the following two types of points:
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BROLIN’S THEOREM FOR CURVES 1463

(o) totally invariant points on totally invariant curves;

() homogeneous points, that is f preserves the pencil of lines passing
through the point.

It can be shown the set of such points contains at most three elements.
We conjecture that these are the only points in &. The proof of this
fact, which involves both global mapping properties on P? and the local
dynamics at a superattracting point, is postponed to a later study. Denote
by v(p, S) the Lelong number of the positive closed current S at p. We then
have

THEOREM A’.— Let f,S be as in Theorem A, and assume &, is
reduced to points of type («) and (). Then the following statements are
equivalent:

(1) d™f™S —> T asn — oo;

(2) S does not charge any irreducible component of £ and v(p,S) =
0Vpe&s.

Remark. — After we completed this paper, V. Guedj told us he was
able to obtain volume estimates which prove the implication (1) = (2)
of Theorem A’. On the other hand, the converse implication (2) = (1)
follows from the material we aim at developing in subsequent papers. So
that Theorem A’ actually holds without knowing the classification of points
in 82.

Let us finally mention another conjecture: if f : P? (9 is a holomorphic
map of algebraic degree d > 2, and S is any positive closed (1,1) current,
then d=™f™*S converges to a current S satisfying the invariance relation
5 = ds.

Results in the direction of our paper were previously obtained by
Forneess and Sibony [FS4], who proved a weaker form of Corollary C
with H a countable union of algebraic sets in Holy. Later Russakovskii
and Shiffman [RS] proved a version of Corollary B: for any holomorphic
mapping f : P? O there exists a pluripolar set £* C P?* such that if L is a
line in P2* \ £*, then d~"f™*[L] — T as n — oo. (Their result also applies
to certain rational maps of P*, k > 2 and pullbacks of planes of higher
codimension.)

Other related results include Briend and Duval [BD], who recently
proved Brolin's theorem for preimages of points under holomorphic maps
of P¥. A version of Theorem A was proven by Forneess and Sibony [FS1]
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1464 C. FAVRE AND M. JONSSON

for Hénon maps (see also [BS]) and by Favre and Guedj [FG] for birational
maps (see also [F2]).

The main ingredient in our proofs of Theorems A and A’, as well as
in most previous approaches, are volume estimates. These are much harder
to prove for holomorphic mappings than for birational maps. They come
in two forms.

The first type of volume estimates are dynamical and aim at bounding
Vol f*E from below for any Borel set E. Such estimates are related to
the rate of recurrence of the critical set. In previous work, restrictive
assumptions on the dynamics were made to get the required volume
estimates. A main novelty of this paper is that we are able to control
volume decay for arbitrary holomorphic maps.

More precisely we show that the phase space P? splits naturally into
two parts: the exceptional set £ = £; U & and its complement. Outside &,
the critical set is not too recurrent and Vol f®E does not decay too fast.
Near &, on the other hand, Vol f*E may a priori decay quite rapidly, but
precise information on the structure of £ allows a good understanding of
the dynamics and in particular of volume decay.

To obtain this partition we first study asymptotic volume decay
along orbits and relate it to the growth of two algebraic quantities: the
multiplicity of the vanishing of the Jacobian determinant, and the generic
rate of contraction. A key contribution of the paper is the understanding
of the asymptotic behavior of these multiplicities under iteration. In
particular, we characterize the locus where these asymptotic multiplicities
are maximal, giving rise to the exceptional sets & and & in Theorem A.
Semicontinuity properties of the multiplicities imply that these sets are
algebraic and present strong recurrence properties: they are in fact totally
invariant.

The second type of volume estimates involve pluripotential theory. We
estimate the volume of sublevel sets of plurisubharmonic (psh) functions
using the Kiselman-Skoda theorem: asymptotics of these volumes are small
exactly when Lelong numbers are small.

In this context, to show that certain Lelong numbers decay under
iteration, we make use of Kiselman numbers (or directional Lelong num-
bers). These allow us to deduce dynamical information in a neighborhood
of an invariant curve from the dynamics on the curve itself. We believe this
technique could prove useful in other situations, too.
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BROLIN’S THEOREM FOR CURVES 1465

We also believe our result to be true in any dimension but the
description of £ and hence the control of decay of volumes around £ become
much harder than in dimension 2.

The organization of this paper is as follows. We briefly recall some
facts from holomorphic dynamics and reduce Theorem A to an estimate
of the size of images of balls in Section 1. In Section 2, we state some
pluripotential facts that we use in the paper. In particular we investigate the
behavior of Kiselman numbers as one weight degenerates. The same results
appeared independently in [M]. In Section 3 we define three asymptotic
multiplicities related to volume decay. These multiplicities are used to
define the exceptional sets & and &, and we study the latter sets in
Sections 4 and 5. The next two sections are devoted to volume estimates
outside £1UE> (Section 6) and near £1\ &, (Section 7). In Section 8, we show
a useful technical result about Lelong numbers of pull-backs of currents near
a totally invariant curve. After these estimates, we prove Theorem A and
Corollaries B and C in Section 9. Finally, we prove Theorem A’ and discuss
the existence of totally invariant currents in Section 10.

Acknowledgement. — This paper was partially written when the
authors were visiting IMPA, Rio de Janeiro, and they wish to thank the
department for its hospitality and support. We also thank J. Duval and
V. Gued]j for their useful remarks.

1. Background and reduction.

In this section we recall some known facts about holomorphic map-
pings of P?; see e.g. [FS2] for more information. We also reduce the proof
of Theorem A to an estimate on the sizes of images of balls.

Let f : P2 ) be a holomorphic map of degree d > 2. This means that
f=[P(z,w,t): Q(z,w,t) : R(z,w,t)], where P, Q, and R are homogeneous
polynomials of degree d with no nontrivial common zero.

Let T be a positive closed (1,1) current on P? and take a local
plurisubharmonic (psh) potential T = dd°u around p € P2. One defines
locally at any point in f~{p} the positive closed (1,1) current f*T :=
dd®(uo f). This does not depend on the choice of u and induces a continuous
linear operator on the set of positive closed (1,1) currents on P2. One can
project f* to an action f* on HI}R’I(IFQ) ~ R. This latter is given by the
multiplication by d.

TOME 53 (2003), FASCICULE 5



1466 C. FAVRE AND M. JONSSON

Let w be the Fubini-Study Kéhler form on P2. The positive closed
currents f*w and dw are cohomologous, one can hence find a continuous
function u such that f*w = dw + ddu. Iterating this equality n times
yields d™" f™*w = w + dd°(}_}_; d7uo f7~1). This latter series converges
uniformly on P? to a continuous function G and one finally infers

1
(1.1) d—nf"*w—>T as n — 00,

where T := w + dd°G is called the Green current of f. It satisfies the
invariance property d—! f*T" = T. Replacing w in (1.1) by a general positive
closed current S of unit mass leads to (0.2); the purpose of this paper is to
investigate exactly for what currents S this convergence holds.

As stated in Theorem A, the exceptional currents (for which (0.2)
may fail) will be connected with totally invariant algebraic sets, and we
recall the following two results.

ProposiTion 1.1 [FS3], [SSUJ, [D], [CL]. — Let f : P2 ) be holomor-
phic of degree d > 2. Then the following holds:

(i) any (possibly reducible) totally invariant curve V > f~1V is a union
of at most three lines; if there are three lines, then they are in generic
position; further, the set of intersection points between different lines is
totally invariant;

(ii) any finite totally invariant set X O f~'X is contained in the singular
locus of the critical value set of f; the cardinality of the union of all such
sets X is bounded by a number depending only on d.

As a start of the proof of Theorem A we will reduce (0.2) to a study
of sizes of images of balls under iterates of f. Namely, suppose that S is a
positive, closed current cohomologous to w for which (0.2) fails. Then we
may write
S = w + dd‘u,

where u < 0 is a quasi-plurisubharmonic (qpsh) function on P2. It then
follows that for all n > 0,

d—’nfn*s — d—’ﬂf’n*w + d—"nddc(u 1) f’n),

so since (0.2) fails and d~"f™"*w — T, we have d "dd°(u o f™) » 0 as

n — oo, which is equivalent to d ""uo f* -« 0 in L] .. By Hartog’s Lemma

ANNALES DE L’'INSTITUT FOURIER



BROLIN’S THEOREM FOR CURVES 1467

(see [H]) this implies that there is a ball B C P?, a constant o > 0 and a
sequence n; — oo such that

(1.2) fMBC{u<—adv}.

The rest of the proof consists of showing that (1.2) is not possible if S is a
current satisfying the hypotheses of Theorem A. This is done by estimating
the volume of f™ B from below (using dynamics) and the volume of
{u < —ad™} from above (using pluripotential theory).

2. Some pluripotential theory.

In this section we discuss some results from pluripotential theory.
First we need the definition of Lelong numbers.

DEeFINITION 2.1,— Let u be a a psh function near the origin in C2.
We define the Lelong number v(0,u) of u at the origin to be the supremum
of v > 0 such that

u(¢) < vlogl|¢|+ O(1) as ¢ — 0.

This definition is invariant under local biholomorphisms. We will need
an estimate of the volume of sublevel sets for a psh function in terms of its
Lelong numbers. The following result is due to Kiselman [K2] and relies on
previous work of Skoda [S].

THEOREM 2.2. — Let U C C? be an open set, K a compact subset of
U, and u a psh function on U. For any real number o < 2(supy v(z,u)) "
there exists a constant C,, > 0 such that for any t > 0, the estimate

(2.1) Vol (K N{u < —t}) < Cyexp (—at)

holds.

In Section 8 we will need to work with directional Lelong numbers or
Kiselman numbers. We refer to [K1] or [D1] for a detailed exposition.

Let u be a psh function in the unit ball B C C? endowed with
coordinates (z,w). (Kiselman numbers depend on a choice of coordinates
whereas the Lelong number does not.) Fix a weight (a1, az) € (R%)2.

TOME 53 (2003), FASCICULE 5



1468 C. FAVRE AND M. JONSSON

The Kiselman number of u at the point p = (0, 0) with weight(a;, az)
is defined as

a102

v(p,u, (a1, az)) = li su u-
(P, u, (1, a2)) rl—I}}) logr A(Tl/al)xi(rl/o‘z’)

For (a1, a2) = (1,1) we recover the usual Lelong number
v(p,u, (1,1)) = v(p, u).

We have the following homogeneity property:

(2.2) v(p,u, (Aaa, Aag)) = Av(p, u, (a1, az)),

for any A > 0. The inequality

(2.3) v(p,u, (a1, a3)) = min(ay, az) v(p, u)

always holds (see [D1]).

We can now state the following

ProposITION 2.3. — Let u € PSH(B), u < 0 and assume that the
positive closed current S = dd°u does not charge the curve {z = 0}. Then

lim sup v(p,S,(a,1))=0.
a=0 (=0}

Remark. — The same types of considerations were made by Souad
Khemeri Mimouni in [M]. In fact, she studies more generally the transfor-
mation of Lelong numbers under any sequence of blowing-ups. In our case,
we blow-up only at the intersection point of the exceptional divisor and the
strict transform of the curve {z = 0}.

Proof of Proposition 2.3.— After having proved this result we
learned that S. K. Mimouni had obtained a more general version of it [M],
so we only outline a proof here. It relies on the approximation process by
Demailly [D2]. Introduce the following Hilbert space:

Hisu) = {he (B) | iy = [ [hfe < oo},

ANNALES DE L’INSTITUT FOURIER



BROLIN’S THEOREM FOR CURVES 1469

Set

us == s~' sup log|h| € PSH(B).
[hlsus<l

One checks that us; = (2s)"'log " |o;|? for any orthonormal basis {o;}
of H(su), and that us is the logarithm of a real analytic function. The
following result connects the singularities of v and wus. Its proof is an
adaptation of the argument in [D2].

LEMMA 2.4. — For any point p € B and all (a1, a2) € (R%)?, one has
(1) v(p,us, (a1, 2)) = v(p,u, (a1, 02)) — s~ (1 + az);

(2) v(p,us) <v(p u).

We then conclude the proof of Proposition 2.3 as follows. As dd°u does
not charge {z = 0} there exists a point p = (0, w) such that v(p,u) = 0 (by
Siu’s theorem). In particular by Lemma 2.4 (2), us does not charge {z = 0}
either, hence there exists a holomorphic function h € H(su) which does not
vanish identically on {z = 0}. For such a function, we apply Lojasiewicz’
inequality [Lo, p. 243] and get

|h(z, w)| + || > Cdis((2,w), I)°,

with I = h~1(0) N {z = 0} and for some constants C,# > 0. We infer for
any w and any o < 67!,

sup log |h| > C'6log .
A(rl/a)xw+A(r)

From this, it is easy to see that lima—0Supye(.—o) ¥(p,10g |h[, (@, 1)) = 0;
hence

lim sup v(p,us,(a,1)) < lim sup s 'v(p,loglhl, (a, 1)) = 0.
a—>0p6{2=0} a—»OPG{z:__O}

In particular, we get for any s > 0,

lim sup v(pu,(a,1)) <57+ lim sup v(p,ug (ay1) <57,

=0 pe{2=0} a=0pe{z=0}
which implies the result. O

Proof of Lemma 2.4.— This lemma is standard for Lelong numbers
(see [D2]). We emphasize that the inequality (2) is not obvious and

TOME 53 (2003), FASCICULE 5



1470 C. FAVRE AND M. JONSSON

relies on the Ohsawa-Takegoshi extension theorem. The generalization is
straightforward for Kiselman numbers. We nevertheless give the arguments
for assertion (1) for completeness. Let h € H(su) normalized by |h|e, = 1.
The mean value property inequality for subharmonic functions implies

Gy
Wew) < ey [ h(e, Q) Pded¢
" ) r(l/e1tl/ea) |z—g|<ri/en, |w—C|<r1/"2| &l
o 2
= sup e,
r2(1/a1+1/az) lo—gl<r/a1, jw—c|<ri/oz
Hence for all (z,w) € B, we have
C
us(z,w) < s71log (———) + sup u.
s rl/ea+1/o lomg|<ri/ar, fw—¢|<ri/o2

Write p = (zp, wp). By definition of Kiselman number we have

sup u < (ana2) ™t v(p,u, (1, 02)) logr + Cs
l[zo—€|<rt/et, |wo—(|<rl/>2

hence

sup us < sup u
|zo—€&|<rt/e1, Jwo—¢|<rt/o2 |zo—€l<2rt/e1, |wo—¢|<2rt/ o2

C
-1 1 1
< (ara2)” " log(Cr) v(p, u, (o1, a2)) + C3 — 5™ log <m>
with €' = 2-1/max{ai,e2} We hence get
V(pa Us, (al’ 042)) = l/(pv u, (ala 042)) - 8_1(a1 + 012)

as desired. O

3. Asymptotic multiplicities.

As explained earlier, the main ingredient in the proof of Theorem A
are estimates from below of Vol f*B for a ball B. This is equivalent to
estimates of the Jacobian J f™, and more precisely to the asymptotic order
of vanishing of J f™. In this section, we also consider two other asymptotic
multiplicities for a holomorphic mapping of P2.

ANNALES DE L’INSTITUT FOURIER
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We will make frequent use of the following strong Birkhoff theorem
due to the first author (see [F3] or [F2] Theorem 2.5.14):

THEOREM 3.1.— Let f : P? O be holomorphic of degree d > 2 and
let K, : P2 — [1,+00[ be a sequence of functions satisfying the following
conditions:

(1) for any n > 0, k,, is upper semicontinuous (usc) with respect to the
analytic Zariski topology;

(2) for any n,m >0 and any x € P2,

Knim(Z) < Kn(z) ’im(fnx);

we say kn, defines a submultiplicative cocycle;
(3) for any n > 0, minp: k,, = 1.
Then, for any = € P2, the sequence k,(x)'/™ converges. Let koo () be
its limit. We have Koo © f = Koo. Further, if ko,(z) > 1, then
e either z is preperiodic,
e or some iterate of x belongs to a (not necessarily irreducible) fixed
curve V' such that miny ke = Koo(Z).

Remark 3.2. — Note that the curve V of the preceding theorem
must contain an irreducible component of the proper analytic subset
C:= {Kl > 1}

3.1. Asymptotic multiplicity of the Jacobian.

First we study the asymptotic order of vanishing of the Jacobian of f.
Fix local charts U 3 p, V 3 fp, and denote by J f the Jacobian determinant
of f: U —-YV.

DeFINITION 3.3. — Let u(p, Jf) € N be the order of vanishing of J f
at p.

This number does not depend on the choice of chart. It can be
interpreted analytically as the Lelong number

(3.1) w(p, J f) = v(p,dd°log |J f])

TOME 53 (2003), FASCICULE 5



1472 C. FAVRE AND M. JONSSON
of the positive closed (1,1) current dd°log|J f|. Note that pu(p, Jf) > 1 if
and only if p belongs to the critical set Cy.

We are interested in studying the growth of p(p, Jf™) when n tends
to infinity. It is straightforward to see that

(3.3) w(p, JFFT) = p(p, Jf™) + pu(p, Jf¥ o f™)

for any n,k > 0. The sequence {u(p, Jf")}n>0 is not submultiplicative,
but we will see that we can treat it as such. First we have the following
inequality.

PROPOSITION 3.4 (see [F1] Remark 3).— For any p € P? and any
n, k > 0, the following inequality:

(3.2) u(p, Jf¥ o ) < (3 + 2u(p, Jf™)) - u(f™p, J£*)

holds.
From this it follows that

3+ 2u(p, JFE™) =3+ 2u(p, Jf™) + 2u(p, Jf* o f7)

3+ 2u(p, Jf™) + 3+ 2u(p, Jf™)) Cu(fp, Jf¥))
(B +2u(p, Jf™)) - 3+ 2u(f"p, Jf¥)).

NN

Introduce
up, Jf") = 3+ 2u(p, Jf").

The last inequality can then be rewritten as
(34) f(p, J 5 < ialp, Jf™) - B, T f*).

The sequence [i(p,Jf™) hence defines a submultiplicative cocycle. It is
moreover usc with respect to the analytic Zariski topology on P? (e.g. by
Siu’s theorem). Thus Theorem 3.1 applies and yields:

ProPOSITION 3.5.— Let f : P2 O be a holomorphic map of degree
d > 2. For any p € P2, the sequence Ji(p, Jf")l/" converges to a real number
Uoo(P) = 1. We have oo o f = pioo. Further, if uoo(p) > 1, then one of the
following holds:

(i) fNp is a periodic critical point for some N > 0;

ANNALES DE L’INSTITUT FOURIER



BROLIN’S THEOREM FOR CURVES 1473

(ii) there exists a fixed curve V such that f¥Np € V for some N > 0, and
miny floo = floo(P)-

Remark 3.6.— The sequence (1 + p(p, Jf™))/™ also converges to
Hoo(p). Moreover, define pn,(p) := u(p, Jf o f™). This sequence is clearly
increasing. From (3.2), it follows that

n” u(p, Jf") < g (p) < ulp, T,
and so (1 4 p,(p))'/™ also converges towards fioo(p)-

PROPOSITION 3.7.— Let f : P2 (9 be holomorphic of degree d > 2.
Then

(35) 0<ulp, Jf) <3(d-1)
for all p € P2. Hence

(3.6) 1< poo(p) < d

for all p € P2.

Proof. — The multiplicity u(p, J f) is always smaller than the degree
of the critical set of f, which is 3(d — 1). Applying (3.5) to f™ and letting
n — oo we get (3.6). O

3.2. Asymptotic topological degree.

An important quantity in the study of totally invariant sets is the
local topological degree e(p, f) of f at a point p. By definition, this is the
topological degree of the germ of an open map induced by f at p. Clearly
e(p, f) > 1 if and only if p € C; and moreover e(p, f) is an usc function
with respect to the Zariski topology (see e.g. [F3]). Further e satisfies the
composition formula

e(p, f**7) = e(p, f*) - e(f™p, ).
Theorem 3.1 again applies and shows that

ProposITION 3.8. — Let f : P2 O be a holomorphic map of degree
d > 2. For any p € P2, the sequence e(p, f*)*/™ converges to a real number

TOME 53 (2003), FASCICULE 5



1474 C. FAVRE AND M. JONSSON

€co(p) = 1. We have ex © f = es. Further, if e (p) > 1, then one of the
following holds:

(i) fNp is a periodic critical point for some N > 0;

(ii) there exists a fixed curve V such that fNp € V for some N > 0 and

miny es = €00 (D).

PrOPOSITION 3.9.— Let f : P? (9 be holomorphic of degree d > 2.
Then

3.7) 1<e(p f) < d®

for all p € P? and {e(p, f) > d} is a finite set whose cardinality is bounded
only in terms of the degree d. We have

(3.8) 1 < eno(p) < d?

for all p € P? and the set {ex(p) = d?} is finite, totally invariant and
contained in {e(p, f) = d?}.

Proof of Proposition 3.9.— Since the (global) topological degree of
f is d® we have 1 < e(p, f) < d? for all p. Let us show that {e > d} is
a finite set. We follow the proof of Theorem 4.7 in [FS3]. Take a point
z is the regular locus of Cy such that fz belongs to the regular locus of
fCs, and z is a regular point for f|c,. One can find local coordinates so
that f(z,w) = (z,w®) with e := e(p, f). On the other hand, we have
in terms of currents f.[C;] = e[fCs] and f*f.[Cs] = ef*[fCys] > €2[Cy].
As deg(f«[Cs]) = ddeg(Cy), we get e* < d?. Hence outside the finite set
E:= (C;)Uf~H(fCs)U(flc,) we have e < d. We conclude the proof noting
that the cardinality of E can be bounded only in terms of d.

If ex(p) = d2, then the orbit of p must visit the finite set {e = d?}
infinitely many times and is therefore preperiodic to a periodic orbit in
that set. So we may write f™p = q = f"q with e(q, f) = d?. But then
eoo(p) = (g, fM)'/™, so we must have e(fiq, f) = d? for 0 < i < n. Thus
FY(fi*1q) = {fq} for all i, and that implies that p = f’q for some i. We
conclude that p is periodic and that the orbit of p is totally invariant and
contained in {e = d?}. 0
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3.3. Asymptotic diameter.

A third quantity that we will need is related to the asymptotic
diameter of balls f*B. To define this, fix local coordinates around p and
fp so that p = fp = 0. Define ¢(p, f) to be the largest integer ¢ such that

FOI< AL as¢—0

for some constant A > 0. Alternatively, c(p, f) is the order of the first
nonvanishing term in the Taylor expansion of f. It can also be interpreted
as the Lelong number ¢(p, f) = v(p,log|f|); hence the definition does not
depend on the choice of local coordinates and c is usc with respect to the
Zariski topology. Notice that the set {c(p, f) > 1} is finite. Moreover, it is
clear from the definition that

(3.9) c(p, f¥17) = elp, 1) - e(f"p, f5),

and so ¢ defines a supermultiplicative cocycle. We have

LemMma 3.10. — u(p, f) = 2(c(p, f) — 1).

Proof. — This is a local result so we may assume p = fp = 0. Write

c=c(p,f) and p = p(p, f). Let f(C) = fe(Q) + O(I¢|°"") where f. is a
homogeneous polynomial of degree c¢. The Jacobian determinant of f. is

a homogeneous polynomial of degree 2¢ — 2 or vanishes identically. Thus
Jf(¢) = Jfe(C) + O(¢I*™") and p > 2¢ — 2. O

This estimate and (3.9) allow us to deduce the following result from
Proposition 3.5.

PROPOSITION 3.11. — Let f : P? (9 be a holomorphic map of degree
d > 2. For any p € P2, the sequence c(p, f*)'/™ converges to a real number
Coo(p) = 1. We have coo © f = Coo. Further, if coo(p) > 1, then fNp is a
periodic critical point for some N > 0. Further, if coo(p) > 1, then one of
the following holds:

(i) fNp is a periodic critical point for some N > 0;
(ii) there exists a fixed curve V such that fNp € V for some N > 0, and

miny Coo = Coo(P)-

Notice that case (ii) in Proposition 3.5 does not appear as the set of
p such that ¢(p, f*) > 1 for some n > 1 is countable.
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PROPOSITION 3.12.— Let f : P2 O be holomorphic of degree d > 2.
Then

(3.10) 1
(3.11) 1

for any p € P2. Moreover c(p, f) = d if and only if p is a homogeneous
point for f, i.e., f maps the pencil of lines through p to the pencil of lines
through fp.

Proof.— By pre- and post-composing by projective linear maps of
P? we may assume that p = fp = 0. Write f(¢) = (P(¢)/R(¢), Q(¢)/R({))
where P, Q and R are polynomials of degree d and P(0) = Q(0) = 0,
R(0)=1. Then clearly f can only vanish up to order d and so 1<¢(p, f)<d.
Further, ¢(p, f) = d if and only if P and @ are homogeneous polynomials
of degree d, which means precisely that p is a homogeneous point. O

3.4. Properties of the multiplicities.

We summarize in the following proposition the inequalities relating
the multiplicities y, ¢, and e considered above.

PROPOSITION 3.13.— Let f : P2 (9 be holomorphic of degree d > 2.
For all p € P?, we have

(312) 2 (c(paf)_l)gﬂ(pa']f) <2 (e(paf)_l)v
(3.13) c(p, ) < Ve, f).

Hence

(3.14) Coo(P) < Hoo(P) < €co(p) < d,

(3.15) Coo(P) < Ve (p) < d.

The set {coo = d} C {eco = d?} is finite and totally invariant.

Example 3.14. — A totally invariant point, i.e., a point with e(p, f) =
d?, is not necessarily superattracting as the example f(z, w) = (2z+w?, 2%)
from [FS3] shows. In this example the origin is a totally invariant fixed point
with one expanding eigenvalue 2 > 1. One can check that coo = oo =1,
whereas ey, = d? for this map.
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Proof of Proposition 3.13. — Equations (3.14) and (3.15) are conse-
quences of (3.12) and (3.13), and the last assertion follows from (3.15) and
Proposition 3.9.

Equations (3.12) and (3.13) are local so we may assume p = fp = 0
and for sake of simplicity we write u(p, f) = 1, ¢(p, f) = ¢, e(p, f) = e.
Because of Lemma 3.10 we only have to show the inequalities u < 2e — 2
and ¢ < y/e.

To prove p < 2(e—1) we use the fact that |f({)] > C|{|¢ (see e.g. [F1])
and (by definition) |Jf(¢)] < D|¢|* for some constants C, D > 0. For any
ball B(r) of radius r > 0, one gets

Vol fB(r) > Vol B(Cr®) = C'r**
Vol fB(r) = ! /

P <e [ Dlgpe = D
B(r)

B(r)
for some constants C’, D’ > 0. By letting r — 0 we get u < 2(e — 1).

We now give an analytic proof of ¢ < +/e. We first note that
6 = (dd°log|(])?. It follows from [D1] Corollary 6.8 that

e =v(f*0p,p)
= v(f*ddlog |¢| A f*dd°log [¢], p)
> v(f*ddlog (], p)* = .

This concludes the proof. O
3.5. Exceptional sets.

We define two exceptional sets as follows.

DEFINITION 3.15.— Let f : P?2 O be holomorphic of degree d.

e Define the first exceptional set £1 to be the union of irreducible
curves V such that p..(p) =d forallpe V.

e Define the second exceptional set £y to be the set of points p with
Coo(p) = d.

Finally, we define the exceptional set £ by £ := & U &,.

The exceptional set £ is where f is most volume contracting; we will
spend the next few sections analyzing it. In particular we will show that £
is algebraic, totally invariant and superattracting.
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4. The first exceptional set &;.

The key to the description of the first and second exceptional sets &;
and &; lies in understanding the loci {¢s < pioo = d} and {ceo = d}. Being
in the first locus means, roughly speaking, that volume is contracted much
faster than diameter. This implies that the image of a ball is very close
to being one-dimensional, and that can only happen if the critical set is
very recurrent. Being in the second locus means that diameter is decreasing
very fast, and this leads to totally invariant and superattracting points. In
fact, we already know from Proposition 3.13 that the second exceptional
set &2 = {ceo = d} is finite and totally invariant. In this section, we show

THEOREM 4.1.— Let f : P2 (O be a holomorphic map of degree
d > 2. Then the first exceptional set & is the union of all totally invariant
curves for f and equals the (Zariski) closure of the locus {ceo < proo = d}.
Moreover, & is the union of at most three lines in general position.

The proof relies essentially on the following local result. Notice that
Coo and poo can be defined for a germ fixing a point.

THEOREM 4.2.— Let f : (C%2,0) O be a holomorphic germ. Let
Vi,..., Vi be the irreducible components of the critical set Cy. Assume
that ¢oo(0) < 1eo(0). Then there exist ay, . ..,ar > 0 such that

(4.1) f (Z ai["i]) > poo(0) (Z ai[Vi]> :

Proof of Theorem 4.1. — First we show that any totally invariant
curve V is contained in &. Given n > 1 and p € V outside a finite subset
(depending on n) we may pick local coordinates at p and at f™p so that
f" is given by (z,w) +— (2% ,w). It follows that u(p, Jf") = d® — 1 on
V outside a finite set, and thus p{p, Jf™) > d" — 1 on all of V by upper
semicontinuity. This implies ptoo = d on V hence V C &;.

Next let us consider the set X := {co < poo = d}. We claim that X is
contained in the union of totally invariant curves. In view of Proposition 1.1
this will complete the proof, since the set {co, = d} is finite.

Thus pick a point p € X, coo(P) < poo(p) = d. By Proposition 3.5,
either p is preperiodic or f™p € W for some m > 0 and some fixed curve
W with miny peo = poo(p) = d.
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In the latter case, we have f*[W] > [[W] for some maximal [ € [2,d).
For a generic point ¢ € W, we have d = p1o0(q) = ex(q), and for any j > 0,
e(q, f7) = 7. Hence | = d, and we infer that W is totally invariant.

If p is preperiodic, then f™p = q = fNq for some ¢ € Csand m > 0.
Clearly fioo(q, fV) = poo(p, )N = @V and coo(q, V) = coolp, /)Y < dV.
Apply Theorem 4.2 to fV and find non-negative integers a1, ...,as such
that fV* 3", a;[Vi] = dV 3", a:[Vi]. As fV is of degree dV, we have equality.
In particular the union W of the critical components passing through
p with a; > 0 is a totally invariant set for f~. But then the curve
W' = WU...U f¥N"1W is totally invariant for f. Since f™p € W’ we
have in fact p € W’. This completes the proof. O

Proof of Theorem 4.2. — Pick holomorphic maps ¢; so that V; =
#;1(0), and set ¢ := Jf. Then ¢; are the irreducible factors of ¢. There

T
exist integers t;; > 0 so that

k
(4.2) giof=dix ]

j=1

for some holomorphic ¢; with q~5;1(0) NCy = {0}. By Lojasiewicz’ inequal-
ity [Lo, p. 243] there exist constants C,a > 0 such that

(4.3) 16:(O)] + [¢(O)] > Cl¢I

in a neighborhood of the origin. For fixed n > 0 write f™ = f. +O(|¢|*>*1)
where f. # 0 is a homogeneous polynomial of degree c,. Similarly, set
$o f* = by, + O(|¢|#T!) for a non-degenerate homogeneous polynomial
bp,, of degree p, = pu(0,Jf o f).

We know that ¢, is an increasing supermultiplicative sequence such
that cy/™ — €o(0), and that p, is an increasing sequence such that
uk/" — 1too(0) (see Section 3). By hypothesis ¢ (0) < poo(0), so for any
fixed ¢, p with co0(0) < ¢ < p < poo(0) we have

for n > 0 and some constants A, B > 0. We infer that for a generic || < 1
and for any n > 0

(4.4) Cal = 1F(Q)] = Crl¢)*"
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for some C,, > 0. On the other hand for all [{| < 1 and all n > 0 we have

(4.5) ¢ o F(O)] = |6(Ca)| < Dal¢IPH".

Let M be the k by k matrix [t;;] and let p > 0 be the spectral radius of
M. Denote M™ := [t7;] and fix K > 0 so that

(4.6) 0 <ty < Kp™

For n large enough, so that Ac®™ < Bu", and for generic {, we can
apply (4.3), and get

165 (Ca)l = Clénl® = [9(Ca)| = CC2ICIA" = DLI¢IBH" > Cpl¢Ae.

Hence
1] 61| T1; 11 a1
| Gun) = : (Ga) 2 CRlCIA | 1 | (G
|l | ¢kl T1; 151 ||
where we let *[|¢1], ..., [¢x[]™ := *[[I; |¢|t“ Al
By induction and using (4.6) for 1 < ¢ < k we have

_ontl

pn+1
|¢i(Cns1)| = CUICIAK 7=

On the other hand (4.5) shows that

_Cn+1

n+1 ! P"+1
D1 [C1P*™ 2 |$(Cnrr)| = CH A K e

As ¢ was generic, we can let it tend to zero and let n tend to infinity. We
infer p > u, and therefore p > 1150(0) as p < poo(0) Was chosen arbitrary.

The Perron-Frobenius theorem now implies the existence of a (not

necessarily unique) eigenvector (ay, ..., ax) for M with non-negative coeffi-
cients associated to the eigenvalue p. We have f* 3", a;[Vi] = p(3_; ai[Vi]) >
Poo(0) >, a;[Vi], which completes the proof. O
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5. The second exceptional set &,.

The second exceptional set & is both hard and interesting to analyze
in detail. We will give some partial results that are enough for the purpose
of Theorems A and A’.

ProposiTion 5.1. — The second exceptional set is given by the set of
e points p ¢ £ with e (p) = d;
e totally invariant periodic orbits f in &;.

Further, &, is finite, totally invariant and superattracting.

Proof. — Proposition 3.13 shows that & = {c. = d} is finite and
totally invariant. A point p € &, f™p = p, is superattracting as the Taylor
series of f™ at p vanishes to order c(p, f*) > 2. Let us now prove the
characterization of &. First consider a point p ¢ &;. If p € &, then
Coo(p) = d and 80 poo(p) = d by Proposition 3.13. Conversely, if p100(p) = d,
then ¢ (p) = d by Theorem 4.1 so p € &,.

Next consider p € £ . We want to show that co(p) = d if and only if
p is periodic and the orbit of p is totally invariant. Both of these properties
are preserved under replacing f by an iterate, so we may assume that the
line (w = 0) is totally invariant for f and that p is on this line. Notice
that the restriction R := f|y=0 is a rational map of degree d and that
e(p, f*) < c(p, R") = e(p, R™).

Assume first coo(p) = d. Then ex(p, R) = d hence p belongs to a
totally invariant orbit.

Conversely, suppose that the orbit of p is totally invariant. After
replacing f by f2 we may assume that p = (0,0) is a totally invariant
fixed point for R. Thus we may write

fzw) = ((2* + wQ) (1 +n), w(1+ 1))

in local coordinates ¢ = (z,w), for holomorphic @, n with 1(0,0) = 0. One
checks that c(p, f*) > d"~!, thus c.(p) = d. This completes the proof. [

Let us give some examples of maps with nonempty second exceptional
set.

Example 5.2. — We already know from Proposition 5.1 that a totally
invariant point on a totally invariant line is in &. This will happen if
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flz s w:t] = 2%+ wQ(z,w,t) : w! : R(z,w,t)], where @ and R are
homogeneous of degree d — 1 and d, respectively.

Example 5.3. — A homogeneous point, i.e., a point p with the prop-
erty that the family of lines through p is invariant under f, is a point in
&s. In fact, ¢(p, f™) = d™ and so ¢ (p) = d. In homogeneous coordinates
where p=1[0:0: 1] we have f[z: w: t] = [P(z,w) : Q(z,w) : R(z,w,t)].

Example 5.4.— More generally, if f preserves a linear pencil of
curves, then any base point p of the pencil belongs to & for this map.
Holomorphic maps of P? preserving a pencil of curves were studied in [DJ]:
it turns out that the mappings and the base points are always of one of the
types described in Examples 5.2 or 5.3.

It is a very interesting problem whether all points in £ are of the
types described in Examples 5.2 or 5.3. We postpone its discussion to a
later paper. Assuming this is the case, we refer to the last section of the
paper for a list of different possible configurations of the exceptional sets
51 and 52.

6. Volume estimates outside the exceptional set.
In this section we give a lower bound on the volumes f"FE for sets E
that avoid a fixed neighborhood of the exceptional set £ under iterations.

THEOREM 6.1. — Let f : P2 O be a holomorphic map of degree d > 2.
Fix an open neighborhood Q D £ of the exceptional set. Then there exist
a constant A\ < d and constants Cy,Cy > 0 such that

(6.1) Vol f*E > (C, Vol E)“2*"

for any Borel set E C P? and any integer n > 0 with E, ..., f*E C P2\ Q.

The key idea ingredient in the proof is the following upper bound on
the multiplicities of the Jacobian.

ProprosITiON 6.2. — In the setting of Theorem 6.1 there exist p < d
and C > 0 such that

(6.2) p(z, Jf*) < Cp™
for any x ¢ £ and any integer n > 0.
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We defer the proof of Proposition 6.2 until the end of this section
and show how to deduce Theorem 6.1 from it. The key to doing so is the
following result, which connects the multiplicity of the Jacobian to the
volume of fFE.

PROPOSITION 6.3 (see [F2] Chapitre 4). — Let f : P? & be a holo-
morphic mapping and K C P? be a compact set. Define

71 (K) := max{u(p, Jf), p € K}.
Then for any € > 0, there exists a constant C. > 0 such that
(6.3) Vol fE > C.(Vol B)!+7s (K)te
for any Borel set E C K.

Proof. — Write 7, := 7¢(K) + €. Let E C K be a Borel set. We are
looking for a lower bound for Vol fE in terms of Vol E. To this end we
apply the Kiselman-Skoda estimate (Theorem 2.2) to the function log |.J f|
in each chart of a given atlas of P2. Notice that v(z,log|Jf|) = u(z, Jf).
We conclude that there exists a constant C. > 0 such that

(6.4) Vol (K n{|Jf]* <t}) < Cot'/™

forall t > 0.

If we define ¢ by C.t'/™ = %Vol E, then Chebyshev’s inequality gives

Vol fE > d—2/ |Jf> > d~2t (Vol E — Vol {|J f|* < t})
E

t

>
2d?

Vol E > CL(Vol E)'*7,

which completes the proof. O

Proof of Theorem 6.1.— Choose an integer N so that Cp" < dV
for the constant p < d given by Proposition 6.2. Fix A < d so that
CpN < AV < dN. Proposition 6.3 applied to fV with K := P2\ Q yields
a constant C' > 0 so that

(6.5) Vol fNE > C(Vol EPN"
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for any Borel set £ C P2\ Q. In a same way, one can find constants
D, D’ > 0 so that

(6.6) Vol fIE > D'(Vol E)P

for any 0 < j < N — 1 and any E C P2
Take a Borel set E C P? and n > 0 so that E,..., f"E C P2\ Q.
Write n = kN + 1 with [ > N — 1. We have

Vol f*E = Vol f'(f*NE) > D'Vol f*N P
kN k_l)\lN D "yn
> D ((VolE)’\ X ) > (C"Vol E)YP"",

which completes the proof of Theorem 6.1. O
Finally we prove the estimate for multiplicities in Proposition 6.2.

Proof of Proposition 6.2.— Denote by Vi,..., V) the irreducible
components of Cy that are not in &;. For each i, pick a point z; € V;
so that pue{z;) < d, and fix A < d with max; poo(x;) < A. One can find a
constant C' > 0 so that .

(6.7) (i, Jf) < CA™
for all n,4 > 0. Introduce the set Fy := {z € P2\ &, u(z, JfN) > CAN}
for a suitable N > 0 to be chosen later. Because of (6.7), it is a finite set.

Let z € P2 and n > 0.

e First assume {z, fz,..., f"z} N Fy = 0. Write n = kN + [ with
0 <I< N —1. We have

wa, Jf™) = p(@, J PN = w(z, IfY) + pla, T o 1)
<, TFY) + (3 + 2, )l f'w, T ).
By (3.4), we infer
k—1

3+ 2u(f'z, JFN) < [ 3+ 2u(f 2, JfN) < 3 +20AM).
=0

Set Cn := maxpz u(-, JfV). Note that Cy > Cn—_1. We get

(@, Jf*) < Cn + (30w + 2)u(f'z, JFF)

<
<3713CN +2)(Bu(flx, JFN*) +2) + Cn — 2/3(3CN +2)
< (Cn +2/3)(3+ 2CAN)*.
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Now for a fixed A < p < d we take N > 1 large enough to conclude
(6.8) u(e, Jf™) < C'p"

for some constant C’ > 0.
e Now assume {z, fz,..., ffz} N Fn # 0.

The set Fy is finite. By definition it does not intersect £, hence one
can find constants M < d, C” > 0 such that

(6.9) u(p, Jf") < C"(N)"

for all p € Fn and n > 0.

Let I be the smallest integer such that flx € Fy. Applying (3.4)
and (6.9), we get

<z, Y + p(fre, T3 + 2p(z, Jf1)
< C/pl T (3 + QC/pl)(C”(A/)n_l)
< Dmax{p, X'}",

w(x, Jf™)

and the proof is complete. O

7. Volume estimates at the first exceptional set &;.

We now analyze the dynamics near £;. Recall that & is a totally
invariant union of at most three lines (in general position).

PROPOSITION 7.1.— Let f : P2 ) be a holomorphic map of degree
d > 2. Fix small open neighborhoods ; D &; of the first and second
exceptional sets, respectively. Then there exists a constant C > 0 and an
integer N > 1 such that

(7.1) Vol f*E > (C Vol E)*"
for any Borel set E C P? and any integern > N with E, ..., f*E C Q;\Qs.

We will prove Proposition 7.1 using the structure of the Jacobian J f
near &;. First we prove the following lemma.
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LEMMA 7.2.— There exists C > 0 such that for all s > 0 we have
(7.2) Vol {p € Q; : |Jf(p)| < s} < CsTT 18>

Further, there exists N > 1 and for any n > N a constant C,, > 0 such
that

(7.3) Vol {p € U \ Qo : |Jf(p)| < s} < CpsTT
for all s > 0.

Proof of Lemma 7.2.— The result is local. Pick p € &£,. We may
assume that p = (0,0) and that & = (w = 0) or & = (2w = 0) locally at
p. Further, write

k

Jf(z,w) = w7 [](z — ai(w)),

i=1

where 1 < k < d — 1 is the multiplicity of z = 0 as a critical point of
flaw=0) and where a; are multivalued functions with a;(0) = 0. Let X be
the subset of the bidisk A? = {|z|, |w| < 1} where |Jf| < s. We will show
that

Vol X, < Csa-1 108

which will prove (7.2). For the rest of the proof we will let C denote various

positive constants. Let A = supaz | Hi;l(z — a;(w))]. For 7 < A and fixed
w € A we may estimate

k

[~ as(w))

i=1

Aera {zEA:

< T} < ZAera {I(z—ai(w))| < Tl/k}

< Ok,

We can then use Fubini’s Theorem to estimate the volume of Xj:

(s/A) TT
Vol X, < 271'/ rdr
0

1 k
s
+ /(S/A)di_1 Aera { E(z —ai(w))| < m}rdr
1 -1
(7.4) < CsTT 4+ Cst / oot .
(s/A) 3T
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If £ < d— 1, then the second term in (7.4) can be estimated by

(2— 2gdk—12

2 _1_ 2
Cs*sa-1 ) = Qs T,

and so Vol X, < Cs?/(d=1) in this case.
If k = d — 1 then the second term in (7.4) is instead bounded by
Cs 7T log(sz‘l—l) = CsT1 log s,

and so Vol X, < Cs?/(4=V) 1og s. This proves (7.2).

As for (7.3) we notice that for n > N, all the critical points for
J™l(w=0), except the ones at &, will have multiplicity < d™ — 1. Thus the
above calculations imply (7.3). a

We now show how Lemma 7.2 implies Proposition 7.1.

Proof of Proposition 7.1.— The proof is similar to that of Proposi-
tion 6.3. First assume that N < n < 2N, with N from Lemma 7.2. We
define t,, by

w1
Cntqf = 'Q—VOIE,
with C,, from Lemma 7.2 and get
Vol f"E > d-2"/ |[Jf™? > d~2"t, (VoL E — Vol {|Jf"|? < t,})
E

tn o
> 5 VOLE > O, (Vol ).

It is now easy to iterate this estimate and arrive at (7.1). o

8. Attenuation of Lelong numbers.

For the proof of Theorem A we need further information on the
dynamics near £;. To this end we prove the following result.

THEOREM 8.1. — Let f : P2 ) be a holomorphic map of degree d > 2
and let S = w + dd®u be a positive closed current on P? such that

e S does not charge any component of &1 ;

e the Lelong number v(p,S) = 0 at any point p € £2N &;.
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Then

sup v(p,d " f™*S) -0 asn — oco.
pEEL

We first prove Theorem 8.1 under the weaker assumptions
(A) u # —oo on any irreducible component of £;;

(B) u is bounded at each point p € £ N &y,

Proof of Theorem 8.1 under assumptions (A) and (B).— Let V be
an irreducible component of £, i.e., a line. After replacing f by an iterate
we may assume that V is fixed by f and hence R := f|y induces a rational
map of V of degree d. Let S be a current as in the statement of the lemma.
By (A) we may define the probability measure mg := S|y. We have

v(p,d™"f™*S) < v(p,d "R mg) = d "e(p, R")v(p, ms).

By (B) the measure mg does not charge totally invariant orbits of R. On
the other hand, one can find A < d such that for large » > 0 and any
p € V\& e(p, R*) < A™. We conclude

sup v(p,d""f"*S) < (A/d)" - 0 asn — oo.
peEL

O

Proof of Theorem 8.1 in the general case.— We will use of Propo-
sition 2.3 on the behavior of Kiselman numbers when one weight tends to
zero. Let V C &; and R := f|y be as above. We cover V by a finite number
of coordinates chart U; 3 (z;,w;) such that VNU; = {z = 0}. In the open
set f~1U; N U;, the map f can be written in the form

Flzi,wi) = (2, R(wi) + O(|z4)) (1+O(zi, wi]).

For a point p € U;, we denote by v(p, S, (a1,as)) the Kiselman number
of S at p with weights (a1,a2) € (R%)? associated to the coordinate
systems (z;,w;). (Recall that the Kiselman numbers, as opposed to the
Lelong number, depend on a choice of coordinates.) Assume that we can
prove the following result:

LEMMA 8.2.— For any point p € f~1U; NU; and any o < 1, we have
v(p,d f*S,(a,d + 1)) <v(fp, S, (ae(p,R)/d,d+1)).
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As before fix a constant A < d such that for large n > 0 and any point
p € V\ &, we have e(p, R") < A\". By assumptions S does not charge V
and v(p, S) = 0 for any point p € V N &;y; hence for any n > 0 large enough
we get

v(p,d"" ™) < Cv (p,d ™" ™S, (1,d + 1))
Cv (f"p. S, (e(p, R)/d",d + 1))
C

sup v (p, S, (e(p, R")/d",d + 1))

NN N

< Csupv(p, S, (Ad)",d+1)) —n-o0 0,
peV

where the first line follows from (2.2) (with C := d + 1), the second from
Lemma 8.2, and the last from Proposition 2.3. This concludes the proof.

a

Proof of Lemma 8.2.— This is a local result so we may assume
p= fp=(0,0) and

f(z,w) = (241 + O(lz])), w* (1 + O(jwl)) + O(|2])) (1 + O(lz,wl)),

with k = e(p, R). We easily check that there exist constants C,C’ > 0 such
that for any o < 1,

£ (A@2) x A ED)) S ACTY) x ACTHED),

We remark that this property is easy to verify but nevertheless central to
the proof. Write S = dd°u for some local psh potential u. We infer

a{d+1
v(p,d™ 5, (@ d + 1)) = lim 2G4+ sup o f
r—0 dlogr A(rt/a)yx A(rl/(d+1))
<limM sup U

r—0 dlog r A(Crd/e)x A(C'rk/(d+1))

=kv(fp,S,(a/d,(d+1)/k))
=v(fp, S, (ak/d,d+1)),

which completes the proof. O
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9. Proof of the main results.

This section is devoted to the proof of Theorem A and its two
Corollaries B and C.

Proof of Theorem A.— We argue by contradiction. Suppose that S
is a positive closed current on P? for which the assumptions, but not the
conclusions, of Theorem A hold. As in Section 1 we write S = w + dd‘u
with u < 0 gpsh, and conclude that there exists a ball B, a positive number
« and a sequence n; — oo such that

(9.1) f"BcC{u<—ad™}.
We will get a contradiction from (9.1) by estimating the volumes of the

two sides.

Fix small neighborhoods €1, Q2 of the exceptional sets £ and &,
respectively. By the superattracting nature of £; and & we may assume
that fQ; CC Q; for ¢ = 1, 2. In order to reach a contradiction, it is sufficient
to consider three different cases.

e Let us first assume that f*B avoids §2; U s for all n > 0. Then
Theorem 6.1 applies and shows that

Vol f*B > (C; Vol B)“?""

for some A < d. On the other hand, the Kiselman-Skoda estimate (Theo-
rem 2.2) shows that

Vol{u < —ad™} < Cexp (—£d")

for some 8 > 0 and for all n > 0. This yields a contradiction.

e The second case is when f"B C Q; \ Q; for all n > 0. We then
use the results from Sections 4, 7 and 8 on the dynamics near the first
exceptional set &;. First, by Proposition 7.1 there exists a constant C > 0
such that

(9.2) Vol f*B > (C Vol B)®"

for sufficiently large n. Second, by Proposition 8.1, for arbitrarily large
A >0, one can find an integer m > 0 so that supg, v(p,d™™ f™*S) < 1/A.
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Hence by the Kiselman-Skoda estimate (Theorem 2.2) one has
(9.3) Vol{p € QU \ Q2| d""uo f™ < —t} < exp (—At)
for large enough t. For n; > m, (9.1), (9.2) and (9.3) then imply

(CVol BY*™ ™™ < Vol f»~™B
< Vol{d™"uo f™ < —ad™ "}
<

exp (—Aad™ ™).

We get a contradiction by choosing A so that exp(—aAd) < C'Vol B and
letting n; — oc.
e The third and last case is when f*B C {9 for all n > 0. But by

our assumption u is bounded at &£ and so (9.1) clearly cannot hold. This
completes the proof of Theorem A. O

Proof of Corollary B.— If § = k~[C] is the current of integration on
a curve C of degree k > 1, then S satisfies the assumptions of Theorem A
unless

e (' contains an irreducible component of &;; or

e CNé& # 0.
This concludes the proof as the set of curves C satisfying either of
these conditions is a algebraic proper subset of P¥. O

Proof of Corollary C.— Let H C Holg be the set of holomorphic
maps f of degree d for which £; # 0. By Theorem 4.1 and Proposition 5.1,
&y consists of at most three totally invariant lines and a totally invariant
set whose cardinality is bounded by some integer N(d). It is easy to check
from this that H defines an algebraic set in Hol,. To conclude the proof
we only have to exhibit one holomorphic map f € Holy with &5 = 0. We
follow a construction of Ueda.

Take a Lattés map in P! of degree d for instance R(z2) := (z—2/2)%.
Consider the holomorphic map g(z,w) := (R(z), R(w)) : P! x P! (. It has
topological degree d2. The quotient P! x P! by the symmetry (2, w) — (w, 2)
is isomorphic to P? and g induces a holomorphic map f on the quotient.
The topological degree of f is d? hence f € Holy. As R does not contain
critical periodic points, the same is true for g and for f too. Hence & = 0
and we are done. O
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10. The proof of Theorem A’
and totally invariant currents.

In this section we will work under the assumption that every point in
&>\ & is a homogeneous point i.e., f preserves the pencil of lines through
that point. It is possible that this assumption is valid for any holomorphic
map of P2. Our goal is to prove Theorem A’ and to exhibit totally invariant
currents associated with the sets £ and &,.

10.1. Local dynamics near &.

Near the points of &, the dynamics has a simple form and this will
allow us to prove good volume estimates.

LeEmMMA 10.1. — Assume p is a homogeneous point. Then f is locally
conjugate at p to a map of the form

(10.1) (z,w) = (P(z,w), Q(z,w)),
where P, are homogeneous polynomial of degree d.

LemMA 10.2. — Assume p € E N Ey. Then f is locally conjugate at
p to a map of the form

(10.2) (z,w) = (2 + wh(z,w),w?),
where h is holomorphic.

Proof of Lemma 10.1. — Assume that p = [0 : 0 : 1]. In homogeneous
coordinates, f can be written f[z : w : t] = [P(z,w) : Q(z,w) : R(z,w,t)]
for homogeneous polynomials P, @, R of degree d with R(0,0,1) = 1.

Hence, locally, f(z,w) = (P(z,w)(1+ n),Q(z,w)(1 + n)) for some germ 7
with 1(0,0) = 1. As f is contracting, one can define the map

oo
H L+no f)/e™

and one checks the map (z,w) — (2é(z, w), wd(z, w)) conjugates f to

(Pa Q) O
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Proof of Lemma 10.2. — Again assume p = [0 : 0 : 1]. We may
assume that the set &£ is given by zw = 0 or by w = 0. In the first of these
cases, p is a homogeneous point and f is locally conjugate to (2%, w?) by
Lemma 10.1. In the second case, we have

flz:w:t] = [2% + wQ(z,w,t) : w® : R(z,w,1)]

in homogeneous coordinates, where R(0,0,1) = 1. Hence, locally, f(z,w) =
(2% + wQ(z,w))(1 + n),w(1 + 7)) for some germ 7 with 7(0,0) = 1. As
in the proof of Lemma 10.1 we define

o0

¢:= [[a+no )"

=0

and conclude that the map (z,w) — (2¢(z, w), wd(z,w)) conjugates f to
the desired form. O

CoroLLARY 10.3.— There exists o > 0 such that c,(p) > ad™ for
any p € &.

Proof. — This follows immediately from the normal forms in Lemma
10.1 and Lemma 10.2. O

ProprosiTiON 10.4. — Let p € & and let 2 be a small neighborhood
of p. Then for any Borel set E C §Q of positive volume Vol (E) > 0, there
exists y(E) > 0 such that

(10.3) Vol f"E > y(E)*"  for all n > 0.

Proof. — We first consider the case p € & N E; and write f in the
skew product form (10.2), which we may rewrite as

d
(10.4) (z,w) = (fu(2), g(w)) = <¢ H(z - a;(w)), wd) ;
where «; are multi-valued with o;(0) = 0 and %(0,0) = 1.

Fix g9 > 0 small. It follows from (10.4) that there exists a constant
¢ > 0 such that for any w € D(0,&9) and any Borel set E” C D(0,&p)
we have Aeraf,E” > c(AeraE")?. Further, for any Borel set E' C
D(0, o) we have AeragE’ > c(Aera E')?. Iterating these estimates yields
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Aerag"E' > (cAeraE')¥" and Aera fPE" > (c'AeraE")?", where fI =
fgn—-l(w) 0...0 fw'

Now pick a Borel set E C Q with VolE > 0. After iterating
forward we may assume that E C D?(0,&). For w € D(0,&9) we write
E!' = {2 € D(0,&0)| (z,w) € E}. There exists § > 0 and a set £’ € D(0, &)
with Aera E' > § such that Aera E, > § for w € E'. But then the previous
estimates imply that Aerag"E’ > (¢6)?" and Aera f?E, > (c'§)" for
w € E’, so by Fubini’s Theorem we get Vol f*E > v%" as desired.

The remaining case, when p € & is a homogeneous point, is similar.
We use the skew product structure (10.1). The only new observation that
we need is that if g : P! O is a rational map of degree d > 2, then there
exists ¢ > 0 such that Aerag”E > (cAera E)?" for any Borel set E. O

After these preliminaries we now prove Theorem A’.

Proof of Theorem A’.— The implication (1)=(2) is relatively easy.
If S puts mass on a totally invariant curve V C &1, say S > ¢[V], then
for all n > 0 we have d="f™S > d "f™c[V] = c[V]. Since T has
bounded potential we cannot have convergence towards 7'. Similarly, if
p € E with v(p, S) > 0, then one immediately checks that v(p,d~"™f™**S) >
d~"cnv(S,p). Hence, by Corollary 10.3, v(p,d~" f**S) > ¢ for some € > 0,
which also prevents the sequence to converge towards T'.

Conversely, suppose that the current S satisfies (2) of Theorem A’.
To prove that d="f™*S — T we follow the proof of Theorem A up to the
third case, i.e. when f*"B C Qg for all n > 0. We pick a constant ¢ < 1
small enough. As v(p,S) = 0 for all p € &, by Theorem 2.2 one can find a
constant C, > 0 such that

(10.5) Vol {u < —t} < Ceexp (—t/e),

for all ¢ > 0. Combining (10.5) and the hypothesis f™ B C {u < —ad™}
with Proposition 10.4, we get

~(B)*" < C.exp (—ad™ /e),

hence v(B) < exp (—a/e) by letting n; — +oo. But v(B) > 0 is fixed and
¢ is arbitrarily small, so this yields a contradiction. O
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10.2. Totally invariant currents.

Let us discuss the existence of totally invariant currents. Consider the
cone S of positive closed currents on P? of unit mass such that d=* f*T = T.
Let S° be the set of extremal points in S. It is known [FS4] that the Green
current T is in §¢ (this follows e.g. from Theorem A).

The following result is an immediate consequence of Theorem A.
COROLLARY 10.5. — If€; =& =0, then 8¢ =S = {T}.

Conversely we want to show that if either £; or £ is nonempty, then
S¢ contains currents other than 7. Recall that the Green current T has
zero Lelong number at every point and, in particular, does not put mass
on any curve in P2,

ProposiTioN 10.6. — If the first exceptional set £; is nonempty, then
there exists a current S € 8¢ supported on &;.

Proof.— Since £ is totally invariant, the current (deg&;)7[£;] is in
S. This current need not be extremal, but can be decomposed into currents
in 8¢ supported on &;. O

In the sequel, |S|| := [S A w denotes the projective mass of the
positive closed current S.

ProprosiTioN 10.7.— Ifp € & \ & is a homogeneous point, then
there exists S € 8¢ with positive Lelong number at p and with continuous
potential outside p. More precisely, we have v(p,S) = ||S| = 1.

Proof.— Assume f preserves the pencil of lines through p. Then f
induces a rational map g of P! (the set of lines) of degree d. Let u be the
measure of maximal entropy for g. This satisfies g*u = d 4 and if we define

S= [La)du(a),
acP?

where [L,] denotes the current of integration on the line through p
corresponding to a € P!, then f*S = dS,s0 S € S. Assume S; < S
with f*S; = dS;. From the local structure of S, we infer the existence
of a positive measure yy such that S; = [ _p,[La]dpi(a). The equation

f*S1 = dS; is equivalent to f*u; = dui. As pg has no atoms, this forces
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1 = cp for some constant ¢ > 0. Hence S; = ¢S, and S € S¢. Finally, a
direct computation yields v(p, S) = 1. O

ProrosiTioN 10.8. — If p € £ N &y, then there exists S € 8¢ with
positive Lelong number at p and with continuous potential outside p.

More precisely, for any positive real numbers 0 < o < 1, there exists
a current S, € 8¢ with

v(p, Sa, (1,a/d™1)) = ||Sall = 1.

Proof. — Pick a €]0,1]. Introduce the homogeneous real analytic
function on C3 \ {0}

Uz, w,) = |2|* + ] + fw]*[t]"~°

It vanishes exactly on the ray C- (0,0,1) and by homogeneity the positive
closed current d~'dd®logU can be pushed down to P? as a current wy,
smooth outside p, with a pole at p whose Lelong number is v(wq,p) = 1.

Define

V(Z, w, t) = _l]d_
where F = (z44+wQ, w?, R) is alift a f to C3. Then V induces by projection
a function on P? which is real analytic outside p. We claim there exist
constants C7,Co > 0 such that

Ci <V <(Cy

for any point in P2,

Indeed, as p is totally invariant, U and U o F' both vanishes exactly
along C - (0,0,1), hence the inequality has to be checked only in a
neighborhood V of p in the chart {t = 1}. To do so, you may decompose
V in two sets {|z|¢ < Alw|*} and {|2|? > AJw|*} for a well chosen A. In
each of these sets, the estimates follow from a direct computation we leave
to the reader. By normalizing U, we can assume Cp = 1.

We now follow the standard construction of the Green current. We
have f*wy = dwy + dd°log V', hence

k
d7F fF*wo =wo +dd® [ Y d7 o f7
j=0
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for all k > 0. The sequence of function Z?zo d=7-1 o f7 is decreasing
converging uniformly on compact sets. Hence the limit G, is a L! function,
continuous outside p, and bounded everywhere. The positive closed current
S 1= wp+dd°G) belongs to S, has a continuous potential outside p, and a
singularity at p with Lelong number v(p, S) = 1/d. More precisely, in the
coordinates z,w, the Kiselman number of S with weight (1, a/d~!) is given
by
v(p,S,(1,a/d™ ")) = 1.

To conclude we show S is extremal in the cone S. Assume S = S; + Sy
with f*S; = dS; for i = 1, 2. Kiselman numbers behave additively hence

v(p, S, (1,a/d™")) +v(p, S, (1,a/d™ ")) = v(p,S, (L, a/d ")) = 1.
On the other hand, the following inequalities are standard (see [K1], [D1]):
v(p, Si, (1, a/d™")) < v(p, S) <||Sill-
Whence
1=v(p,S1,(1,a/d™")) +v(p, Sz, (1,0/d™")) < [|S1]| + S| = [IS]| = 1
and we infer
(10.6) v(p, S, (L,a/d™1)) = ||Si

for i = 1, 2. Pick a global potential S; = dd°u; defined in C?. By definition
of Kiselman numbers we have in a neighborhood of the origin

ui = v(p, Si, (1,0/d™")) x d™* log(|27| + [w?|) < C

for some constant C' > 0. Together with equation (10.6), we deduce that
v = u; — ||Sil| d7 log(|z|¢ + |w|* + |w|?) is globally bounded from above.
As up +uz = G, + d tlog(|z|? + |w|® + |w|?), and G, is bounded, we
conclude that vy, vy are also bounded everywhere. Hence

S;= lim d™"f™58; = lim dd°(d"v; o f*) + ||Si||d~"f™wo = ||Si] - S,

n—00
showing that S € S°. O
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Example 10.9. — For the map f[z: w : t] = [2¢: w? : t9], the set S¢
is quite large. Given «, 3,7 > 0 with a + 3+ v = 1 define

Ua,8,(2, w,t) = alog |z| + Blog |w| + vlog |t].

Then S€ contains all the currents S = w + ddu with

(i, w,1) = M8X 5, 7 (2, 0, ) — log | (2,0, )]
=1,
such that
i = iy fi = iy 2 =0
or
u(zv w, t) = 4Hi32xg Uery,Ba v (27 w, t) — log |(zv w, t)]
1= tiad]
such that

min o; = min G; = min ~; = 0.
i=1,2,3 i=1,2,3ﬂ2 z‘=1,2,3%

Notice that the Green current T is of the latter form.
10.3. Configurations of exceptional sets.

We conclude the paper by listing the different possible configurations
of the exceptional sets & and & and the corresponding mappings f in
case & \ &1 contains only homogeneous points. The case of totally invariant
curves was treated in [FS3] (see Proposition 1.1). We summarize the results
in Table 1.1 below.

e P Q, R denotes homogeneous polynomials in three variables z,w, ¢
except if we state it otherwise;

® p,, Py and p; denote the points [1: 0:0], [0:1:0] and [0:0: 1],
respectively;

e Z, W and T denote the lines (z = 0), (w = 0) and (¢ = 0),
respectively;

e in the cases where #&; > 2 or #&; > 2, we mention only the maps

preserving all irreducible components of £ and each point in &. To be
complete, one has to add maps which permute these sets.

The proof is essentially elementary. There are essentially only two
points to check: any intersection point between two irreducible components
of £ is in &; and if £ contains two homogeneous points p, q, then &
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contains the line H passing through p and ¢. The first of these statements
is easy; for the second note that f~!H is a union of lines passing through
p as p is homogeneous, and also a union of lines passing through g. Hence
f~1H = H is a totally invariant line. If we blow up P? at the two points
p,q, we can lift f to a holomorphic map for which the strict transform of
H is totally invariant. We can hence contract it to a point, and the induced
map becomes a holomorphic map on P! x P'. If {p,q} = {p.,pw}, this
shows f can be written under the form f = [P(z,t) : Q(w,t) : t¢]. The
other cases can be treated in a similar way.

Note that we in particular have (assuming & \ & contains only
homogeneous points):

ProposiTioN 10.10. — There are at most 3 distinct points in Es.

TABLE 1. — Configuration of exceptional sets.

#E1 #E & & f
1 0 T [P:Q:td
0 1 Dw [P(z,t): Q: R(2,1)]
1 T j [P:wd +1tQ : t9)

T Dt [P(z,w) : Q(z,w) : t9]

1 2 T Pobw [Pz 1) w? +1Q : 9]

2 1 w,T Pz [P:w: 9

2 2 W.T  p:pw [2¢ +tP : w? : 1]

2 3 W,T  p.,pw,pe (24 +wtP:w?: 17

3 3 ZW,T  p:,pu,pt [z : w : 1)
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