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BROLIN’S THEOREM FOR CURVES
IN TWO COMPLEX DIMENSIONS

by C. FAVRE and M. JONSSON

Introduction.

In 1965 H. Brolin [B] proved a remarkable result about the dis-

tribution of preimages of points for polynomial maps in one variable: if

f(z) = z d+ ... is a polynomial of degree d &#x3E; 2, then there is a set E with
#£ ~ 1 such that if a E C B £, then

where &#x3E; is the harmonic measure on the filled Julia set of f. In particular,
the limit in (0.1) is independent of a. Further, the exceptional set E is

empty unless f is affinely conjugate to z ~--~ zd, in which case E {0}, the
totally invariant point.

Lyubich [L] and Freire, Lopez and Mane [FLM] later generalized
Brolin’s theorem to rational maps of the Riemann sphere :rp&#x3E;1 , with #£ ~ 2.

In this paper we prove a version of Brolin’s Theorem in two complex
dimensions.

Keywords: Holomorphic dynamics - Currents - Lelong numbers - Equidistribution -
Kiselman numbers - Volume estimates - Asymptotic multiplicities.
Math. classification: 37F10 - 32U25.
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THEOREM A. - Let f : p2 o be a holomorphic mapping of algebraic
degree d &#x3E; 2. Then there is a totally invariant, algebraic set [1 consisting
of at most three complex lines and a finite, totally invariant set S2 with the
following property: If S is a positive closed current on of bidegree (1,1)
and unit mass such that

(i) S does not charge any irreducible component of ?i;

(ii) S has a bounded local potential at each point of ~2;
then we have the convergence

Here T is the Green current of f, defined as the limit (in the sense of
currents) of as n - 00, where cv is the Fubini-Study form on 
See Section 1 for more details.

As a consequence we have the following result on the distribution of
the preimages of curves. The space of curves in p2 of degree may be
identified with for some N = N(k) .

COROLLARY B. - Let f be as in Theorem A and 1. Let E*

be the set of curves C E such that

Then .6* is contained in an algebraic proper subset of pN.

In a similar way, the space Hold of holomorphic maps of p2 of degree
d can be identified with a Zariski open set of some 

COROLLARY C. - There exists an algebraic proper subset 1t C Hold
such that for any the convergence

holds for all positive closed (1,1) currents S of unit mass.

The set ~2 is defined asymptotically (see Section 3) and is nontrivial
to understand. It certainly contains the following two types of points:



1463

(a) totally invariant points on totally invariant curves;

(13) homogeneous points, that is f preserves the pencil of lines passing
through the point.

It can be shown the set of such points contains at most three elements.
We conjecture that these are the only points in E2. The proof of this
fact, which involves both global mapping properties on p2 and the local
dynamics at a superattracting point, is postponed to a later study. Denote
by v(p, S) the Lelong number of the positive closed current S at p. We then
have

THEOREM A’. - Let f, S be as in Theorem A, and assume S2 is
reduced to points of type (a) and (0). Then the following statements are
equivalent:

(1) as n ~ 00;

(2) S does not charge any irreducible component of 61 and v(p, ,S’) =
0 VP E E2.

Remark. - After we completed this paper, V. Guedj told us he was
able to obtain volume estimates which prove the implication (1) ~ (2)
of Theorem A’. On the other hand, the converse implication (2) ~ (1)
follows from the material we aim at developing in subsequent papers. So
that Theorem A’ actually holds without knowing the classification of points
in ~2.

Let us finally mention another conjecture: holomorphic
map of algebraic degree d &#x3E;, 2, and S is any positive closed (1,1) current,
then d-nf n* S converges to a current 9 satisfying the invariance relation

= dS.

Results in the direction of our paper were previously obtained by
Fornaess and Sibony [FS4], who proved a weaker form of Corollary C
with 1t a countable union of algebraic sets in Hold. Later Russakovskii
and Shiffman [RS] proved a version of Corollary B: for any holomorphic
mapping f : p2 0 there exists a pluripolar set E* C p2* such that if L is a
line in JP&#x3E;2* B £*, then T as n - oo. (Their result also applies
to certain rational maps of 2 and pullbacks of planes of higher
codimension. )

Other related results include Briend and Duval [BD], who recently
proved Brolin’s theorem for preimages of points under holomorphic maps
of P~. A version of Theorem A was proven by Fornaess and Sibony [FSI]
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for H6non maps (see also ~BS~ ) and by Favre and Guedj [FG] for birational
maps (see also [F2]).

The main ingredient in our proofs of Theorems A and A’, as well as
in most previous approaches, are volume estimates. These are much harder
to prove for holomorphic mappings than for birational maps. They come
in two forms.

The first type of volume estimates are dynamical and aim at bounding
from below for any Borel set E. Such estimates are related to

the rate of recurrence of the critical set. In previous work, restrictive

assumptions on the dynamics were made to get the required volume
estimates. A main novelty of this paper is that we are able to control

volume decay for arbitrary holomorphic maps.

More precisely we show that the phase space p2 splits naturally into
two parts: the exceptional set E = E1 U S2 and its complement. Outside E,
the critical set is not too recurrent and vol f nE does not decay too fast.
Near E, on the other hand, Vol f nE may a priori decay quite rapidly, but
precise information on the structure of E allows a good understanding of
the dynamics and in particular of volume decay.

To obtain this partition we first study asymptotic volume decay
along orbits and relate it to the growth of two algebraic quantities: the
multiplicity of the vanishing of the Jacobian determinant, and the generic
rate of contraction. A key contribution of the paper is the understanding
of the asymptotic behavior of these multiplicities under iteration. In

particular, we characterize the locus where these asymptotic multiplicities
are maximal, giving rise to the exceptional sets Si and S2 in Theorem A.
Semicontinuity properties of the multiplicities imply that these sets are
algebraic and present strong recurrence properties: they are in fact totally
invariant.

The second type of volume estimates involve pluripotential theory. We
estimate the volume of sublevel sets of plurisubharmonic (psh) functions
using the Kiselman-Skoda theorem: asymptotics of these volumes are small

exactly when Lelong numbers are small.

In this context, to show that certain Lelong numbers decay under
iteration, we make use of Kiselman numbers (or directional Lelong num-
bers). These allow us to deduce dynamical information in a neighborhood
of an invariant curve from the dynamics on the curve itself. We believe this
technique could prove useful in other situations, too.
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We also believe our result to be true in any dimension but the

description of E and hence the control of decay of volumes around E become
much harder than in dimension 2.

The organization of this paper is as follows. We briefly recall some
facts from holomorphic dynamics and reduce Theorem A to an estimate
of the size of images of balls in Section 1. In Section 2, we state some

pluripotential facts that we use in the paper. In particular we investigate the
behavior of Kiselman numbers as one weight degenerates. The same results
appeared independently in [M]. In Section 3 we define three asymptotic
multiplicities related to volume decay. These multiplicities are used to
define the exceptional sets Si and E2, and we study the latter sets in

Sections 4 and 5. The next two sections are devoted to volume estimates

outside £1 U£2 (Section 6) and near Si )52 (Section 7). In Section 8, we show
a useful technical result about Lelong numbers of pull-backs of currents near
a totally invariant curve. After these estimates, we prove Theorem A and
Corollaries B and C in Section 9. Finally, we prove Theorem A’ and discuss
the existence of totally invariant currents in Section 10.

Acknowledgement. - This paper was partially written when the
authors were visiting IMPA, Rio de Janeiro, and they wish to thank the
department for its hospitality and support. We also thank J. Duval and
V. Guedj for their useful remarks.

1. Background and reduction.

In this section we recall some known facts about holomorphic map-
pings of JP&#x3E;2; see e.g. [FS2] for more information. We also reduce the proof
of Theorem A to an estimate on the sizes of images of balls.

Let f : p2 0 be a holomorphic map of degree d &#x3E; 2. This means that

f = [P (z, w, t) : Q(z, w, t) : R(z, w, t) ], where P, Q, and R are homogeneous
polynomials of degree d with no nontrivial common zero.

Let T be a positive closed ( 1,1 ) current on p2 and take a local

plurisubharmonic (psh) potential T = ddcu around p E JP&#x3E;2. One defines

locally at any point in the positive closed (1, 1) current f *T :=
This does not depend on the choice of u and induces a continuous

linear operator on the set of positive closed (1,1) currents on JP&#x3E;2. One can

project f * to an action f * on R. This latter is given by the
multiplication by d.
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Let cv be the Fubini-Study Kahler form on JtD2. The positive closed
currents and are cohomologous, one can hence find a continuous
function such that f *w = + ddcu. Iterating this equality n times
yields c,v + ddcCL7=1 f ~ -1 ) . This latter series converges
uniformly on p2 to a continuous function G and one finally infers

where T := w + dd’G is called the Green current of f. It satisfies the

invariance property d- 1 f * T = T. Replacing w in (1.1) by a general positive
closed current ,5’ of unit mass leads to (0.2); the purpose of this paper is to
investigate exactly for what currents ,S’ this convergence holds.

As stated in Theorem A, the exceptional currents (for which (0.2)
may fail) will be connected with totally invariant algebraic sets, and we
recall the following two results.

PROPOSITION 1.1 [FS3], [SSU], [D], [CL~ . Let f : p2 0 be holomor-
phic of degree d &#x3E; 2. Then the following holds:

(i) any (possibly reducible) totally invariant curve V D f -1 V is a union
of at most three lines; if there are three lines, then they are in generic
position; further, the set of intersection points between different lines is

totally invariant;

(ii) any finite totally invariant set X D f -1X is contained in the singular
locus of the critical value set of f; the cardinality of the union of all such
sets X is bounded by a number depending only on d.

As a start of the proof of Theorem A we will reduce (0.2) to a study
of sizes of images of balls under iterates of f. Namely, suppose that S is a
positive, closed current cohomologous for which (0.2) fails. Then we
may write

where u x 0 is a quasi-plurisubharmonic (qpsh) function on ]p&#x3E;2. It then

follows that for all n &#x3E; 0,

so since (0.2) fails and T, we have o f n) -~ 0 as
n - oo, which is equivalent to d-nu o f n -~ 0 in LLoc. By Hartog’s Lemma
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(see [H]) this implies that there is a ball B C IfD2, a constant a &#x3E; 0 and a

sequence nj - oo such that

The rest of the proof consists of showing that (1.2) is not possible if ,S’ is a

current satisfying the hypotheses of Theorem A. This is done by estimating
the volume of from below (using dynamics) and the volume of

from above (using pluripotential theory).

2. Some pluripotential theory.

In this section we discuss some results from pluripotential theory.
First we need the definition of Lelong numbers.

DEFINITION 2.1. Let u be a a psh function near the origin in C~.
We define the Lelong number v(O, u) of u at the origin to be the supremum
of v &#x3E; 0 such that

This definition is invariant under local biholomorphisms. We will need
an estimate of the volume of sublevel sets for a psh function in terms of its

Lelong numbers. The following result is due to Kiselman [K2] and relies on
previous work of Skoda [S].

THEOREM 2.2. - Let U C C~ be an open set, K a compact subset of

U, and u a psh function on U. For any real number a  2 (supK v (z, u) ) -1
there exists a constant Ca &#x3E; 0 such that for any t &#x3E; 0, the estimate

holds.

In Section 8 we will need to work with directional Lelong numbers or
Kiselman numbers. We refer to [K1] or [Dl] for a detailed exposition.

Let u be a psh function in the unit ball B C (~2 endowed with
coordinates (z, w). (Kiselman numbers depend on a choice of coordinates
whereas the Lelong number does not.) Fix a weight (JR+)2.
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The Kiselman number of u at the point p = (o, 0) with weight(a1, cx2 )
is defined as

For (al, a2) = (1, 1) we recover the usual Lelong number

We have the following homogeneity property:

for any A &#x3E; 0. The inequality

always holds (see [Dl]).
We can now state the following

PROPOSITION 2.3. - Let u E PSH(B), u x 0 and assume that the
positive closed current ,S’ = ddcu does not charge the curve f z - 01. Then

Remark. - The same types of considerations were made by Souad
Khemeri Mimouni in [M]. In fact, she studies more generally the transfor-
mation of Lelong numbers under any sequence of blowing-ups. In our case,
we blow-up only at the intersection point of the exceptional divisor and the
strict transform of the curve ~ z = 0}.

Proof of Proposition 2.3. - After having proved this result we

learned that S. K. Mimouni had obtained a more general version of it [M], I
so we only outline a proof here. It relies on the approximation process by
Demailly [D2]. Introduce the following Hilbert space:
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Set

One checks that us = for any orthonormal basis 

of ’H(su), and that us is the logarithm of a real analytic function. The
following result connects the singularities of u and us. Its proof is an

adaptation of the argument in [D2].

LEMMA 2.4. - For any point p E B and all (01521, a2) E (IR+.)2, one has

We then conclude the proof of Proposition 2.3 as follows. As ddcu does
not charge f z - 01 there exists a point p = (0, w) such that v(p, u) = 0 (by
Siu’s theorem). In particular by Lemma 2.4 (2), us does not charge ~z = 01
either, hence there exists a holomorphic function h E H(su) which does not
vanish identically 01. For such a function, we apply Lojasiewicz’
inequality [Lo, p. 243] and get

with I = h-1 (o) n ~z = 0 1 and for some constants C, 0 &#x3E; 0. We infer for

any w and any a  (}-1,

From this, it is easy to see that

hence

In particular, we get for any s &#x3E; 0,

which implies the result. D

Proof of Lemma 2.4. - This lemma is standard for Lelong numbers

(see [D2]). We emphasize that the inequality (2) is not obvious and
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relies on the Ohsawa-Takegoshi extension theorem. The generalization is

straightforward for Kiselman numbers. We nevertheless give the arguments
for assertion (1) for completeness. Let h E H(su) normalized by 1.

The mean value property inequality for subharmonic functions implies

Hence for all (z, w) E B, we have

Write p = (zo, wo). By definition of Kiselman number we have

hence

with ( We hence get

as desired.

3. Asymptotic multiplicities.

As explained earlier, the main ingredient in the proof of Theorem A
are estimates from below of for a ball B. This is equivalent to
estimates of the Jacobian Jf ’, and more precisely to the asymptotic order
of vanishing of In this section, we also consider two other asymptotic
multiplicities for a holomorphic mapping of p2.
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We will make frequent use of the following strong Birkhoff theorem
due to the first author (see [F3] or [F2] Theorem 2.5.14):

THEOREM 3.1. Let f : p2 0 be holomorphic of degree d &#x3E; 2 and
let p2 _* [1, -~oo ~ be a sequence of functions satisfying the following
conditions:

(1) for any n &#x3E; 0, ~n is upper semicontinuous (usc) with respect to the
analytic Zariski topology;

(2) for any n, m &#x3E; 0 and any x E p2,

we say defines a submultiplicative cocycle;

(3) for any n &#x3E; 0, 1.

Then, for any x E p2, the sequence converges. Let Ko (x) be
its limit. We have o f = if Ko (x) &#x3E; 1, then

~ either x is preperiodic,

~ or some iterate of x belongs to a (not necessarily irred uci ble) fixed
curve V such that minv 

Remark 3.2. - Note that the curve V of the preceding theorem
must contain an irreducible component of the proper analytic subset
C : ~~1 &#x3E; y.

3.1. Asymptotic multiplicity of the Jacobian.

First we study the asymptotic order of vanishing of the Jacobian of f.
Fix local charts U :3 p, V 3 fp, and denote by J f the Jacobian determinant
of f : U - V.

DEFINITION 3.3. - Let J f) E l~ be the order of vanishing of J f
at p.

This number does not depend on the choice of chart. It can be

interpreted analytically as the Lelong number
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of the positive closed ( 1,1 ) current dd’ log I Jf 1. Note that ~c(p, J f ) &#x3E; 1 if

and only if p belongs to the critical set C f .
We are interested in studying the growth of J1(p, when n tends

to infinity. It is straightforward to see that

for any n, l~ &#x3E; 0. The sequence is not submultiplicative,
but we will see that we can treat it as such. First we have the following
inequality.

PROPOSITION 3.4 (see [F1] Remark 3). - For any p E P~ and any
n, k &#x3E; 0, the following inequality:

holds.

From this it follows that

Introduce

The last inequality can then be rewritten as

The sequence hence defines a submultiplicative cocycle. It is

moreover usc with respect to the analytic Zariski topology on p2 (e.g. by
Siu’s theorem). Thus Theorem 3.1 applies and yields:

PROPOSITION 3.5. - Let f : p2 0 be a holomorphic map of degree
d &#x3E; 2. For any p E p2, the sequence ji(p, converges to a real number

~c~ (p) &#x3E; 1. We have o f = Further, if &#x3E; 1, then one of the

following holds:

(i) f Np is a periodic critical point for some N &#x3E; 0;
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(ii) there exists a fixed curve V such that E V for some N &#x3E;, 0, and

min v J-lOCJ = (p).

Remark 3.6. - The sequence (1 + also converges to

Moreover, define p (p, Jf o f n) . This sequence is clearly
increasing. From (3.2), it follows that

and so (1 + p, (p))’I’ also converges towards (p) .

PROPOSITION 3.7. - Let f : p2 0 be holomorphic of degree d &#x3E; 2.

Then

for all p E ]fD2. Hence

for all p E 

Proof. The multiplicity p(p, J/) is always smaller than the degree
of the critical set of f, which is 3 (d - 1). Applying (3.5) to f n and letting
7T, 2013~ oc we get (3.6). D

3.2. Asymptotic topological degree.

An important quantity in the study of totally invariant sets is the

local topological degree e(p, f ) of f at a point p. By definition, this is the
topological degree of the germ of an open map induced by f at p. Clearly
e(p, f ) &#x3E; 1 if and only if p E C f and moreover e(p, f ) is an usc function

with respect to the Zariski topology (see e.g. [F3]). Further e satisfies the
composition formula

Theorem 3.1 again applies and shows that

PROPOSITION 3.8. - Let f : p2 0 be a holomorphic map of degree
d &#x3E; 2. For any p Ep2, the sequence e(p, In )l/n converges to a real number
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1. We have eo o f = Coo. Further, if eo(p) &#x3E; 1, then one of the

following holds:

(i) is a periodic critical point for some N &#x3E; 0;

(ii) there exists a fixed curve V such that f Np E V for some N &#x3E; 0 and
minveoo = Coo(p).

PROPOSITION 3.9. - Let f : P~ 0 be holomorphic of degree d &#x3E; 2.

Then

for all p C p2 and {e(p, f ) &#x3E; 6~} is a finite set whose cardinality is bounded
only in terms of the degree d. We have

for all p E P~ and the set d’I is finite, totally invariant and
contained in f ) = d2 ~ .

Proof of Proposition 3.9. - Since the (global) topological degree of
f is d2 we have 1 ~ e(p, f ) - d2 for all p. Let us show that {e &#x3E; dl is

a finite set. We follow the proof of Theorem 4.7 in [FS3]. Take a point
z is the regular locus of C f such that f z belongs to the regular locus of

and z is a regular point for fief. One can find local coordinates so
that f(z, w) = (z, we) with e := e(p, f). On the other hand, we have
in terms of currents
As deg ( f * ~C f ~ ) = we get e~  d~ . Hence outside the finite set

we have e  d. We conclude the proof noting
that the cardinality of E can be bounded only in terms of d.

If d2, then the orbit of p must visit the finite set {e = d2 ~
infinitely many times and is therefore preperiodic to a periodic orbit in
that set. So we may write fmp = q = f nq with e(q, f ) = d2. But then
eo(p) = e(q, so we must have e( f iq, f ) = d2 for 0  i  n. Thus

for all i, and that implies that p = for some i. We

conclude that p is periodic and that the orbit of p is totally invariant and
contained in {e = d2 ~ . 0



1475

3.3. Asymptotic diameter.

A third quantity that we will need is related to the asymptotic
diameter of balls To define this, fix local coordinates around p and

f p so that p = f p = 0. Define c(p, f) to be the largest integer c such that

for some constant A &#x3E; 0. Alternatively, c(p, f ) is the order of the first

nonvanishing term in the Taylor expansion of f. It can also be interpreted
as the Lelong number c(p, f) = v(p, log hence the definition does not

depend on the choice of local coordinates and c is usc with respect to the
Zariski topology. Notice that the set ~c(p, f ) &#x3E; 1} is finite. Moreover, it is
clear from the definition that

and so c defines a supermultiplicative cocycle. We have

Proof. This is a local result so we may assume p = f p = 0. Write
c = c(p, f) and p = f). Let f (() = fc(() ~- O(I(le+1) where fc is a

homogeneous polynomial of degree c. The Jacobian determinant of fc is

a homogeneous polynomial of degree 2c - 2 or vanishes identically. Thus

This estimate and (3.9) allow us to deduce the following result from
Proposition 3.5.

PROPOSITION 3.11. - Let f : P~ 0 be a holomorphic map of degree
d &#x3E; 2. For any p E p2, the sequence c(p, converges to a real number

1. We have co o f - co. Further, if &#x3E; 1, then is a

periodic critical point for some N &#x3E; 0. Further, if &#x3E; 1, then one of
the following holds:

(i) is a periodic critical point for some N &#x3E; 0;

(ii) there exists a fixed curve V such that f Np E V for some N &#x3E; 0, and
minv co = 

Notice that case (ii) in Proposition 3.5 does not appear as the set of
p such that c(p, ,f n) &#x3E; 1 for some n &#x3E; 1 is countable.
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PROPOSITION 3.12. - Let f : p2 0 be holomorphic of degree d &#x3E; 2.
Then

for any p E p2. Moreover c(p, f) = d if and only if p is a homogeneous
point for f, i.e., f maps the pencil of lines through p to the pencil of lines
through fp.

Proof. - By pre- and post-composing by projective linear maps of
p2 we may assume that p = f p = 0. Write f (() = (P( ()/ R( (), Q(()IR(())
where P, Q and R are polynomials of degree d and P(o) - Q(0) = 0,
R(O) = 1. Then clearly f can only vanish up to order d and so I x c(p, f )  d.
Further, c(p, f) = d if and only if P and Q are homogeneous polynomials
of degree d, which means precisely that p is a homogeneous point. D

3.4. Properties of the multiplicities.

We summarize in the following proposition the inequalities relating
the multiplicities p, c, and e considered above.

PROPOSITION 3.13. - Let f : p2 0 be holomorphic of degree d &#x3E; 2.
For all p E p2, we have

Hence

The set { is finite and totally invariant.

Example 3.14. - A totally invariant point, i.e., a point with e(p, f ) =
d2, is not necessarily superattracting as the example f(z, w) = (2z-~wd, zd)
from [FS3] shows. In this example the origin is a totally invariant fixed point
with one expanding eigenvalue 2 &#x3E; 1. One can check that /~oo = 1,
whereas = d2 for this map.
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Proof of Proposition 3.13. - Equations (3.14) and (3.15) are conse-
quences of (3.12) and (3.13), and the last assertion follows from (3.15) and
Proposition 3.9.

Equations (3.12) and (3.13) are local so we may assume p = fp = 0
and for sake of simplicity we write p (p, f ) - A, c(p, f ) = c, e(p, f ) = e.
Because of Lemma 3.10 we only have to show the inequalities ,u  2e - 2

and c  ve.
To prove u  2(e-1) we use the fact that |f(03B6)| &#x3E; CI(le (see e.g. [F1])

and (by definition) ~I f (~) ~  for some constants C, D &#x3E; 0. For any
ball B(r) of radius r &#x3E; 0, one gets

for some constants C’, D’ &#x3E; 0. By letting r ~ 0 we get p x 2 (e - 1 ) .
We now give an analytic proof of c x We first note that

It follows from Corollary 6.8 that

This concludes the proof. D

3.5. Exceptional sets.

We define two exceptional sets as follows.

DEFINITION 3.15. - Let f : P~ 0 be holomorphic of degree d.

~ Define the first exceptional set £1 to be the union of irreducible

curves V such that ~c~ (p) = d for all p E V.

9 Define the second exceptional set S2 to be the set of points p with
= d.

Finally, we define the exceptional set E by £ := ~1 U ~2 .

The exceptional set E is where f is most volume contracting; we will

spend the next few sections analyzing it. In particular we will show that E
is algebraic, totally invariant and superattracting.
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4. The first exceptional set ~1.

The key to the description of the first and second exceptional sets £1
and S2 lies in understanding the loci (co  = dl and = dl. Being
in the first locus means, roughly speaking, that volume is contracted much
faster than diameter. This implies that the image of a ball is very close
to being one-dimensional, and that can only happen if the critical set is

very recurrent. Being in the second locus means that diameter is decreasing
very fast, and this leads to totally invariant and superattracting points. In
fact, we already know from Proposition 3.13 that the second exceptional
set E2 - = dl is finite and totally invariant. In this section, we show

THEOREM 4.1. Let f : p2 0 be a holomorphic map of degree
d ~ 2. Then the first exceptional set S, is the union of all totally invariant
curves for f and equals the (Zariski) closure of the locus (co  /100 dl.
Moreover, 61 is the union of at most three lines in general position.

The proof relies essentially on the following local result. Notice that
co and can be defined for a germ fixing a point.

THEOREM 4.2. - Let f : (C~,0) 0 be a holomorphic germ. Let
Yl, ... , Y,~ be the irreducible components of the critical set C f. Assume
that co (0)  ~oo (0)- Then there exist a1, ... , ak &#x3E; 0 such that

Proof of Theorem 4.1. First we show that any totally invariant
curve V is contained in Given n &#x3E; 1 and p E V outside a finite subset

(depending on n) we may pick local coordinates at p and at f np so that
f n is given by It follows that J1(p,
V outside a finite set, and thus p(p, 1 on all of V by upper
semicontinuity. This implies Moo = d on V hence V C £1.

Next let us consider the set X :=  Moo = We claim that X is

contained in the union of totally invariant curves. In view of Proposition 1.1
this will complete the proof, since the set = d~ is finite.

Thus pick a point p E X,  = d. By Proposition 3.5,
either p is preperiodic or fmp E W for some m &#x3E; 0 and some fixed curve
W with minw Moo = = d.
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In the latter case, we have f * ~W ~ &#x3E; for some maximal l E [2,d].
For a generic point q E W, we have d = JLoo(q) = eoo(q), and for any j &#x3E; 0,
e(q, = lj . Hence l = d, and we infer that W is totally invariant.

If p is preperiodic, then fmp = q = for some q E C f and m &#x3E; 0.
Clearly = dN and eoo(p, f)N  dN.
Apply Theorem 4.2 to f N and find non-negative integers a1, ... , ak such

As f N is of degree dN, we have equality.
In particular the union W of the critical components passing through
p with ai &#x3E; 0 is a totally invariant set for f N . But then the curve
W’ - W U ... U is totally invariant for f. Since f m p E W’ we
have in fact p E W’. This completes the proof. D

Proof of Theorem 4.2. - Pick holomorphic maps Oi so that Vi -
(0), and set 0 J Jf. Then Oi are the irreducible factors of 0. There
exist integers 0 so that

for some holomorphic ~i n C f = {0}. By Lojasiewicz’ inequal-
ity [Lo, p. 243] there exist constants C, a &#x3E; 0 such that

in a neighborhood of the origin. For fixed n &#x3E; 0 write
where 0 is a homogeneous polynomial of degree cn . Similarly, set

for a non-degenerate homogeneous polynomial
øJ1n of degree J-ln = J-l(0, ~f o f n ) .

We know that Cn is an increasing supermultiplicative sequence such
that ~ c,,(O), and that Pn is an increasing sequence such that

1/n -~ (0) (see Section 3). By hypothesis co (0)  so for any

fixed c, /-t with co (0)  c  It  we have

for n &#x3E; 0 and some constants A, B &#x3E; 0. We infer that for a generic |03B6|« 1
and for any n &#x3E; 0
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for some Cn &#x3E; 0. On the other hand for all 1(1 « 1 and all n &#x3E; 0 we have

Let M be the k by k matrix and let p &#x3E; 0 be the spectral radius of
M. Denote M’~ :- [t~’.] and fix K &#x3E; 0 so that

For n large enough, so that Bpn, and for generic (, we can

apply (4.3), and get

Hence

where we let

By induction and using (4.6) for 1 ~ i x k we have

On the other hand (4.5) shows that

As ( was generic, we can let it tend to zero and let n tend to infinity. We
infer p &#x3E; 11, and therefore p &#x3E; as 11  was chosen arbitrary.

The Perron-Frobenius theorem now implies the existence of a (not
necessarily unique) eigenvector (a1, ... , ak) for M with non-negative coeffi-
cients associated to the eigenvalue p. We have &#x26;

, - , , - - - - -

~2 ai which completes the proof. D
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5. The second exceptional set E2.

The second exceptional set S2 is both hard and interesting to analyze
in detail. We will give some partial results that are enough for the purpose
of Theorems A and A’.

PROPOSITION 5.1. - The second exceptional set is given by the set of

~ points p ~ .61 with (p) = d;
~ totally invariant periodic orbits f in £1.

Further, finite, totally invariant and superattracting.

Proof. Proposition 3.13 shows that E2 = (co = d~ is finite and

totally invariant. A point p E ?2? f np = p, is superattracting as the Taylor
series of f n at p vanishes to order c(p, f n) -&#x3E; 2. Let us now prove the

characterization of 92. First consider a point p ~ If p E E2, then
co (p) = d and so p,,,, (p) = d by Proposition 3.13. Conversely, if Moo (p) = d,
then co (p) = d by Theorem 4.1 so p E E2.

Next consider p E We want to show that co (p) = d if and only if
p is periodic and the orbit of p is totally invariant. Both of these properties
are preserved under replacing f by an iterate, so we may assume that the
line (w = 0) is totally invariant for f and that p is on this line. Notice
that the restriction R := f 1,,=o is a rational map of degree d and that
c (p, .f n) ~ c (p, R’z) = e (p, Rn).

Assume first co(p) = d. Then eo(p, R) = d hence p belongs to a
totally invariant orbit.

Conversely, suppose that the orbit of p is totally invariant. After
replacing f by f2 we may assume that p - (o, 0) is a totally invariant
fixed point for R. Thus we may write

in local coordinates ( = (z, w), for holomorphic Q, r~ with 0) = 0. One
checks that thus co (p) = d. This completes the proof. 0

Let us give some examples of maps with nonempty second exceptional
set.

Example 5.2. - We already know from Proposition 5.1 that a totally
invariant point on a totally invariant line is in E2. This will happen if
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, where Q and R are

homogeneous of degree d - 1 and d, respectively.

Example 5.3. - A homogeneous point, i.e., a point p with the prop-
erty that the family of lines through p is invariant under f, is a point in

?2. In fact, = dn and so co (p) = d. In homogeneous coordinates

Example 5.4. - More generally, if f preserves a linear pencil of
curves, then any base point p of the pencil belongs to S2 for this map.
Holomorphic maps of p2 preserving a pencil of curves were studied in [DJ] :
it turns out that the mappings and the base points are always of one of the

types described in Examples 5.2 or 5.3.

It is a very interesting problem whether all points in E2 are of the

types described in Examples 5.2 or 5.3. We postpone its discussion to a
later paper. Assuming this is the case, we refer to the last section of the
paper for a list of different possible configurations of the exceptional sets
~1 and ~2.

6. Volume estimates outside the exceptional set.

In this section we give a lower bound on the volumes f ’E for sets E
that avoid a fixed neighborhood of the exceptional set E under iterations.

THEOREM 6.1. - Let f : p2 0 be a holomorphic map of degree d &#x3E; 2.
Fix an open neighborhood of the exceptional set. Then there exist
a constant A  d and constants C1, C2 &#x3E; 0 such that

for any Borel set E C P~ and any integer n j 0 with E,..., f nE C 

The key idea ingredient in the proof is the following upper bound on
the multiplicities of the Jacobian.

PROPOSITION 6.2. - In the setting of Theorem 6.1 there exist p  d
and C &#x3E; 0 such that

for any x / S and any integer n &#x3E; 0.
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We defer the proof of Proposition 6.2 until the end of this section
and show how to deduce Theorem 6.1 from it. The key to doing so is the
following result, which connects the multiplicity of the Jacobian to the
volume of f E.

PROPOSITION 6.3 (see [F2] Chapitre 4). - Let f : p2 O be a holo-
morphic mapping and K C p2 be a compact set. Define

Then for any E &#x3E; 0, there exists a constant C~ &#x3E; 0 such that

for any Borel set E C K.

Proof. Write T, := T f (K) + E. Let E C K be a Borel set. We are
looking for a lower bound for Vol f E in terms of Vol E. To this end we
apply the Kiselman-Skoda estimate (Theorem 2.2) to the function log J f ) I
in each chart of a given atlas of p2. Notice that v(z, log = p (z, 
We conclude that there exists a constant C~ &#x3E; 0 such that

for all t &#x3E; 0.

If we define t buy Vol E, then Chebyshev’s inequality gives

which completes the proof. D

Proof of Theorem 6.1. Choose an integer N so that CpN  dN
for the constant p  d given by Proposition 6.2. Fix A  d so that

CpN  AN  dN. Proposition 6.3 applied to fN with K := p2 B Q yields
a constant C &#x3E; 0 so that
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for any Borel set E C ]p&#x3E;2 B Q. In a same way, one can find constants
D, D’ &#x3E; 0 so that

for any 0  j  N- 1 and any E C P2.
Take a Borel set E C p2 and n &#x3E; 0 so that

Write n = kN + l with l &#x3E; N - 1. We have

which completes the proof of Theorem 6.1. 0

Finally we prove the estimate for multiplicities in Proposition 6.2.

Proof of Proposition 6.2. - Denote by V1,..., Vk the irreducible

components of C f that are not in £1. For each i, pick a point xi E Vi
so that  d, and fix A  d with maxi  À. One can find a

constant C &#x3E; 0 so that .

for all n, i &#x3E; 0. Introduce the set

for a suitable N &#x3E; 0 to be chosen later. Because of (6.7), it is a finite set.

By (3.4), we infer

Set We get
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Now for a fixed A  p  d we take N » 1 large enough to conclude

for some constant C’ &#x3E; 0.

9 Now assumes

The set is finite. By definition it does not intersect 6, hence one
can find constants ~’ ~ d, C" &#x3E; 0 such that

for all p ~ FN and n &#x3E; 0.

Let 1 be the smallest integer such that f l x E 0N. Applying (3.4)
and (6.9), we get

and the proof is complete. 0

7. Volume estimates at the first exceptional set £1.

We now analyze the dynamics near £1. Recall that Si is a totally
invariant union of at most three lines (in general position).

PROPOSITION 7.1. Let f : p2 0 be a holomorphic map of degree
d &#x3E; 2. Fix small open neighborhoods Qi :) £i of the first and second

exceptional sets, respectively. Then there exists a constant C &#x3E; 0 and an

integer N &#x3E; 1 such that

for any Borel set E C p2 and any integer n &#x3E; N with E, ..., f n E Q2 -

We will prove Proposition 7.1 using the structure of the Jacobian J f
near First we prove the following lemma.
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LEMMA 7.2. - There exists C &#x3E; 0 such that for all s &#x3E; 0 we have

Further, there exists N &#x3E; 1 and for any n &#x3E; N a constant Cn &#x3E; 0 such

that

for all s &#x3E; 0.

Proof of Lemma 7.2. - The result is local. Pick p E We may
assume that p = (o, 0) and that (w = 0) or S, = (zw = 0) locally at
p. Further, write

where the multiplicity of z = 0 as a critical point of
and where ai are multivalued functions with 0152i(O) = 0. Let X, be

the subset of the bidisk I  1 ~ where  s. We will show

that 
-

which will prove (7.2). For the rest of the proof we will let C denote various
positive constants. Let A = SUPA2 For T  A and fixed

w C A we may estimate

We can then use Fubini’s Theorem to estimate the volume of Xs :
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If k  d - 1, then the second term in (7.4) can be estimated by

and so Vol Xs x Cs 2/(d-1) in this case.

If k = d - 1 then the second term in (7.4) is instead bounded by

and so Vol) This proves (7.2).
As for (7.3) we notice that for n &#x3E;- N, all the critical points for

except the ones at E2, will have multiplicity  dn - 1. Thus the

above calculations imply (7.3). D

We now show how Lemma 7.2 implies Proposition 7.1.

Proof of Proposition 7.1. The proof is similar to that of Proposi-
tion 6.3. First assume that N ~ n - 2N, with N from Lemma 7.2. We
define tn by 

-

with Cn from Lemma 7.2 and get

... ’-N

It is now easy to iterate this estimate and arrive at ( 7.1 ) . D

8. Attenuation of Lelong numbers.

For the proof of Theorem A we need further information on the
dynamics near £1. To this end we prove the following result.

THEOREM 8.1. - Let f : p2 0 be a holomorphic map of degree d -&#x3E; 2
and let S’ = w -f- ddcu be a positive closed current on p2 such that

9 S does not charge any component of £1;

9 the Lelong number v(p, S) = 0 at any point p E 
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Then

We first prove Theorem 8.1 under the weaker assumptions

(A) u 0 -oo on any irreducible component of £1;

(B) u is bounded at each point p E £2 n £1,

Proof of Theorem 8.1 under assumptions (A) and (B). - Let V be
an irreducible component of i.e., a line. After replacing f by an iterate
we may assume that V is fixed by f and hence R := flv induces a rational
map of V of degree d. Let S be a current as in the statement of the lemma.
By (A) we may define the probability measure ms . :== We have

By (B) the measure ms does not charge totally invariant orbits of R. On
the other hand, one can find A  d such that for large n &#x3E; 0 and any

p E V B ~2 e(p, Rn)  An. We conclude

Proof of Theorem 8.1 in the general case. - We will use of Propo-
sition 2.3 on the behavior of Kiselman numbers when one weight tends to
zero. Let V C £1 and R := flv be as above. We cover V by a finite number
of coordinates chart Ui :1 (zi, wi) such that V n ui = = 0~. In the open
set f-1Uj n Ui, the map f can be written in the form

For a point p E Ui, we denote by v(p, S, (01521, a2)) the Kiselman number
of S at p with weights associated to the coordinate

systems (zz, wz). (Recall that the Kiselman numbers, as opposed to the
Lelong number, depend on a choice of coordinates.) Assume that we can
prove the following result:

LEMMA 8.2. - For any point p E f-1Uj f1 Ui and any 1, we have
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As before fix a constant A  d such that for large n &#x3E; 0 and any point
p E V B ?2? we have e(p, Rn) - An. By assumptions S’ does not charge V
and v(p, S) = 0 for any point p E V n 52 ; hence for any n &#x3E; 0 large enough
we get

where the first line follows from (2.2) (with C := d + 1), the second from
Lemma 8.2, and the last from Proposition 2.3. This concludes the proof.

a

Proof of Lemma 8.2. - This is a local result so we may assume

p = f p = (0,0) and

with = e(p, R). We easily check that there exist constants C, C’ &#x3E; 0 such

that for any 1,

We remark that this property is easy to verify but nevertheless central to
the proof. Write S = ddcu for some local psh potential u. We infer

which completes the proof.
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9. Proof of the main results.

This section is devoted to the proof of Theorem A and its two

Corollaries B and C.

Proof of Theorem A. - We argue by contradiction. Suppose that S
is a positive closed current on P~ for which the assumptions, but not the

conclusions, of Theorem A hold. As in Section 1 we write S = úJ + dd’u
with u x 0 qpsh, and conclude that there exists a ball B, a positive number
a and a sequence nj - oo such that

We will get a contradiction from (9.1 ) by estimating the volumes of the
two sides.

Fix small neighborhoods Qi , Q2 of the exceptional sets £1 and E2,
respectively. By the superattracting nature of £1 and ~2 we may assume
that c c Qz for i = 1, 2. In order to reach a contradiction, it is sufficient
to consider three different cases.

9 Let us first assume that fn B avoids Q1 U SZ2 for all n &#x3E; 0. Then

Theorem 6.1 applies and shows that .

for some A  d. On the other hand, the Kiselman-Skoda estimate (Theo-
rem 2.2) shows that

for some (3 &#x3E; 0 and for all n &#x3E; 0. This yields a contradiction.

~ The second case is when f nB C Ql B Q2 for all n &#x3E; 0. We then

use the results from Sections 4, 7 and 8 on the dynamics near the first
exceptional set £1. First, by Proposition 7.1 there exists a constant C &#x3E; 0

such that

for sufficiently large n. Second, by Proposition 8.1, for arbitrarily large
A &#x3E; 0, one can find an integer m &#x3E; 0 so that supe, v(p,  1/A.
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Hence by the Kiselman-Skoda estimate (Theorem 2.2) one has

for large enough t. For nj » m, (9.1), (9.2) and (9.3) then imply

We get a contradiction by choosing A so that C Vol B and

letting nj -~ oo.

o The third and last case is when f nB C Q2 for all n &#x3E; 0. But by
our assumption u is bounded at S2 and so (9.1) clearly cannot hold. This
completes the proof of Theorem A. D

Proof of Corollary B. - If ,5’ = [C] is the current of integration on
a curve C of degree k &#x3E; 1, then ,S’ satisfies the assumptions of Theorem A
unless

o C contains an irreducible component of £1; or

. C n ?2 ~0.
This concludes the proof as the set of curves C satisfying either of

these conditions is a algebraic proper subset of P . D

Proof of Corollary C. - Let H C Hold be the set of holomorphic
maps f of degree d for 111. By Theorem 4.1 and Proposition 5.1,
Sj consists of at most three totally invariant lines and a totally invariant
set whose cardinality is bounded by some integer N(d). It is easy to check
from this that defines an algebraic set in Hold. To conclude the proof
we only have to exhibit one holomorphic map f E Hold with Ef - 0. We
follow a construction of Ueda.

Take a Lattès map in p1 of degree d for instance R(z) :- (z - 2/z)d.
Consider the holomorphic map g(z, w) :_ (R(z), R(w)) : p1 x p1 0. It has
topological degree d2. The quotient p1 x Pl by the symmetry (z, w) --~ (w, z)
is isomorphic to I~2 and g induces a holomorphic map f on the quotient.
The topological degree of f is d2 hence f E Hold. As R does not contain
critical periodic points, the same is true for g and for f too. Hence Ef = 0
and we are done. D
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10. The proof of Theorem A’
and totally invariant currents.

In this section we will work under the assumption that every point in

?2 B El is a homogeneous point i.e., f preserves the pencil of lines through
that point. It is possible that this assumption is valid for any holomorphic
map of p2. Our goal is to prove Theorem A’ and to exhibit totally invariant
currents associated with the sets El and ~2.

10.1. Local dynamics near E2.

Near the points of ~2? the dynamics has a simple form and this will
allow us to prove good volume estimates.

LEMMA 10.1. - Assume p is a homogeneous point. Then f is locally
conjugate at p to a map of the form

where P, Q are homogeneous polynomial of degree d.

LEMMA 10.2. - Assume p E S2 n Then f is locally conjugate at
p to a map of the form

where h is holomor p hic.

Proof of Lemma 10. 1. - Assume that p = [0 : 0 : 1]. In homogeneous
coordinates, f can be written f[z : w : t] = [P(z, w) : Q(z, w) : R(z, w, t)]
for homogeneous polynomials P, Q, R of degree d with 1-~(0, 0,1) - 1.

Hence, locally, f(z, w) = + Q(z, w) (I + 1])) for some germ 1]
with r~(0, 0) = 1. As f is contracting, one can define the map

and one checks the map (2:,u~) 2013~ (z4J(z,w),w4J(z,w)) conjugates f to
(P,Q). 0
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Proof of Lemma 10.2. - Again assume p = [0 : 0 : 1]. We may
assume that the set S, is given by zw = 0 or by w = 0. In the first of these
cases, p is a homogeneous point and f is locally conjugate to (zd, wd) by
Lemma 10.1. In the second case, we have

in homogeneous coordinates, where R(O, 0, 1) = 1. Hence, locally, f (z, w) =
~ for some germ q with r~(o, 0) - 1. As

in the proof of Lemma 10.1 we define

and conclude that the map (z, w) --+ (zO(z, w), wo(z, w)) conjugates f to
the desired form. D

COROLLARY 10.3. - There exists a &#x3E; 0 such that for

any p E ~2.

Proof. This follows immediately from the normal forms in Lemma
10.1 and Lemma 10.2. D

PROPOSITION 10.4. - Let p E 92 and let Q be a small neighborhood
of p. Then for any Borel set E of positive volume Vol (E) &#x3E; 0, there
exists 7(E) &#x3E; 0 such that

Proof. We first consider the case p E 52 n Si and write f in the
skew product form (10.2), which we may rewrite as

where ai are multi-valued with az (0) = 0 and ~ (0, 0) = 1.

Fix Eo &#x3E; 0 small. It follows from (10.4) that there exists a constant
c &#x3E; 0 such that for any w and any Borel set E" 

we have Further, for any Borel set E’ c
we have Aera gE’ &#x3E; c(Aera E’ ) d . Iterating these estimates yields
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Now pick a Borel set E C Q with Vol E &#x3E; 0. After iterating
forward we may assume that E C JI))2(0,cO). For w E we write

E~ = ~z E ~o)! I (z, w) C E}. There exists 6 &#x3E; 0 and a set E’ E D(0, Eo)
with Aera E’ &#x3E; 6 such that Aera E~ &#x3E; 6 for w E E’ . But then the previous
estimates imply that AeragnE’ &#x3E; (e’ 8)dn and &#x3E; (e’ 8)dn for

w E E’, so by Fubini’s Theorem we get Vol f nE &#x3E; 7 dn as desired.
The remaining case, when p E S2 is a homogeneous point, is similar.

We use the skew product structure (10.1). The only new observation that
we need is that if g : P1 0 is a rational map of degree d &#x3E; 2, then there
exists c &#x3E; 0 such that Aera gn E -&#x3E; for any Borel set E. D

After these preliminaries we now prove Theorem A’.

Proof of Theorem A’. - The implication ( 1 ) ~ ( 2) is relatively easy.
If ,S’ puts mass on a totally invariant curve V c £1, say ,S’ &#x3E; c[V], then
for all n &#x3E; 0 we have c[V]. Since T has

bounded potential we cannot have convergence towards T. Similarly, if

p E S2 with v(p, S) &#x3E; 0, then one immediately checks that v(p, d-n fn*S) &#x3E;
d-ncnv(S, p). Hence, by Corollary 10.3, for some E &#x3E; 0,
which also prevents the sequence to converge towards T.

Conversely, suppose that the current S’ satisfies (2) of Theorem A’.
To prove that follow the proof of Theorem A up to the
third case, i.e. when f nB C Q2 for all n &#x3E; 0. We pick a constant E « 1
small enough. As v(p, ,5’) = 0 for all p E ~2? by Theorem 2.2 one can find a
constant C, &#x3E; 0 such that

for all t &#x3E; 0. Combining (10.5) and the hypothesis .
with Proposition 10.4, we get
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10.2. Totally invariant currents.

Let us discuss the existence of totally invariant currents. Consider the
cone S of positive closed currents on p2 of unit mass such that d-1 f *T = T.
Let Se be the set of extremal points in S. It is known [FS4] that the Green
current T is in Se (this follows e.g. from Theorem A).

The following result is an immediate consequence of Theorem A.

COROLLARY 10.5. -

Conversely we want to show that if either El or E2 is nonempty, then
Se contains currents other than T. Recall that the Green current T has

zero Lelong number at every point and, in particular, does not put mass
on any curve in p2.

PROPOSITION 10.6. - If the first exceptional set Si is nonempty, then
there exists a current supported on £1-

Proof. Since £1 is totally invariant, the current is in
S. This current need not be extremal, but can be decomposed into currents
in Se supported on El. D

In the sequel, := j S denotes the projective mass of the
positive closed current S.

PROPOSITION 10. 7. - homogeneous point, then
there exists with positive Lelong number at p and with continuous
potential outside p. More precisely, we have v (p, S) = 1.

Proof. Assume f preserves the pencil of lines through p. Then f
induces a rational map g of (the set of lines) of degree d. Let A be the
measure of maximal entropy for g. This satisfies = d p and if we define

where [La] denotes the current of integration on the line through p
corresponding to a E JP&#x3E;1, then f * S = d S, so ,S’ E S. Assume S

with f*Sl = dS’1. From the local structure of S, we infer the existence
of a positive measure J-l1 such that Sl - The equation
f *S’1 - is equivalent to f* J-l1 = dJ-l1. As J-l1 has no atoms, this forces
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/11 - Cp for some constant c &#x3E; 0. Hence S1 - cS, and 9 c S’. Finally, a
direct computation yields v(p, S) = 1. 0

PROPOSITION 10.8. - If p E s2n si, then there exists S E Se with
positive Lelong number at p and with continuous potential outside p.

More precisely, for any positive real numbers 0  1, there exists
a current ,s’a E Se with

Proof. Pick a e]0,l]. Introduce the homogeneous real analytic
function on c3 B {0}

It vanishes exactly on the ray C - (o, 0,1 ) and by homogeneity the positive
closed current d-1 ddc log U can be pushed down to as a current cvo,

smooth outside p, with a pole at p whose Lelong number is v (wo, p) = 1.

Define 
~ ~ _

where F = wd, R) is a lift a f to c3. Then V induces by projection
a function on p2 which is real analytic outside p. We claim there exist
constants Cl , C2 &#x3E; 0 such that

for any point in p2.

Indeed, as p is totally invariant, U and U o F both vanishes exactly
along C . (0,0,1), hence the inequality has to be checked only in a

neighborhood V of p in the chart It - 1 ~ . To do so, you may decompose
V in two for a well chosen A. In

each of these sets, the estimates follow from a direct computation we leave
to the reader. By normalizing U, we can assume C2 = 1.

We now follow the standard construction of the Green current. We

have f *wo - two + ddc log V, hence
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for all 1~ &#x3E; 0. The sequence of function ; ] is decreasing
converging uniformly on compact sets. Hence the limit Gp is a L1 function,
continuous outside p, and bounded everywhere. The positive closed current
S := Wo + ddcGp belongs to S, has a continuous potential outside p, and a
singularity at p with Lelong number v(p, S) = 1/d. More precisely, in the
coordinates z, w, the Kiselman number of ,S’ with weight (1, c~/d-1) is given
by

To conclude we show ,S’ is extremal in the cone S. Assume ,S’ = ,S’1 + ~’2
with = dSi for i = 1, 2. Kiselman numbers behave additively hence

On the other hand, the following inequalities are standard (see [Kl], [D1]):

Whence

and we infer

for i = 1, 2. Pick a global potential ,S’i = ddcui defined in (C2. By definition
of Kiselman numbers we have in a neighborhood of the origin

for some constant C &#x3E; 0. Together with equation (10.6), we deduce that
is globally bounded from above.

and Gp is bounded, we
conclude that V1, V2 are also bounded everywhere. Hence

showing that 
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Example 10.9. - For the map, the set Se

is quite large. Given cx, ,Q, ~y &#x3E; 0 with

Then Se contains all the currents with

such that

or

such that

Notice that the Green current T is of the latter form.

10.3. Configurations of exceptional sets.

We conclude the paper by listing the different possible configurations
of the exceptional sets £1 and S2 and the corresponding mappings f in
case E2 B £1 contains only homogeneous points. The case of totally invariant
curves was treated in [FS3] (see Proposition 1.1). We summarize the results
in Table 1.1 below.

o P, Q, R denotes homogeneous polynomials in three variables z, w, t
except if we state it otherwise;

o pz, p~, and pt denote the points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1],
respectively;

9 Z, W and T denote the lines (z = 0), (w = 0) and (t = 0),
respectively;

. in the cases where #£1 ~ 2 or #E2 &#x3E; 2, we mention only the maps
preserving all irreducible components of £1 and each point in ?2- To be

complete, one has to add maps which permute these sets.

The proof is essentially elementary. There are essentially only two
points to check: any intersection point between two irreducible components
of El is in £2; and if S2 contains two homogeneous points p, q, then £1
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contains the line H passing through p and q. The first of these statements
is easy; for the second note that f -1H is a union of lines passing through
p as p is homogeneous, and also a union of lines passing through q. Hence
f - 1 H = H is a totally invariant line. If we blow up P~ at the two points
p, q, we can lift f to a holomorphic map for which the strict transform of
H is totally invariant. We can hence contract it to a point, and the induced
map becomes a holomorphic map on x P . If ~p, q~ - ~pz, p,, 1, this
shows f can be written under the form f - [P(z, t) : Q(w, t) : td]. The
other cases can be treated in a similar way.

Note that we in particular have (assuming E2 Si contains only
homogeneous points):

PROPOSITION 10.10. - There are at most 3 distinct points in ~2-

TABLE 1. - Configuration of exceptional sets.
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